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Abstract: The Akhmediev breather (AB) solution of the nonlinear Schrödinger equation (NLSE)
shows that the maximum crest height of modulated wave trains reaches triple the initial amplitude
as a consequence of nonlinear long-term evolution. Several fully nonlinear numerical studies have
indicated that the amplification can exceed 3, but its physical mechanism has not been clarified. This
study shows that spectral broadening, bound-wave production, and phase convergence are essential
to crest enhancement beyond the AB solution. The free-wave spectrum of modulated wave trains
broadens owing to nonlinear quasi-resonant interaction. This enhances bound-wave production at
high wavenumbers. The phases of all the wave components nearly coincide at peak modulation and
enhance amplification. This study found that the phase convergence observed in linear-focusing
waves can also occur due to nonlinear wave evolution. These findings are obtained by numerically
investigating the modulated wave trains using the higher-order spectral method (HOSM) up to the
fifth order, which allows investigations of nonlinearity and spectral bandwidth beyond the NLSE
framework. Moreover, the crest enhancement is confirmed through a tank experiment wherein waves
are generated in the transition region from non-breaking to breaking. Owing to strong nonlinearity,
the maximum crest height observed in the tank begins to exceed the HOSM prediction at an initial
wave steepness of 0.10.

Keywords: modulated wave train; quasi-resonant interaction; higher-order spectral method; crest
height; phase convergence

1. Introduction

Rogue waves (or freak waves) in the ocean can cause major damage to ships and
offshore structures. A number of tank experiments have been conducted to examine such
strongly nonlinear and complicated interactions of rogue waves with ships and offshore
structures [1–5]. The occurrence probability of such waves may need to be taken into
account when designing or establishing rules for ships and offshore structures [6,7]. In
addition to the occurrence probability, the shape of rogue waves affects the maximum
wave load acting on ships [4]. The crest height of rogue waves is also of great concern for
fixed offshore platforms because an air gap is the height between the wave crest and the
platform deck [8,9].

Recent studies have revealed that modulational instability due to quasi-resonant inter-
action is one of the causes of rogue-wave formation [10–12]. Many studies have been con-
ducted on the modulational instability or quasi-resonant interaction of water waves, starting
from the discovery that Stokes waves are unstable under sideband modulations [13,14].
Such nonlinear wave evolutions are governed by the balance between nonlinearity and
dispersion. This balance is expressed as a ratio between the wave steepness and spectral
bandwidth (e.g., δ̂ for modulated wave trains [15] and the Benjamin–Feir index (BFI) for
irregular waves [10]). The ratio δ̂ affects the initial growth of unstable sidebands [13],
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the recurrence period [16], and the maximum amplitude or crest height [17–20] of modu-
lated wave trains. Moreover, the BFI is a key parameter for the occurrence probability of
rogue waves [10,21].

This study focuses on the maximum crest height of modulated wave trains, or the
maximum amplification of modulated wave trains, which is defined as the ratio between
the maximum crest height and the initial Stokes-wave amplitude. This has been addressed
in several experimental [22,23] and numerical [23–25] studies. Su and Green [22] and
Tanaka [24] investigated the variation in maximum amplification against initial wave steep-
ness. Through numerical simulation, Tanaka [24] showed that the maximum amplification
predicted by the nonlinear Schrödinger equation (NLSE) [26] and a two-dimensional fully-
nonlinear (FNL) potential flow solver [27] was much higher than the experimental results of
Su and Green [22]. Tanaka’s FNL simulation also showed that the maximum amplification
could exceed 3 depending on the initial wave steepness. On the basis of experimental
results and numerical results from the Dysthe equation [28], Waseda [23] showed that the
difference between the numerical results of Tanaka [24] and the experimental results of
Su and Green [22] could be explained, to a certain degree, by the influence of the spectral
bandwidth of modulated wave trains. Su and Green [22] and Tanaka [24] determined that
the spectral bandwidth had a one-to-one correspondence with the initial wave steepness.
However, the maximum amplification can differ significantly depending on the spectral
bandwidth for a given initial wave steepness. Slunyaev and Shrira [25] investigated the de-
pendence of the maximum amplification of modulated wave trains on both the initial wave
steepness and spectral bandwidth by analyzing the Akhmediev breather (AB) solution of
the NLSE [17,29] and performing FNL simulation based on conformal mapping [30]. In this
FNL simulation, a maximum amplification larger than 4 was observed in the specific case
of a very narrow spectral bandwidth. Waseda [23] pointed out that, for a given initial wave
steepness, the maximum amplification increases as the spectral bandwidth narrows. This
relation was analytically explained by the AB solution in the cubic NLSE regime [18–20,25].

Such work has clarified the significant influence of the initial wave steepness and
spectral bandwidth on the maximum crest height of modulated wave trains. However, it is
still unclear why the maximum amplification of modulated wave trains can exceed 3, al-
though AB predicts the maximum to be 3 in the limit of zero spectral bandwidth [18–20,25].
Therefore, the aim of this study is to clarify the physics behind crest enhancement of modu-
lated wave trains from the spectral-broadening and phase-convergence [31] perspectives.
To investigate crest enhancement, tank experiments generating modulated wave trains
were carried out and corresponding numerical simulations using the higher-order spectral
method (HOSM) [32,33] were performed. The evolution of the spectral broadening and
degree of phase convergence were analyzed using the HOSM outputs in the non-wave-
breaking regime. Note that the maximum wave height and maximum trough depth are
parameters similar to the maximum crest height that this study focuses on. However, for a
given modulated wave train, these three values differ [25] because of different bound-wave
contributions to them [34].

Section 2 describes the set-up for the numerical simulations and experiments on
modulated wave trains. The simulated and experimental results are compared in Section 3.
The mechanism of crest enhancement of modulated wave trains is discussed in Section 4,
and the conclusions of this study follow in Section 5.

2. Facility and Methods
2.1. Numerical Simulations

The temporal evolution of spatially periodic deep-water modulated wave trains was
numerically simulated using the HOSM [32,33] in the same manner as in our preceding
studies [35,36]. The HOSM numerically solves Laplace’s equation (∇2φ = 0) subject to
nonlinear kinematic and dynamic free-surface boundary conditions with respect to the
surface elevation ζ and velocity potential on the free surface, ΦS

(
= φ | z=ζ

)
[26]:
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{
ζt + ∇xζ·∇xΦS − (1 + ∇xζ·∇xζ)W = 0,

ΦS
t + gζ + (1/2)∇xΦS − (1/2)(1 + ∇xζ·∇xζ)W2 = 0,

(1)

where ∇x =
(
∂/∂x, ∂/∂y

)
, W = (∂φ/∂z) | z = ζ , and g denotes the gravitational ac-

celeration. φ is expanded in a perturbation series up to an arbitrary nonlinear order M.
M = 3–5 is typically used [37] because the nonlinear wave evolution due to quasi-resonant
interaction can be captured with M ≥ 3. In addition to the nonlinear wave evolution, M
also governs the accuracy of the bound wave production. Therefore, this study adopted
M = 5 to take into account the bound waves up to the fifth order correctly. The spatial
derivatives (∇x[·]) were solved in wavenumber space using the fast Fourier transform,
which enabled efficient calculation. To remove spurious high-frequency waves arising from
aliasing, the following low-pass filter proposed in [32] was applied:

|k| < Nx

M + 1
dk, (2)

where k, dk, and Nx denote the wavenumber, wavenumber interval, and number of spatial
nodes in the x direction, respectively. This study only addressed unidirectional modulated
wave trains propagating in the x direction. The HOSM cannot take into account wave
breaking directly because the free surface ζ is assumed to be a single-valued function with
respect to the horizontal coordinate x. However, when a wave sufficiently steep to break
appears in the HOSM simulation, the low-pass filter in Equation (2) removes the energies
of high-wavenumber components. Accordingly, the computation can continue to some
extent beyond possibly breaking events [38,39].

The initial wave profile of the HOSM simulation was a three-wave system consisting of
a carrier, upper sideband, and lower sideband (denoted as c, +, and−, respectively) [13,15]:

ζ(x) = ac cos(kcx) + a+ cos(k+x + ψ+) + a− cos(k−x + ψ−), (3)

where a, k, and ψ denote the amplitude, wavenumber, and phase, respectively. k± is
defined as kc ± δk, where δk is the perturbation wavenumber. Table 1 lists the parameters
of the initial wave profiles of the modulated wave trains used in the HOSM simulation.
The perturbation wavenumber δk/kc = 1/7 was selected because the crest amplification
was expected to exceed 3 at large wave steepness from the FNL simulation results in [25].
While δk/kc, representing the spectral bandwidth, was fixed, the initial wave steepness a0kc
was swept between 0.08 and 0.115. This a0kc range was selected based on [15,25] to cover
the transition region from non-breaking to breaking in the tank. The critical parameter
δ̂ introduced in Section 1, which governs the nonlinear evolution of modulated wave
trains [15], is given by

δ̂ =
1
2

δk/kc

a0kc
(4)

and was systematically varied from 0.62 to 0.89. The amplitude ratio of the sidebands to
the Stokes wave a±/a0 was fixed to 0.1 sufficiently smaller than 1 such that the sidebands
grow exponentially [13]. The initial sideband phases φ± was set to −π/4, which gives the
maximum sideband growth rate [13].

The initial wave profile (Equation (3)) was given on the basis of linear wave theory
and did not satisfy the fully nonlinear free-surface boundary condition (Equation (1)).
Therefore, this study adopted the nonlinear-wave initialization method proposed in [40]
(see also [36]). The initially linear wave field was gradually transformed into a nonlinear
wave field with an adjustment period Ta. Ta = 32Tc, where Tc denotes the period of the
carrier wave.
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Table 1. Parameters defining the initial profiles of the modulated wave trains simulated with the

HOSM. a0

[
=
(
a2

c + a2
+ + a2

−
)1/2

]
denotes the initial amplitude of the Stokes wave.

Parameters Values

wavelength λc(= 2π/kc) 3 m
perturbation wavenumber δk/kc 1/7

sideband wave amplitudes a±/a0 0.1
sideband wave phases ϕ± −π/4

wave steepness a0kc 0.08–0.115
δ̂ 0.62–0.89

An example wave-elevation time-series of modulated wave trains with a0kc = 0.08
is presented in Figure 1a. The modulation of the wave group evolves gradually, and the
maximum crest appears at the peak of the modulation (t = tmax = 228 s). Then, the wave
group begins to demodulate afterward, and almost the initial wave profile is recovered
ultimately. Such a full cycle of recurrence [15] is confirmed to be successfully captured by
the HOSM simulation.

Figure 1. (a) Time series of wave elevation of the modulated wave train with a0kc = 0.08 simulated
with the HOSM. (b) Enlarged view of (a) around the time of the maximum crest height (t = tmax),
which is compared with the corresponding wave-elevation at x = 12 m measured in the wave tank.

2.2. Tank Experiment

A wave-generation experiment was performed in a wave tank (WT) (50 m× 8 m× 4.5 m)
(Figure 2) at the National Maritime Research Institute (Tokyo, Japan) to compare its results
with those of the HOSM simulation and to investigate modulated wave trains including
wave breaking. The modulated wave trains were generated using the HOSM wave gen-
eration (HOSM-WG) method [36]. A nonlinear wave field precomputed with the HOSM
was generated in a wave tank by sending a temporally evolving signal calculated from
the HOSM output to a wave maker. HOSM-WG can control when and where the maxi-
mum crest height appears in a wave tank. In this study, the modulated wave trains were
generated such that the maximum crest appeared at t = 40 s after the beginning of wave
generation and at x = 12 m from the wave maker in the WT.
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Figure 2. Schematic of the stereo camera set up in the wave tank (WT).

A capacitance wave gauge was set at x = 12 m to measure the wave-elevation
time series. However, the location of the maximum crest could deviate from x = 12 m,
especially when wave breaking occurred. To measure the maximum crest height even in
cases of wave breaking, the wave-surface profiles were measured using a stereo-imaging
technique [4,41]. About 100 spherical floats with a diameter of less than 20 mm were set on
the wave surface, and two cameras tracked the three-dimensional motion of these floats.
The wave profiles were acquired by fitting a smoothing spline curve to the floats’ three-
dimensional coordinates [4], and the maximum crest height was evaluated. The set-up of
the stereo cameras in the WT is illustrated in Figure 2, where the measurement area is also
indicated. The estimated error in the crest height of regular waves with a wavelength of 3 m
and wave height between 10 and 20 cm is less than 4% in this stereo-imaging scheme [41].
Note that the standard deviation of the wave-maker motion was found to be 1.065 times
larger than the given signal owing to a problem with controlling the mechanical wave
maker [35]. Therefore, the experimental results presented in Section 3 are corrected by a
factor of 1.065 for comparison with the HOSM simulation.

The generations of modulated wave trains with the HOSM-WG in a tank were vali-
dated with HOSM simulation, as reported in [36,42]. Here, as an example, the comparison of
the wave elevation of the modulated wave train with a0kc = 0.08 between the HOSM-WG
in the WT and the corresponding HOSM output is presented in Figure 1b. The mean square
error between those wave-elevation time series in the range with−Tg/2 ≤ t − tmax ≤ Tg/2
is 0.87 % of the total energy (a2

0/2). Here, Tg = 2Tckc/δk(= 14Tc) denotes the wave-group
period, and this time range is indicated as vertical dashed lines in Figure 1b. In this way,
the modulated wave train simulated in the HOSM simulation can be well reproduced in
the WT. However, the primary focus of this study is the strong nonlinearity at large a0kc
in the physical tank that cannot be considered in the HOSM simulation. Such a strongly
nonlinear influence on the crest enhancement of modulated wave trains, causing some dif-
ferences between the HOSM-WG in the tank and HOSM-simulation, will be demonstrated
in Section 3.

3. Results of Numerical Simulations and Experiments

In this section, the maximum crest heights of the modulated wave trains between the
HOSM simulation and the WT experiment are compared. Figure 3 presents the variation
in the normalized maximum crest height ζcr/a0 with the initial wave steepness a0kc. For
reference, Figure 3 also shows the predictions of the AB solution of the NLSE with and
without the second-order bound-wave correction. The maximum crest height of the free
wave, ζ

(AB; f )
cr , and that taking into account the bound wave, ζ

(AB; f + b)
cr , for the AB solution

are given respectively by
ζ
(AB; f )
cr

a0
= 1 + 2

√
1 − 1

2
δ̂2 (5)

and
ζ
(AB; f + b)
cr

a0
=

ζ
(AB; f )
cr

a0

{
1 +

1
2

kcζ
(AB; f )
cr

}
. (6)



Fluids 2022, 7, 275 6 of 22

These are derived in Appendix A. The definition of δ̂, expressing the balance between
the initial wave steepness and spectral bandwidth, is given in Equation (4). The quantity
ζ
(AB; f )
cr /a0 reaches a maximum of 3 in the limit δ̂ → 0 .

Figure 3. Variation in maximum crest height with the initial wave steepness. f and b indicate the free
and second-order bound waves, respectively.

Overall, ζcr/a0 increases with a0kc both in the WT experiment and HOSM simulation.
These values are notably larger than the free-wave AB prediction (Equation (5)). This gap
is compensated by adopting the second-order AB prediction (Equation (6)) at low a0kc,
which indicates a substantial contribution of the bound waves to the maximum crest height.
However, the results of the HOSM simulation and WT experiments are still larger than
this second-order AB prediction at high a0kc (a0kc > 0.090). Moreover, the experimental
results begin to deviate from the HOSM results at approximately a0kc = 0.100. The
experimental value of ζcr/a0 starts to decrease at a0kc = 0.1025, while ζcr/a0 continues to
increase in the HOSM simulation. This deviation can be attributed to stronger nonlinearity
in the WT experiment. Wave breakings were observed visually in the WT experiment for
a0kc > 0.1015 (indicated with a gray shade in Figure 3), although wave breaking could
not be reproduced in the HOSM simulation as explained in Section 2.1. This stronger
nonlinearity led to a higher crest height at approximately a0kc = 0.1015 in the experi-
ment. Beyond the breaking/non-breaking margin (a0kc = 0.1015), the maximum crest
height ζcr/a0 decreased with a0kc because larger wave breakings occurred prior to the
modulation peak.

These frequency spectra are compared in Figure 4 to clarify the cause of the differences
in crest height of the modulated wave trains among the WT experiment, HOSM simulation,
and AB predictions. The spectra in Figure 4 were evaluated from the wave-elevation time
series covering one wave-group period Tg at approximately the time of the maximum
crest height (−Tg/2 ≤ t − tmax ≤ Tg/2). Figure 4a presents the frequency spectra
of the modulated wave train with a0kc = 0.100, in which the maximum crest heights
in the WT experiment and HOSM simulation almost agree but are notably larger than
the second-order AB prediction. The wave spectra in the WT experiment and HOSM
simulation are broader than those in the AB predictions. The energy difference is significant
especially at ω/ωc > 2.5 because the AB solutions consider the bound-wave contribution
up to the second order. Meanwhile, substantial differences in the spectra near the peak
frequency (ω/ωc = 1) are also observed. The energy in the WT and HOSM results at
approximately ω/ωc = 1.5 is higher than the AB prediction, while the energy in the
WT and HOSM results at approximately ω/ωc = 0.7 is lower than the AB prediction.
The spectral difference around the peak frequency indicates the difference in free-wave
spectral evolution due to quasi-resonant interaction. The NLSE, the governing equation of



Fluids 2022, 7, 275 7 of 22

the AB solution, assumes a narrow-band spectrum, while the WT experiment and HOSM
simulation do not restrict the spectral bandwidth. It will be demonstrated in Section 4.1
that the free-wave spectral broadening is larger in the HOSM than in the AB solution.

Figure 4. Comparison of the Fourier amplitudes of the modulated wave trains in the frequency
domain among the experiment, HOSM simulation, and AB solution for (a) a0kc = 0.100 (non-
breaking) and (b) a0kc = 0.1025 (slight breaking).

The wave spectrum with a0kc = 0.1025 (Figure 4b), in which slight wave breaking
was observed in the WT experiment, is almost the same as with a0kc = 0.100 (Figure 4a). A
slight difference is observed at high frequencies (ω/ωc > 3.5); the energy is slightly higher
in the WT experiment than in the HOSM simulation. The larger maximum crest height in
the WT experiment than in the HOSM simulation at a0kc = 0.1025 can be interpreted as a
consequence of the higher energy production at high frequencies in the WT experiment
at t = tmax due to strong nonlinearity. Whether the low energy at high frequencies
can contribute to the maximum crest height will be discussed using the HOSM output
in Section 4.1. It should be noted that the higher spectral energy in the WT experiment
at ω/ωc > 3.5 with a0kc = 0.1025 may also be attributed to the high-frequency wave
generation resulting from wave breaking. The wave-frequency spectrum in the WT result
in Figure 4b includes the wave information not only at the instant t = tmax but also over
one wave-group period.

4. Discussion
4.1. Spectral Broadening and Its Influence on Maximum Crest Height

The comparison of the WT experimental results with the HOSM simulation and AB
solutions in Section 3 implies the spectral broadening and the bound waves influence
the maximum crest height of modulated wave trains. Therefore, these influences are
discussed by scrutinizing the HOSM output in this section. The discussion in the following
subsections is based on the HOSM simulation results and specifically confined to a non-
breaking potential-flow regime.

The discussion begins by investigating the spectral broadening of modulated wave
trains during their nonlinear evolution using HOSM outputs. Figure 5 presents the temporal
evolution of the wave profile and wavenumber amplitude spectrum of a modulated wave
train with a0kc = 0.105. The figure only depicts the period around the time of the maximum
crest height (t = tmax), from 25Tc before to 15Tc after t = tmax. The wavenumber
spectrum broadens before the crest height reaches its maximum (t < tmax), becomes
broadest at approximately the time of the maximum crest height (t < tmax), and then
narrows afterward.
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Figure 5. Temporal evolution of the modulated wave train with a0kc = 0.105 near the time of the
maximum crest height (t = tmax) in the HOSM simulation. (a) Wave elevation ζ(x, t); (b) amplitude
spectrum

∣∣ζ̂(k, t)
∣∣.

To quantify the spectral broadening, the indicator ∆K, defined as the mean wavenum-
ber difference from the carrier wavenumber (∆k = k − kc) weighted by the Fourier
amplitude [43,44], is introduced:

∆K =

∣∣∣∣∣∣∑j ∆k2
j

∣∣ζ̂(k j
)∣∣2

∑j
∣∣ζ̂(k j

)∣∣2
∣∣∣∣∣∣
1/2

, with ∆k j = k j − kc. (7)

Here, j and ζ̂(k) denote the wavenumber component and complex Fourier amplitude
of a wave train in wavenumber space, respectively, and Σj expresses the sum over all
wavenumber components. Figure 6 shows the temporal evolution of the normalized mean
wavenumber difference ∆K/δk of the modulated wave train with a0kc = 0.105. The
temporal evolution of the wavenumber spectrum (Figure 5b) indicates that ∆K reaches its
maximum at t = tmax. If all the energy is transferred only to the sideband waves (k = k±),
∆K/δk becomes 1. Therefore, the maximum value of ∆K/δk = 3.64 at t = tmax indicates
that the energy is transferred further beyond the sideband wavenumber components at
approximately t = tmax. Note that ∆K/δk is 0.141 in the initial state (t = tini), in which
the initial wave profiles are given as a three-wave system (Equation (3) and Table 1). This
value is also indicated by a dashed line in Figure 6.

Figure 6. Temporal evolution of the mean wavenumber difference ∆K/δk of the modulated wave
train with a0kc = 0.105 at approximately the time of the maximum crest height (t = tmax) in the
HOSM simulation. The dashed line represents the initial value.
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To investigate the dependence of the spectral broadening at t = tmax on the initial
wave steepness, or δ̂. (Equation (4)), ∆K/δk at t = tmax in the HOSM simulation is plotted
against a0kc in Figure 7. The spectral broadening ∆K/δk at t = tmax increases as the wave
steepness a0kc increases. Moreover, the spectral broadening is larger than that predicted
by AB (solid line), which takes into account the second-order bound waves (Appendix A).
The deviation becomes larger as a0kc increases. From the definition of ∆K (Equation (7)),
the deviation of ∆K/δk is conjectured to be mainly due to the difference in energy at high
wavenumbers far from k = kc. Indeed, notable deviations in spectral energy between the
HOSM and AB are observed at high frequencies in Figure 4. The bound-wave energy is
dominant at such high wavenumbers (or high frequencies), as demonstrated next.

Figure 7. Relation between the initial wave steepness a0kc and mean wavenumber difference ∆K/δk
at t = tmax for the modulated wave train. The dashed line represents the initial value.

To clarify the origin of the difference in spectral broadening between the HOSM and
AB observed in Figure 7, the spectral broadening for free- and bound-wave components
are next investigated individually. For this purpose, they were separated by applying an
ideal filter to the wavenumber-frequency spectrum of the HOSM outputs [35,36]. The total,
free-wave, and bound-wave amplitude spectra at t = tmax were obtained as shown in
Figure 8, and ∆K was evaluated individually from these spectra. ∆K for free and bound
waves (∆K( f ) and ∆K(b)) are defined as follows:

∆K( f ,b) =

∣∣∣∣∣∣∣
∑j ∆k2

j

∣∣∣ζ̂( f ,b)(k j
)∣∣∣2

∑j
∣∣ζ̂(t)(k j

)∣∣2
∣∣∣∣∣∣∣
1/2

, with ∆k j = k j − kc. (8)

The superscripts t, f , and b denote the total, free, and bound waves, respectively.
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Figure 8. Comparison of the Fourier amplitudes of the modulated wave trains with a0kc = 0.105 in
the wavenumber domain at the time of the maximum crest height in the HOSM simulation and AB
solution. Note that the bound-wave spectrum of the HOSM simulation breaks around k/kc because
its spectral energy is removed owing to the ideal filter separating free and bound waves.

The relation between a0kc and ∆K/δk is presented in Figure 9a for the free waves and
Figure 9b for the bound waves. The difference between the HOSM and AB is greater for the
bound waves than for the free waves. This confirms that the primary cause of the difference
in total spectral broadening between the HOSM and AB in Figure 7 is the difference in
bound wave energy. As conjectured, a significant energy difference is observed between
the HOSM and AB at high wavenumbers (Figure 8). The reason bound-wave production
at high wavenumbers is more energetic in the HOSM than in AB is the larger free-wave
spectral broadening in the HOSM, as will be discussed next. This is because the bound
waves are produced deterministically from the free-wave spectrum. Of course, bound
waves higher than the second harmonics, not considered in the AB solution, also contribute
to the higher bound-wave energy at high wavenumbers in the HOSM results. The bound
waves could be evaluated correctly up to the fifth order in the HOSM simulation because
this study adopted the nonlinear order M = 5.

Figure 9. Relation between the initial wave steepness a0kc and mean wavenumber difference ∆K/δk
at t = tmax for the modulated wave train. (a) Free wave; (b) bound wave.
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As implied by the relation between a0kc and ∆K/δk for bound waves, free-wave
spectra broaden further as a0kc increases (Figure 9). The deviation in spectral broadening
between the HOSM and AB becomes larger as a0kc increases. This deviation reflects the
difference in the free-wave spectral shape at t = tmax as indicated in Figure 8. The
free-wave spectrum can broaden more in the HOSM than in AB because of the different
treatments of the spectral bandwidth. The HOSM does not restrict the bandwidth, while
the NLSE assumes narrow-banded wave spectra. From the investigation so far, we can
conclude that the free-wave spectral broadening and resultant bound-wave production
at high wavenumbers result in a larger total spectral broadening of the modulated wave
trains in the HOSM than in AB. Janssen [10] has observed a similar relation between the
wave steepness and spectral broadening in irregular waves. He has shown that the spectra
of irregular waves broaden as the ratio of the wave steepness to the spectral bandwidth
increases, owing to the enhanced quasi-resonant interaction.

Next, the relation between the spectral broadening and crest enhancement is inter-
preted by introducing the “amplitude sum” [45]

As = ∑
j

∣∣ζ̂(k j
)∣∣. (9)

As is defined as the sum of the Fourier amplitudes of all the spectral components and, ac-
cordingly, expresses the potential maximum crest height when all the wave components are
in phase. Furthermore, As generally increases as the energy spreads over more wave com-
ponents in a system in which the total wave energy

(
E = ∑j

∣∣ζ̂(k j
)∣∣2) is conserved [45].

Figure 10 presents the temporal evolution of the normalized amplitude sum As/a0 of
the modulated wave train with a0kc = 0.105 in the HOSM simulation. As/a0 temporally
varies and reaches its maximum at approximately t = tmax, which is similar to the
temporal evolution of ∆K/δk (Figure 6). From this temporal evolution of As/a0 and that
of ∆K/δk, we can conclude that the potential maximum crest height increases according
to the spectral broadening during the nonlinear wave evolution. It is interesting that the
time of the maximum As (indicated with a triangle in Figure 10) does not coincide precisely
with t = tmax. As reaches its maximum a few wave periods after t = tmax. This time lag
will be discussed in Section 4.3.

Figure 10. Temporal evolution of the amplitude sum As of the modulated wave train with
a0kc = 0.105 at approximately the time of the maximum crest height (t = tmax) in the HOSM
simulation. The dashed line represents the initial value, and the triangle indicates the maximum value.

Figure 11a presents the relation between the spectral broadening ∆K/δk and amplitude
sum As/a0 in the HOSM simulation. As/a0 at t = tmax increases as ∆K/δk increases. The
potential maximum crest height of the modulated wave train increases as the spectrum
broadens. For a given ∆K/δk, As/a0 is lower than the AB prediction (solid curve). However,
the range of the spectral broadening ∆K/δk notably differs between the HOSM and AB
(1.56 < ∆K/δk < 2.29 for AB and 1.68 < ∆K/δk < 4.54 for the HOSM) for the a0kc
range investigated here (0.08 ≤ a0kc ≤ 0.115). Therefore, with larger spectral broadening
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than in AB, the modulated wave train in the HOSM attains an As/a0 value exceeding the
maximum AB prediction (As/a0 = 3.50) at ∆K/δk > 3.38.

Figure 11. (a) Relation between the spectral broadening ∆K/δk and amplitude sum As/a0 of the mod-
ulated wave train. (b) Relation between the free-wave spectral broadening ∆K( f )/δk and amplitude
sum As/a0 of the modulated wave train for the total, free-wave, and bound-wave components.

To clarify the individual contributions of each wave type to As, As/a0 for the free and
bound waves together with that for the total wave are plotted against ∆K/δk in Figure 11b.
Unlike Figure 11a, Figure 11b uses ∆K/δk for the free wave (∆K( f )/δk) because the free-
wave spectral broadening governs the bound-wave and total-wave spectral broadening.
As/a0 for the free wave is observed to increase as the free-wave spectrum broadens.
However, for the modulated wave trains investigated, As/a0 for the free waves does not
exceed 3, which is the maximum amplification predicted by the free-wave AB solution. This
means that an amplification larger than 3 is never achieved only from free-wave spectral
broadening, but is achieved with contributions from bound waves. The contribution of the
bound waves to As/a0 becomes larger as a0kc increases. The bound-wave contribution to
As increases from 8.7% for ∆K( f )/δk = 1.45 (a0kc = 0.08) to 27% for ∆K( f )/δk = 2.38
(a0kc = 0.115). This result indicates that energized bound-wave production at high
wavenumbers is a consequence of free-wave spectral broadening, as discussed earlier in
this section (Figures 8 and 9), and is crucial for crest enhancement of modulated wave
trains. It should be noted that As(free) + As(bound) does not necessarily coincide with
As(total) because

∣∣∣ζ̂(k)(total)
∣∣∣ 6= ∣∣∣ζ̂(k)(free)

∣∣∣ + ∣∣∣ζ̂(k)(bound)
∣∣∣ when the phases of the free

and bound waves do not coincide. Of course, ζ̂(k)(total) = ζ̂(k)(free) + ζ̂(k)(bound) holds
at any time. Therefore, the bound-wave contribution to As was evaluated as the ratio of
As(bound) to As(free) + As(bound) here.

As stated in Section 1, bound waves have different contributions to the maximum
crest height and the maximum trough depth. Contrary to the crest-height amplification
examined above, energized bound-wave production contributes to trough-depth sup-
pression for modulated wave trains in analogy with Stokes wave theory [34]. Therefore,
free-wave spectral broadening should enhance crest height-trough depth asymmetry. FNL
simulation of modulated wave trains by Slunyaev and Shrira [25] has indicated such crest
height-trough depth asymmetry. They have observed that the difference between the
maximum crest height and the maximum trough depth becomes more prominent as the
wave steepness increases.

In Section 3, the possibility was pointed out that the reason the maximum crest
height in the WT experiment is larger than in the HOSM simulation at approximately
a0kc = 0.1025 is that the spectral energy is higher at high wave frequencies (ω/ωc > 3.5).
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To analyze this possibility, the contribution of high-wavenumber components to As was
evaluated. The result showed that the contribution of components with k/kc > 3.5 to the
maximum crest height of the modulated wave trains with a0kc = 0.1025 was 7.4%. The
Fourier amplitudes of components with k/kc > 3.5 are very small [∼ O((a0kc)

2] compared
with the maximum Fourier amplitude at the lower sideband k = k− (Figures 4 and 8).
However, the sum of the Fourier amplitudes for components with k/kc > 3.5 is never
infinitesimal and might contribute to the crest enhancement.

4.2. Phase Convergence during Nonlinear Evolution of a Modulated Wave Train

In Section 4.1, the potential maximum crest height of the modulated wave train was
found to increase as the initial wave steepness increased. However, this result does not
necessarily indicate an increase in the maximum crest height. Convergence of the phases of
all the wave components [31] is necessary to achieve a crest height ζcr close to its potential
maximum As. In a framework of linear wave superpositions, phase convergence is key to
generating focusing waves [31,46]. Slunyaev and Shrira [25] showed that the phases of all
the spectral components are nearly coincident in the AB solution. Therefore, in this section,
the degree of phase convergence at the location and instant of the maximum crest height is
investigated beyond the cubic NLSE regime using the HOSM output.

xmax is defined as the location of the maximum crest height at each time t. Thus, the
maximum crest height at time t is

ζcr = ζ(xmax, t) = ∑
j

Re
[
α
(
k j
)]

with α
(
k j
)
≡ ζ̂

(
k j, t
)

exp
(
ik jxmax

)
. (10)

The modulus and argument of αj express the Fourier amplitude and phase of the
component waves at x = xmax at time t, respectively. The phase ϕ [≡ arg(α)] is defined
such that it becomes 0 when the crest of each wave component is at x = xmax.

Figure 12 presents an example of the amplitude and phase of the component waves at
t = tmax for a0kc = 0.105. As observed in the phase spectrum (Figure 12b), most spectral
components except the carrier wave at k/kc = 1 are in phase at 0, especially free-wave
components. This feature of phase convergence corresponds to the AB solution with a
slight discrepancy. At the modulation peak, all of the AB free-wave components are in
phase except for the carrier wave, which is in counter-phase with other components [25].
In this HOSM simulation, the carrier wave is out of phase with sideband waves but not
counter-phase.

Figure 12. (a) Amplitude and (b) phase of the component waves of the modulated wave train with
a0kc = 0.105 at the location and time of the maximum crest height.
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It is also observed that the phases of some components with lower and higher
wavenumbers (k/kc < 0.5 and k/kc > 4) are not necessarily 0. Second-order wave
theory (Appendix B) explains that the subharmonic bound waves at low wavenumbers
are in counter-phase with free waves. In addition, the out-of-phase components at high
wavenumbers (k/kc > 4) consist of free waves, and their energies are very low compared
with those of bound waves at the same wavenumbers. Therefore, the contribution of such
out-of-phase components at k/kc > 4 to the crest height is considered almost negligible.

To quantify the degree of phase convergence, the parameter D, expressing the mean
of cos ϕ

(
k j
)

weighted by the Fourier amplitude
∣∣α(k j

)∣∣, is introduced:

D =
∑j
∣∣α(k j

)∣∣ cos ϕ
(
k j
)

∑j
∣∣α(k j

)∣∣
(

=
∑j Re

[
α
(
k j
)]

∑j
∣∣α(k j

)∣∣ =
ζcr

As

)
. (11)

The definition of α is given in Equation (10). As indicated in Equation (11), the
parameter D can also be regarded as the ratio of the crest height ζcr to its potential maximum
As. Figure 13 presents the temporal evolution of D for the modulated wave train with
a0kc = 0.105. Similarly to the evolutions of ∆K and As, D gradually increases when
t < tmax, almost reaches 1 at approximately t = tmax, and starts to decrease afterward
(t > tmax). This temporal evolution of D confirms almost perfect phase convergence
(D ≈ 1) near t = tmax. It is interesting to note that the times of the maximum D
(indicated with a triangle in Figure 13) and t = tmax do not coincide precisely. Unlike As,
which reaches its maximum a few wave periods after t = tmax (Section 4.1), D reaches
its maximum a few wave periods ahead of t = tmax. This time difference will also be
discussed in Section 4.3.

Figure 13. Temporal evolution of the phase convergence D of the modulated wave train with
a0kc = 0.105 at approximately the time of the maximum crest height (t = tmax) in the HOSM
simulation. The triangle indicates the maximum value.

To investigate the degree of phase convergence at t = tmax, D at t = tmax for all
cases with a0kc from 0.08 to 0.115 is presented in Figure 14. D is close to 1 for all cases,
although D decreases slightly with increasing a0kc. In other words, the phases of all the
components nearly coincide at t = tmax, and result in a crest height exceeding 95% of its
potential maximum As for all cases. This result confirms that the near coincidence of the
phases of all the spectral components observed in linear focusing waves [31,46] and the
free-wave AB solution [25] holds well beyond the NLSE regime. We can also conclude that
the phase convergence combined with the free-wave spectral broadening and consequent
bound-wave production at high wavenumbers discussed in Section 4.1 is crucial for crest
enhancement of modulated wave trains.



Fluids 2022, 7, 275 15 of 22

Figure 14. Relation between the initial wave steepness and degree of phase convergence at the time
of the maximum crest height, obtained from the HOSM simulation.

4.3. Temporal Evolution of Phase Relation among the Carrier and Sideband Waves

In Section 4.2, D was found to decrease slightly as a0kc increased (Figure 14). This
imperfect phase convergence can be attributed to the deviation of the carrier phase from 0 at
t = tmax, which is observed in Figure 12b. In this section, this imperfect phase convergence
is interpreted in terms of the temporal variation in the phase relation among the carrier,
lower-sideband, and upper-sideband waves in the vicinity of t = tmax. The time sequence
of the maximum D, maximum ζcr (corresponding to t = tmax), and maximum As is
also discussed.

During the nonlinear evolution of modulated wave trains, the carrier wave is phase-
locked with the sideband waves. In the initial stage of nonlinear evolution, the phases of
the carrier and two sideband components need to satisfy the following relation such that
the sideband waves grow exponentially [47–49]:

Ψ ≡ 2ϕc − ϕ+ − ϕ− = const. , (12)

where ϕc, ϕ+, and ϕ− denote the phases of the carrier, upper-sideband, and lower-
sideband waves, respectively. This phase-locked state with Ψ = const. persists on
the time scale of O

(
(a0kc)

− 2Tc

)
until the sideband amplitudes become 20–30% of a0,

although Ψ = const. is analytically derived assuming that the sideband amplitudes are
infinitesimally small compared with the carrier amplitude [47–49]. Here, this study focuses
on the behavior of Ψ in the vicinity of the modulation peak.

The long-term behavior of Ψ for the modulated wave train is first investigated.
Figure 15 presents the temporal evolution of Ψ together with the amplitude evolutions of
the carrier, lower sideband, and upper sideband of modulated wave trains with a0kc = 0.08
and 0.105 as examples. Almost a full recurrence cycle is observed for both a0kc = 0.08
and 0.105, although the recurrence period is much shorter for a0kc = 0.105 than for
a0kc = 0.08. Contrary to the theoretical prediction (Equation (12)), Ψ varies in time at the
initial stage for both cases. This initial behavior is due to the nonlinear wave initialization of
the HOSM simulation explained in Section 2.1. For a0kc = 0.08, Ψ remains constant at ap-
proximately π/2 after the end of the nonlinear wave initialization and then changes rapidly
to −π/2 near the modulation peak (at approximately t/Tc = 162). For a0kc = 0.105,
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Ψ varies slowly after the end of the nonlinear-wave initialization and, as is the case with
a0kc = 0.08, changes rapidly near the modulation peak (at approximately t/Tc = 104).
However, its rate of change near the modulation peak is much faster than for a0kc = 0.08.
The time when Ψ = 0 almost corresponds to that when the carrier amplitude reaches its
minimum and when the lower-sideband amplitude reaches its maximum for both cases,
and when the upper-sideband amplitude reaches its maximum only for a0 = 0.08. The
constant Ψ at π/2 just after the nonlinear-wave initialization with a0kc = 0.08 indicates
that δk/kc = 1/7 is the most unstable modulated wavenumber. This gives the highest
initial growth rate of the sidebands for an initial wave steepness of 0.08 [48]. In addition,
the slow variation in Ψ just after the nonlinear-wave initialization for a0kc = 0.105 implies
that the sidebands have imperfect exponential growth due to the nonlinear interaction with
wave components other than the initial three waves.

Figure 15. Long-term temporal evolutions of (a,b) Ψ and (c,d) the amplitudes of the carrier, lower-
sideband, and upper-sideband components of the modulated wave train with a0kc = 0.08 (a,c) and
0.105 (b,d).

Considering ϕ− and ϕ+ are almost 0 at t = tmax (Figure 12), ϕc needs to be 0 for
perfect phase convergence. Consequently, Ψ also needs to be 0 at t = tmax. To investigate Ψ
at t = tmax, the temporal evolutions of Ψ for the modulated wave trains with a0kc = 0.08
and 0.105 at approximately t = tmax are presented in Figure 16. At t = tmax, Ψ is close to
0 (Ψ = − 0.078π) for a0kc = 0.08 and far from 0 (Ψ = −0.68π) for a0kc = 0.105. The
value of Ψ at t = tmax is related to the difference in time between Ψ = 0 and t = tmax.
In both cases, the time at which Ψ = 0 is not coincident with t = tmax. Ψ becomes 0
approximately three wave periods (3Tc) ahead of t = tmax. In addition, the variational
speed of Ψ (dΨ/dt) is significantly different between the two cases, as already indicated in
Figure 15a,b. The variational speed with a0kc = 0.08 is much slower than for a0kc = 0.105.
Therefore, owing to the fast variation in Ψ and the time lag between Ψ = 0 and t = tmax,
Ψ at t = tmax becomes far from 0 with a0kc = 0.105.
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Figure 16. Temporal evolution of Ψ for the modulated wave train at approximately the time of the
maximum crest height (t = tmax) for (a) a0kc = 0.08 and (b) a0kc = 0.105. Circles indicate the
times at which Ψ = 0.

From the observation above, we conjecture that Ψ becomes farther from 0 at t = tmax
as a0kc increases because of the faster temporal variation in Ψ. To demonstrate this con-
jecture, Ψ, together with its component phases (ϕc, ϕ−, and ϕ+), is plotted against a0kc
at t = tmax in Figure 17. As conjectured, Ψ. at t = tmax becomes farther from 0 as
a0kc increases. Meanwhile, ϕ− and ϕ+ are confirmed to be close to 0 regardless of a0kc.
Accordingly, ϕc becomes farther from zero at t = tmax as a0kc increases. Thus, the slight
decrease in degree of phase convergence D at t = tmax with increasing a0kc (Figure 14) can
be attributed to ϕc being out of phase with ϕ− and ϕ+. The evolution of the phase relation
among the carrier, lower-sideband, and upper-sideband waves is found to affect the degree
of phase convergence at t = tmax.

Figure 17. Variations of Ψ. and the carrier, lower-sideband, and upper-sideband phases at the time of
maximum crest height against initial wave steepness a0kc.
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Lastly, the sequence of times at which t = tmax, Ψ = 0, and D and As reach their
maxima is discussed. These are plotted against a0kc in Figure 18. The following features,
which have been found so far for modulated wave trains with specific a0kc values, seem to
be robust regardless of a0kc: As reaches its maximum about 3Tc to 5Tc after t = tmax, D
reaches its maximum about 2Tc ahead of t = tmax, and Ψ is 0 approximately 2Tc to 4Tc
ahead of t = tmax. The close times of maximum D and Ψ = 0 indicate that D reaches
its maximum when the carrier, lower-sideband, and upper-sideband waves are in phase
because the contribution of these three components to D is dominant. Figure 18 also reveals
that the time of maximum As necessarily lags behind that of maximum D regardless of
a0kc. The degree of phase convergence D and the potential maximum crest height D are the
two most significant factors determining the actual maximum crest height. Consequently,
we can surmise that the crest height reaches its maximum (t = tmax) midway between the
times of maximum D and maximum As.

Figure 18. Variations in times of maximum crest height (ζcr.), Ψ = 0, maximum degree of phase
convergence (D), and maximum amplitude sum (As) against initial wave steepness a0kc.

5. Conclusions

The most notable finding of this study is that the phases of all the spectral wave
components of the nonlinearly evolving modulated wave trains coincided at the peak of
the modulation. This phase convergence process contributes to the crest enhancement of
modulated wave trains beyond the AB solution of the cubic NLSE. However, this phase
convergence is a nonlinear process where the phases change in time and is not a linear
dispersive focusing where the initial phases are stationary. This was unraveled by numerical
examinations based on HOSM up to the fifth order in a non-breaking potential-flow regime.
HOSM allowed investigation of nonlinearity and spectral bandwidth beyond the NLSE
regime. Scrutinizing HOSM outputs also revealed two other critical physical processes of
such crest enhancement: spectral broadening and bound-wave production. The free wave
spectra of modulated wave trains in the HOSM simulation broaden beyond the AB solution
because of the unrestricted spectral bandwidth in the HOSM simulation. The free-wave
spectral broadening energizes the bound-wave production at high wavenumbers. The
bound wave components can contribute more than a quarter of the maximum crest height
at an initial wave steepness of 0.115.

The finding regarding the phase convergence implies that distinguishing from a single
point measurement if an observed rogue wave was generated due to linear focusing or
modulational instability may not be possible. Contrary to a recent study by Gemmrich
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and Cicon [50] that explained the observed rogue wave by the superposition of linear
waves with fourth-order Stokes wave correction, our findings suggests paying much closer
attention to the evolutionary process leading to rogue wave formation.

Finally, this study has elucidated the significance of the strong nonlinearity in the
evolution of the modulated wave train. When wave-breaking occurs, the maximum crest
in the tank falls below the HOSM simulation. However, with a sufficiently large initial
wave steepness but without wave breaking, the highest crest in the tank exceeds the HOSM
simulation due to a strong nonlinearity. The first finding is not surprising, but the second
finding highlights the significance of the strong nonlinearity and warrants further study.
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Appendix A. Akhmediev Breather Solution

The Akhmediev breather solution of the NLSE in deep water reads [20]

B(x, t) = a0 exp
{
− i

2
ε2ωct

}[
ρ cosh(Ωt) − iγsinh(Ωt)

cosh(Ωt) −
√

1 − ρ2/2 cos
{

kc
(

x − cgct
)
/Nk

} − 1

]
(A1)

with

ε = a0kc, cgc =
1
2

ωc

kc
, ρ =

1
2εNk

, γ =

√
2

2εNk

√
1 −

(
1 − 1

2
√

2εNk

)2
,

Ω =
1
2

γε2ωc, Nk =
kc

δk
,

(A2)

where B(x, t) is the complex amplitude of the surface elevation ζ(x, t). The term δ̂ defined
in Equation (4) corresponds to the inverse of εNk:

δ̂ =
1

2εNk
. (A3)

Within the framework of the deep-water NLSE, ζ(x, t) can be expressed as follows
considering the nonlinearity up to the second order [51,52]:

ζ(x, t)
(
≡ ζ( f+b)(x, t)

)
= ζ( f )(x, t) + ζ(b)(x, t) (A4)

https://jp.edanz.com/ac
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with 
ζ( f )(x, t) = Re[B exp{i(kcx − ωct)}],

ζ(b)(x, t) = Re
[

1
2

kcB2 exp{2i(kcx − ωt)}
]

,
(A5)

where ζ( f )(x, t) and ζ(b)(x, t) represent the free wave and second-order bound wave, respectively.
The maximum amplitude, which corresponds to the maximum crest height, of the free

wave is attained at (x, t) = (0, 0) and reads [18–20,25]

max
(

ζ( f )
)

a0
= 1 + 2

√
1 − 1

2
δ̂2. (A6)

From Equations (A4)–(A6), the maximum crest height considering the contribution of
the second-order bound wave can be expressed as

max
(

ζ( f + b)
)

a0
=

max
(

ζ( f )
)

a0

{
1 +

1
2

kcmax
(

ζ( f )
)}

. (A7)

Appendix B. Phase of Second-Order Superharmonic and Subharmonic Waves

In this section, the relation between the phases of the free and second-order bound
waves is investigated. The second-order bound waves produced by a pair of free waves
propagating in the positive x direction are addressed. The free-surface elevation x consisting
of a pair of free waves with wavenumbers k1 and k2 is expressed as

ζ(1)(x, t) =
2

∑
j=1

∣∣ζ̂ j
∣∣ cos θj (A8)

with
θj = k jx − ωjt + γj, (A9)

where j(= 1, 2) and γ denote the indexes of the free waves and the initial phase, respec-
tively. Deep water and k1 ≥ k2 ≥ 0 are assumed. The second-order bound waves ζ(2)

produced by the pair of free waves (Equations (A8) and (A9)) are expressed as [53]

ζ(2)(x, t) =
2
∑

j=1

∣∣ζ̂ j
∣∣2k j

2
cos
(
2θj
)
+
∣∣ζ̂1
∣∣∣∣ζ̂2

∣∣ k1 + k2

2
cos(θ1 + θ2)

+
∣∣ζ̂1
∣∣∣∣ζ̂2

∣∣ − (k1 − k2)

2
cos(θ1 − θ2).

(A10)

The first two terms represent superharmonics, and the last term represents subharmonics.
Here, the free waves are assumed to be in phase at a specific time (t = t0) and

location (x = x0); that is, θ1 = θ2 = 0. Then, the free and the second-order bound-wave
solution reads

ζ(1)(x0, t0) =
2
∑

j=1

∣∣ζ̂ j
∣∣,

ζ(2)(x0, t0) =
2
∑

j=1

∣∣ζ̂ j
∣∣2k j

2
+
∣∣ζ̂1
∣∣∣∣ζ̂2

∣∣ k1 + k2

2
+
∣∣ζ̂1
∣∣∣∣ζ̂2

∣∣ − (k1 − k2)

2
.

(A11)

Only the second-order subharmonic component is negative, although the free-wave
and second-order superharmonic components are positive. Therefore, when all the free-
wave components are in phase, the second-order superharmonics are in phase, and subhar-
monics are in counter-phase with the free waves.
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