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Abstract: In this paper, we numerically investigate the turbulence modulation produced by long
flexible fibres in channel flow. The simulations are based on an Euler–Lagrangian approach, where
fibres are modelled as chains of constrained, sub-Kolmogorov rods. A novel algorithm is deployed
to make the resolution of dispersed systems of constraint equations, which represent the fibres,
compatible with a state-of-the-art, Graphics Processing Units-accelerated flow-solver for direct nu-
merical simulations in the two-way coupling regime on High Performance Computing architectures.
Two-way coupling is accounted for using the Exact Regularized Point Particle method, which allows
to calculate the disturbance generated by the fibers on the flow considering progressively refined
grids, down to a quasi-viscous length-scale. The bending stiffness of the fibers is also modelled, while
collisions are neglected. Results of fluid velocity statistics for friction Reynolds number of the flow
Reτ = 150 and fibers with Stokes number St = 0.01 (nearly tracers) and 10 (inertial) are presented,
with special regard to turbulence modulation and its dependence on fiber inertia and volume fraction
(equal to φ = 2.12·10−5 and 2.12·10−4). The non-Newtonian stresses determined by the carried phase
are also displayed, determined by long and slender fibers with fixed aspect ratio λtot = 200, which
extend up to the inertial range of the turbulent flow.

Keywords: multi-phase flows; fibers; drag reduction

1. Introduction

The transport of fibers by a turbulent flow is the subject of ongoing research because
of its relevance in many industrial applications, such as pulp and paper production [1],
pharmaceutical processing [2], post-combustion filtering [3] and drag reduction in oil
pipelines [4]. In addition, fiber transport by turbulence is common to a number of environ-
mental and natural processes, such as the dynamics of plankton in the oceans, the formation
of icy particles in clouds and the dispersion of pollen in the atmosphere [5]. In all of these
systems, fibers are rotating and their interaction with the flow strongly depends on the fiber
orientation relative to the flow at a microscopic level [6–9]. This gives rise to a physics-rich
phenomenology at the macroscopic level, which culminates in the modification of the
overall drag associated to the turbulent flow. When this modification is favorable, a benefi-
cial effect is obtained (drag reduction) since the flow rate can be increased while keeping
the same driving pressure gradient. The first study of drag reduction dates back to the
pioneering work of Forrest and Grierson on wood pulp fiber suspensions [10], and was later
reported to the international community by Toms, after his experiments with dispersed
polymers in pipes [11]. Polymers are macromolecules that can coil and have sizes smaller
than the Kolmogorov length scale, which is the smallest scale in a turbulent flow. In this
study, however, we are interested in the drag-reducing capabilities of fibers with size larger
than, or at least equal to, the Kolmogorov length scale. The main advantage of using fibers
as drag-reducing agents is that fibers exhibit chemical and mechanical stability over a wider
range of temperatures compared to polymers; the disadvantages are a lower effectiveness
in reducing drag and the risk of plugging the pipelines where they are dispersed [12].
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Motivated by possible applications in oil pipelines and deep-operating flooded mo-
tors, many experimental studies followed the two above-mentioned seminal works and
produced a large qualitative characterization of drag reduction both by polymers [13,14]
and by fibers, especially in the limit of very high aspect ratio i.e., the ratio between the fiber
length and the fiber diameter [15]. In these early works, the explanation for drag reduction
was associated with the occurrence of extra stresses of non-Newtonian nature within the
flow (due to the presence of the drag-reducing agent) even at low concentrations of few
hundreds of PPM in weight. Moreover, polymers appeared to reduce the coupling between
the axial and the wall-normal components of the turbulent flow field by being continuously
stretched from their coiled state: this effect was observed to be particularly strong near the
walls, where the polymers are found to interfere with the turbulent bursts directed towards
the bulk of the flow [16]. On the other hand, fibers appeared to have a broader range of
influence since their resistance to extensional deformations allows to produce a favorable
effect even in the core of the flow [17–19]. However, subsequent experiments with asbestos
rigid rods with estimated aspect ratio of 40,000 showed higher drag-reduction efficiencies
when injecting the drag-reducing agent near the wall rather than in the bulk of the flow [20].
Interestingly, polymers and fibers were also found to be more effective when acting in
combination rather than in isolation, also in the dilute regime [21].

While early experiments could produce a qualitative description of the phenomenol-
ogy of drag reduction, the first numerical studies could be performed only much later due
to the computational costs of simulating a polymer-/fiber-laden turbulent flow. The simu-
lation task is made particularly difficult not only by the anisotropies associated with both
the (wall-bounded) flow and the (non-spherical) polymers/fibers, but also by the need to
account for the polymer/fiber disturbance on the flow, which ultimately determines drag
modulation and requires proper modelling of the two-way coupling between the phases.
Two-way coupled direct numerical simulations with rod-like fibers as drag-reducing agents,
were performed by Paschkewitz et al. [22] and by Gillissen et al. [23], who reported an
increase of axial turbulent intensities and a decrease of the wall-normal ones, resulting
in a modified momentum balance where a new term, the axial-wall normal fiber stress,
appears to take over the role that Reynolds stresses (weaker in two-phase turbulence) have
in single-phase turbulence. The modelling approach adopted in these two studies is quite
similar, since neither of the two did actually resolve the motion of the fibers in a Lagrangian
fashion, but rather relied on the knowledge of the orientation probability to obtain a local
expression for the fiber-induced stresses feed-backing on the flow. The clear advantage of
this approach is provided by the reduced computational effort, albeit at the cost of being
applicable only to sub-Kolmogorov, inertia-less polymers that are stretched and do not
coil, or very short fibers. Following these purely Eulerian investigations, direct numerical
simulations based on the Eulerian–Lagrangian approach started to appear in the literature.
In these simulations, dense suspensions were considered and the dynamics of the dispersed
phase was directly resolved to calculate the non-Newtonian stresses exerted on the flow,
either based on a Monte Carlo approach [24] or derived as a sum of stresslets [25]. These
simulations granted higher accuracy in determining the axial-wall normal particles stress
on the flow and, in turn, the actual drag reduction (which could be easily miscalculated
using Eulerian closure methods). However, the two-way coupling method employed
in these works (which requires a normalization over local flow volumes to compute the
disperse phase feedback force on the turbulence to be performed) suffers from several
drawbacks. Firstly, the back-reaction field, that can be constructed given the configuration
of the suspension, is grid dependent and the solution depends on how many particles per
computational cell are available. The constraint on the number of particles per cell was
found to limit the range of the dimensionless parameters (Stokes number, mass loading,
particle-to-fluid density ratio and Reynolds number) that can be explored in the simula-
tions [26]. In particular, the method is not accurate in the case of dilute suspensions, when
fiber-induced drag reduction was observed to occur even at low volume fractions [15,21].
A further issue concerns the model used to compute the hydrodynamic forces acting on
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each particle. In the simplest Stokes drag model, the fluid velocity at the particle position
must be the fluid velocity in absence of the disturbance flow produced by the dispersed
phase. Unfortunately, such a velocity is unavailable in two-way coupled simulations, and
specific techniques must be exploited to remove the particle self-disturbance [26].

Motivated by the interest to investigate numerically turbulent drag reduction in
dilute fiber suspensions, and by the need to go beyond classic two-way coupling methods,
in this manuscript we present a series of momentum-coupled, Euler–Lagrangian direct
numerical simulations of fiber-laden turbulent channel flow. The two-way coupling linear
momentum is calculated according to the Exact Regularized Point Particle method [26],
a rigorous method proposed recently to circumvent the necessity of considering a large
number of fibers at the price of highly resolved calculations. Then, we extend the work
of Dotto et al. [27], in which flexible fibers were considered, modelled according to the
rod-chain model [28–30]. In this work, fibers are composed of a series of point-wise, sub-
Kolmogorov rods constrained together to achieve an overall fiber length that extends in the
inertial range of turbulent scales [31] and to allow deformation through relative rotation of
neighboring rods. An instantaneous visualization of the resulting flow is shown in Figure 1,
where fibers are shown together with the flow structures with which they interact (rendered
using iso-surfaces of the second invariant Q of the velocity gradient tensor).

Figure 1. Instantaneous visualization of the fiber-laden turbulent channel flow considered in this
study. Flow structures are rendered as iso-surfaces of the second invariant Q of the fluid velocity
gradient tensor (the selected value is Q = 0.02, corresponding to one tenth of the maximum value
of Q obtained in the simulations); the diameter of the fibers is enhanced by a factor of three for
visualization purposes. The upper wall of the channel is transparent for visualization purposes.

The length of the fiber is a crucial parameter of the simulations, as it is known that
long fibers feel less the contribution of the smallest turbulent structures due to local
averaging along their shape [32]. Therefore, a strong impact on the non-Newtonian stresses
so generated should be expected. We considered a fixed value of the fiber aspect ratio,
namely λtot = 200: This value is enough to generate fibers with length comparable to
the scales of turbulence in the inertial range for the specific shear Reynolds number we
simulated (Reτ = 150) and yet is two orders of magnitude lower than that considered
in previous experiments [15,20]. In addition, the fiber length considered in our study is
equal to 0.6 times the wall-to-wall distance of the computational domain (assuming that the
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fiber is fully stretched): this value is significantly higher than that typically investigated in
experiments, e.g.,∼0.07 in the pipe flow experiment of Sharma [20]. Clearly, computational
costs limit our exploitable parametric space. Nevertheless, as we will show, it is in an
appreciable drag reducing dispersion of fibers.

The manuscript is organized as follows. First, we give an overview of the physical
problem, its governing equations and the numerical method used to solve them (Section 2),
focusing on the importance of including two-way coupling to retrieve experimentally-
validated results. Then we move on to the discussion of flow visualizations and statistical
observables that allow a characterization of the flow modulation (Section 3). Finally,
the main conclusions and future developments are provided in Section 4.

2. Materials and Methods
2.1. Flow

The carrier phase is an incompressible Newtonian fluid, flowing between two smooth,
parallel walls in a plane channel. The flow is driven by an imposed pressure gradient and
can be described by the coupled system of Continuity and Navier–Stokes equations, which
in dimensionless vector form read as:

∇ · u = 0, (1a)

∂u
∂t

+ (u · ∇)u = −∇P +
1

Reτ
∇2u + F2w, (1b)

where u = (u, v, w) is the velocity vector at the position x = (x, y, z), ∇P is the equivalent
pressure gradient that drives the flow, Reτ is the shear Reynolds number, whereas the term
F2w represents two-way coupling momentum term that the dispersed phase exerts on the
flow. This term is calculated according to the ERPP method [26], and will be presented in
detail in Section 2.3 of this manuscript.

The shear Reynolds number of the flow is defined as Reτ = ρuτh/µ, with ρ the fluid
density, µ the fluid dynamic viscosity, uτ =

√
τw/ρ the shear velocity (computed based on

the mean wall shear stress, τw) and h the half-height of the channel. The flow is resolved
down to the smallest scales performing a direct numerical simulation on an Eulerian
grid that discretizes a rectangular box of size L+

x = 4πReτ in the streamwise direction
x, L+

y = 2πReτ in the spanwise direction y and L+
z = 2Reτ in the wall-normal direction

z. The numerical method used by the flow solver is based on a classical pseudo-spectral
algorithm, where all the calculations are performed in the Fourier–Chebyshev modal space,
except for the convective terms (u · ∇)u, which are resolved in physical space and then
back transformed in modal space [33]. The governing equations (conservation of mass
and momentum) are solved in their velocity-vorticity formulation by projecting along
the wall-normal coordinate and calculating the respective vorticity Ωz and velocity w
components. From these, the remaining velocity components u and v are then obtained.
Time integration is performed using a mixed implicit-explicit scheme: the linear and non-
linear terms of the Navier–Stokes equations are split, so that a Crank–Nicolson implicit
scheme is employed to calculate the former, whilst an Adams–Bashforth explicit scheme
is employed to calculate the latter. Note that the two-way coupling force F2,w is added to
the non-linear terms before integration. The solution is advanced in time on an Eulerian
grid, partially displayed in Figure 2: The grid spacing is uniform along the homogeneous
directions (represented by the x and y coordinates), while Chebyshev polynomials are
employed along the wall-normal direction to obtain a suitably-fine grid discretization near
the walls. Finally, periodic boundary conditions are imposed in x and y, while a no-slip
boundary condition is enforced at the two walls.
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Figure 2. Visualization of the Eulerian grid adopted in our simulations over half of the channel
height. Grid points are located at the intersection between black lines. The grid spacing in the
streamwise x and spanwise y coordinates is uniform, and is simply determined by the chosen number
of points (dx = Lx/nx = dy = Ly/ny). Chebyshev polynomials, given by the following expression,

zk =
[
1 + cos

(
k−1

Nz−1 π
)]

, with k = 1, . . . , Nz allow to obtain a much finer grid discretization close to
the wall, as we can appreciate from the small insert. In the simulations presented in this manuscript
the minimum spacing is dz+min ' 0.011 at the wall, while the maximum value is dz+max ' 1.84 at the
center of the channel.

2.2. Fibers

Fibers are modelled using the rod-chain model [27–30]. According to this model,
multiple sub-Kolmogorov rod-like elements are constrained together to form long, flexible
fibers. The main advantage of this model is that, as each rod element is shorter than the
smallest (Kolmogorov) flow scale, the surrounding flow can be linearized. By doing so,
the torques acting on each rod can be directly calculated using the viscous theory derived
by Jeffery [34] for ellipsoidal particles, and later extended to fibers by the semi-empirical
correlation of Cox [35] in its generalization to three-dimensional flows [36].

As shown in Figure 3, the nth rod element of each fiber is treated as a point-wise object
to calculate its translation and rotational dynamics: its position will be provided by the unit
norm vector pn, its orientation will be given by a unity norm vector on and its linear and
angular velocities will be reported as vn and ωn. The mass of the rod is mn = ρn2πλna3,
where ρn is its density, a its radius and λn = `/a its aspect ratio, defined as the ratio
between the rod half length ` and cross-sectional radius a. The governing dynamic and
kinematic equations for the linear and angular motions of the rod read as follows:

mn
dvn

dt
= Dn + Xn+1 − Xn, (2a)

dJ̄ωn

dt
= TD

n + HD
n + `on × (Xn+1 + Xn) + (Yn+1,b − Yn,b), (2b)

dpn

dt
= vn, (2c)

don

dt
= ωn × on, (2d)

where Dn is the hydrodynamic drag force exerted by the fluid on the element,
J̄ = mna2

12 [(4λ2
n + 3)(Ī − onoT

n ) + 6onoT
n ] is the inertia tensor of the element in the abso-
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lute frame of reference, with Ī the identity matrix. The term TD
n is the hydrodynamic

torque due to the relative spin between fluid and rod element and the term HD
n is the

hydrodynamic torque due to the fluid velocity gradients’ action of the rod. Finally, the extra
terms X and Y represent the constraint forces and moments that consecutive rods belonging
to the same chain exert on each other, as shown in Figure 4. These terms arise from the
enforcement of a no-slip constraint between the rod pair, given by the following condition:

pn + `non − (pn+1 − `n+1on+1) = 0. (3)

Figure 3. Representation of a pointwise rod element of length 2l and cross-sectional diameter 2a.
The force Dn and the torques TD

n and HD
n exerted by the surrounding flow on the element are also

shown, together with the position unit vector pn and the orientation unit vector on.

Figure 4. Schematic representation of three constrained, pointwise rod elements with the constraint
forces and torques.

Note that the constraint forces X alone would be sufficient to keep the chains of rods
together. Therefore, the role of the moments Y is simply to keep the rod elements aligned,
and the generic torque Yn determined by the relative orientation between the (n− 1)th and
the nth rod element is given by the following expression:

Yb
n = −πEYa3

8λn
cos−1(on · on−1)

on × on−1

|on × on−1|
, (4)

where the Young modulus EY of the material appears, as well as the solid angle between
two consecutive elements, cos−1(on · on−1), and their relative curvature, on×on−1

|on×on−1|
.

Therefore, Equations (2a–d) and (3) combined together determine a tridiagonal block-
matrix system. Its resolution requires the following steps to be taken:

• an interpolation of the flow velocity components and velocity gradients at the center
of gravity of each rod-like element of the fiber to determine the force and the torques
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exerted by the surrounding fluid on the element, which we calculated using fourth
order polynomials;

• the resolution of a tridiagonal block-matrix system to determine the constraint forces
X on each element over all the tracked fibers (chains);

• time integration of the kinematic equations of each element of each fiber, which
perform using a second order Adams–Bashforth scheme to determine the position
and the orientation of the element itself;

• detection of collisions between a given element of the fiber and the walls, modelled
as an elastic impact with unitary restitution coefficient, in which the sign of the wall-
normal velocity of the element is changed;

• verification of the accuracy of the time integration with special regards towards the
accumulation of numerical error between constrained elements and correction.

This last step is of particular importance [29,37], and was performed by fixing the
position of the middle element of the chain and translating the other rods around it, in order
to reproduce the exact fiber length and avoid accumulation of numerical errors. Each chain
of rods must then meet a 1% maximum constraint error, which distinguishes between
valid and invalid solutions. To accomplish this verification, a sub-stepping procedure
is introduced, in order to improve the stability of the model, particularly critical when
simulating large values of the Young modulus EY and/or short rod-like elements.

Besides stability issues, the time integration of fiber motion is dominated by the fiber
shape and density ratio with respect to the fluid. These two parameters are combined to
determine the response time of the generic nth element of the chain [27]:

τp,n =
2a2ρpλn

9ν
· log(λn +

√
λ2

n − 1)√
λ2

n − 1
. (5)

Fibers characterized by a negligible response time behave as tracers in the flow,
whereas fibers characterized by with high values of the response time exhibit a more
ballistic behavior. Finally, gravity is not taken into account in the present simulations, so
that the inertial behavior of the fibers is purely hydrodynamic.

2.3. Two-Way Coupling

The pointwise modelling adopted for tracking the fibers neglects the boundary condi-
tion that finite-size fibers would impose on the flow. This modelling assumption is clearly
necessary given the need to simulate a large number of fibers and hence elements (up to two
million). Even within this limit, however, it is possible to recover the fiber back-reaction to
the fluid as the Newtonian reaction to the drag force Dn. Intuitively, each fiber contributes
to the back-reaction within a finite volume of the flow, so that the sum of all reaction forces
determines the normalized force F2w that appears in the Navier–Stokes Equation (1b).
The method just described is known as the Particle In Cell method, originally proposed by
Squires et al. [38] and largely employed since, due to its simplicity. However, the method
requires the presence of a very large number of particles within the control flow volume
over which the two-way coupling force is normalized in order not to diverge. Because of
this requirement, accurate calculation of the particle stresses on the turbulent flow requires
extremely high (sometimes unfeasible) computational resources [39]. Therefore, in this
work (in which particle concentrations are not particularly large) another method of more
recent derivation is employed, namely the Exact Regularized Point Particle method [26]
in its generalization to wall-bounded turbulent flows [40]. The details of this method are
briefly described in the following.

The ERPP method provides a rigorous derivation based on the unsteady Stokes flow
around a small, spherical, rigid particle, whose interaction with the flow is physically
regularized by viscous diffusion, that slowly propagates the generated vorticity field from
the particles boundary to the computational grid, as shown in Figure 5. To account for this,
the method introduces a delayed time-scale, εR, below which the particle’s disturbance
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has yet to interact with the flow and can be neglected without incurring a large error. The
resolution of such time-scale imposes a length-scale σR that the computational grid needs
to discretize:

σR =
√

2νεR (6)

where ν indicates the fluid kinematic viscosity. In the end, each particle-delayed hydrody-
namic force will be the one calculated at a slightly previous time-step t− εR, when the parti-
cle was at the position xp(t− εR), regularized by means of a Gaussian g[x− xp(t− εR), εR]
whose variance is indeed σR. The summation of the contribution of all particles gives:

F2w =
Np

∑
n

Dn(t− εR) · g[x− pn(t− εR), εR], (7)

where Np is the total number of simulated rods and the Gaussian corresponds to the
following expression:

g[x− pn(t− εR), εR] =
1

[4πνεR]3/2 · exp(−||x− pn(t− εR)||2
4νεR

). (8)

Figure 5. Schematic representation (freely inspired by [26]) of the two-way coupling according to the
ERPP method. Left panel: the disturbance generated by the nth element moving with velocity vn(t)
at the time-step t has yet to diffuse to the computational grid, whose spacing is indicated by dx and
dy. Right panel: At time t + εR, the nth element has moved along its trajectory while the previously
generated disturbance has diffused enough to reach the computational grid with delay εR.

In summary, the ERPP method consists of an extra step that can be easily added to any
flow solver for multiphase numerical simulations. As displayed in Figure 6, the method
only requires to store, since the start of the simulation and over a suitably-long time window,
the position pn of each element composing the fiber and the drag force Dn experienced by
the element. Then, once the delayed time scale εR has expired, the two-way coupling term
F2w can be calculated and added as a source term in the governing equations for the fluid,
Equation (1a,b). The array in which pn and Dn are stored is finally updated, removing the
oldest data in the chronology and replacing it with the data at the current time step, thus
allowing for advancement of the equations to the next time step.

2.4. Implementation

The governing equations for the two phases are implemented in a proprietary flow
and particle solver that is written in CUDA C for accelerated computing on Graphics
Processing Units. The Eulerian flow solver can handle Fourier–Chebyshev transforms
between physical and modal spaces by relying on the CUFFT library, whereas all other
solver subroutines have been developed in-house.
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Figure 6. Schematic representation of the method of study: all the simulations performed in this
study start from a random dispersion of mean-flow-aligned fibers at a given volume fraction in
fully-developed turbulent channel flow. Then, the calculations are advanced in time, storing the
instantaneous position of each fiber element, pn, and the drag force experienced by the element, Dn

over a time window whose length is given by the ratio between the delayed time scale ε and the value
for the time step, dt. Once one full delayed time scale has expired, the two-way coupling term F2w

can be calculated and added as a source term in the governing equations for the fluid, 1a, b. The loop
is then repeated until the end of the simulation.

Single-GPU optimization is obtained by accessing the data in (x, y) slabs, to minimize
the impact of complex operations along the non-homogeneous coordinate z, such as deriva-
tives and solution of systems of equations, which carry embedded data dependencies and
would be extremely cumbersome in terms of coalescent memory access [41]. Then, multi-
GPU execution is coordinated by standard Message Passing Interface (MPI), according to
a classical mono-dimensional domain decomposition, where the data synchronization is
managed through collective asynchronous calls to maximize overlap between calculations
and communications. The Lagrangian fiber tracking solver, instead, is written in Fortran
90 and parallelized by OpenMP for multi-core execution. The entire chains of rods are
resolved locally and the compatibility with the flow-solver is ensured by an asynchronous
algorithm, in order to correctly sample the Eulerian grid when performing (a) the fourth-
order interpolation of the flow variables at the position of the center of mass of each rod,
and (b) the diffusion of the fibers disturbance. This is done by a second copy of the rod
elements that is travelling within the distributed memory units among which the Eulerian
grid is parallelized: synchronization between the two copies of each element is then ensured
by two collective communication moments, in correspondence with operations (a) and
(b), where data is shared on demand according to the highly unpredictable conformation
of each fiber. All these features are combined to give a scalable application, suitable for
execution on large, distributed computational architectures: to the best of our knowledge,
this is the first time that a similar algorithm is employed for fiber-laden turbulent flows.

2.5. Validation

A classic test-case for the validation of a fiber-laden flow solver in the two-way
coupling regime consists of replicating the rotation of one fiber in a simple viscous shear
flow. If in an iso-density condition, the fiber will undergo periodic rotations, while each of
its ends describes a closed orbit, known as Jeffery orbit (it was G. B. Jeffery who was the
first to provide an analytical description of the phenomenon for ellipsoidal particles [34]).
The period of rotation for the fiber is given by the following expression:

T =
2π

γ̇

(
λtot +

1
λtot

)
, (9)

where γ̇ is the shear rate of the viscous shear flow.
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Great care must be taken to simulate rod-like fibers as these are characterized by an
equivalence of shape with respect to ellipsoidal fibers. This equivalence is such that the rod-
like fibers exhibit a shorter period of rotation compared to ellipsoidal fibers, as observed
experimentally and rationalized by the semi-empirical correlation of R. G. Cox [35]:

λeq, f iber =
1.24√

log λth,ell
, (10)

where the equivalent aspect ratio that will give the correct period of rotation of a rod-like
fiber, λeq, f iber, through Equation (9) is related to the aspect ratio of the ellipsoidal fiber,
λth,ell , for which the theoretical calculation of the rate of strain and rate of rotation torques
is given.

We validate our implementation of the ERPP method against the period of rotation of
fibers in viscous shear flow, using the length-scale given by Equation (6) and considering
progressive refinements of the computational grid. Such a validation is performed at
friction Reynolds number Reτ = 1 by imposing a zero pressure gradient in the Navier–
Stokes solver as well as no-slip boundary conditions at the two walls, which are now
moving with imposed constant velocity in opposite directions. The equations that describe
the flow and the fibers can be normalized in terms of the relevant scales at the wall so that
dimensionless quantities in these equations are indicated by the superscript +. By doing so,
a dimensionless quantity that appears in the fiber equation of motion is the Stokes number,
defined here as the ratio between the characteristic time scale of the generic element of the
fiber and the characteristic time scale of the flow, τf :

St+n =
τp,n

τf
=

2a+2

9
ρp

ρ
· λn ·

log(λn +
√

λ2
n − 1)√

λ2
n − 1

. (11)

This parameter can be compared to time-scale ε+R , introduced by the ERPP method,
and directly determined by the resolution of the computational grid. By doing so, we
can estimate the optimal resolution, fine enough to produce an experimentally validated
solution for the Jeffery orbits of the fiber, but also not so computationally expensive to
result in unfeasible simulations when these are applied to turbulent flows.

The coarser Eulerian grid adopted for the one-way coupling is perfectly affordable
from a computational cost perspective, being made of nx = 16 × ny = 16 × nz = 17
points. However, despite having imposed the Cox equivalence for each rod-like element,
the recovered solution for the whole fiber clearly overestimates the period of rotation,
displayed as empty blue squares in Figure 7. A first refinement, obtained by increasing the
the number of grid points in each direction by a factor of 2 and by activating the two-way
coupling, results in a ratio of 90 between the ERPP time-scale ε+R and the element Stokes
number, shown as green empty diamonds in Figure 7. We can appreciate a first impact of
the two-way coupling, which slightly reduces the period of rotation. Finally, refining once
more the number of grid points by a factor of 2 in each direction, the ratio ε+R /St+n becomes
equal to 5, and the solution, displayed as orange empty diamonds in Figure 7, perfectly
recovers the semi-empirical correlation of Cox [35]. In conclusion, the two-way coupling is
crucial to obtain a correct solution, in agreement with what reported by Lindstrom et al. [29].
This is especially true when the ratio between the particle characteristic time-scale St+n
and the grid-resolved time-scale ε+R is small. The criterion just discussed has been used to
estimate the scale up of our calculations and the Eulerian grid needed to properly simulate
the targeted fiber-laden turbulent channel flow in the two-way coupling regime.
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Figure 7. Time evolution of the angle Φ, defined as the angle between the gradient direction of a
viscous shear flow and the particle orientation vector. Here, the fiber is assembled as a chain of
five rods of aspect ratio λr = 3 so that the total aspect ratio is λtot = 15; bending is avoided by
imposing a large-enough value of the Young modulus. The dotted curves represent the Jeffery orbits,
obtained from calculations over progressively refined grids, while the dashed line is the analytical
solution, obtained from Jeffery theory [34] through the equivalence of shape of Cox [35]. The red
arrow indicates the progressive refinements of the Eulerian grid: A grid refinement of 2× 2× 2 on
the number of grid points is introduced between each solution.

3. Results
3.1. Summary of the Simulations

In this work, we present the results of four different simulations. Each fiber is made
of 40 rod-like elements of aspect ratio λn = 5. The length of the fibers is thus fixed to
L+ = 48 in wall units and their aspect ratio to λtot = 200, while their inertia and average
volume fraction are varied according to Equation (11). In particular, we consider a low-
inertia case, in which each element has St+n = 0.01 and ρ+ =

ρp
ρ = 1.3, and a high-inertia

case, in which each element has St+n = 10 and ρ+ = 1300. We note here that the Stokes
number of each rod-like element can be intuitively associated to the Stokes number of
the entire fiber (namely the entire chain of rods) when the fiber is in its fully stretched
equilibrium configuration and assuming that all elements have the same density. In this
specific instance, the total Stokes number St+tot becomes ∼0.05 for the low-inertia case and
∼50 for the high-inertia case. These two cases correspond to an average volume fraction of

φ =
Nrods ·V+

rod
VChannel

= 2.12 · 10−4 and φ = 2.12 · 10−5, respectively. In turn, these volume fractions
correspond to a dispersion of Nrods = 200,000 and Nrods = 2,000,000 elements having each a
dimensionless volume V+

rod = π/4λn(2a+)3. The corresponding PPMw by weight can be
calculated as:

PPMw =
msolute

msolution
· 106 =

(
1 +

1
φρ+

)−1
· 106, (12)

resulting in 27.5 PPMw and 275 PPMw for the low-inertia case and in 21,605 PPMw and
216,055 PPMw for the high-inertia case. Elaborating on the considerations made previously
about the discrepancy of fiber concentrations between experiments and numerical studies,
we want to highlight here that the mass loadings for the low-inertia fibers are directly
comparable with the experiments of Hoyt [15]. The considered values differ substantially
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from previous numerical studies, which refer to simulated mass loads at least one decade
larger than what presented in the present study.

The Navier–Stokes and Continuity Equations (2a–d) are integrated on a computational
grid made of nx = 1024× ny = 512× nz = 257 points. This allows to set the dimensionless
regularization length-scale required by the ERPP method to σ+

R = 1.8, which gives a
ratio σ+

R /dx+ = σ+
R /dy+ ' σ+

R /dz+max = 1.02, where di represents the grid spacing
for the ith direction. Eventually, this produces a delayed time-scale ε+R = 108 · dt+ =
108 · 1.5 · 10−2 = 1.62 wall time units. Therefore, the drag force acting on each fiber element
and the position of the center of mass of each element are stored for 108 time-steps before
the corresponding disturbance can be calculated. We can compare the dimensionless
characteristic response time of the individual rod-like elements or that of the full chain,
Equation (11), with this delayed time-scale, so that if the latter is smaller than the former,
the accuracy of the validation in simple viscous shear flow is maintained when considering
large-scale turbulent channel flow simulations. Clearly, this is the case for the inertial
fibers, while a compromise between quality and computational cost had to be made for
the tracer-like fibers. On a final note, we impose a constant value for the Young modulus:
E+

Y = EY/ρτw = 104. This value enforces a minimal energy configuration for the fully-
stretched chain and is sufficient to keep the individual elements of the chain aligned to each
other in the shear flow validation tests. In the turbulent channel flow simulations, however,
this value turns out to be not high enough to prevent fiber deformation and bending.
Nevertheless, the influence of the Young modulus on the measured drag reduction will not
be discussed in this manuscript, as it is a matter of ongoing investigation.

All the simulations start from a fully-developed turbulent flow condition. Fibers are
injected into the flow as fully stretched and randomly dispersed, with initial orientation
along the streamwise direction. After injection, fibers evolve in time under the action
of the turbulent flow and eventually forget about the initial condition imposed on their
conformation, position, orientation and velocity. The statistics discussed in the following
were computed only after this independence was achieved. Calculations are performed
on 64 Nvidia Tesla V100 cards of Marconi 100, hosted by CINECA (Italy). Thanks to the
scalability properties of the computational solver, simulations at the lower volume fraction
(φ = 2.12 · 10−5) require an elapsed time per time-step of approximately 400 milliseconds.
The elapsed time per time-step doubles when the higher volume fraction (φ = 2.12 · 10−4) is
simulated. The calculations are carried out until a linear profile of the total axial momentum
balance is obtained [31], resulting in nearly 2000 (resp. 4000) GPU hours at the lower (resp.
higher) volume fraction. Then, the flow field is sampled every 15 wall time units, gathering
at least 100 fields to calculate the statistics discussed in the following. Great care was taken
for the statistics referring to the inertial fibers, for which longer averaging windows are
necessary to achieve convergence. Unless otherwise stated, all statistics are presented
as functions of the wall-normal dimensionless coordinate z+. Averaging of the statistics
is performed along the two homogeneous directions, applying the classical Reynolds
decomposition of the velocity vector:

u = ū + u′, (13)

where the overbar indicates the mean component of the velocity vector, whereas the
superscript ′ indicates its fluctuating component.

3.2. Flow Visualization

A visual rendering of the modification of turbulence due to the presence of the fibers
is provided in Figures 8–11, each referring to a different simulation carried out in this study.
For each figure, the Eulerian grid is horizontally cut at z+ = 10 from the wall and the
resulting slice is colored according to the local value of the streamwise fluid velocity. Fibers
located within a distance of 20 wall units above the slice are also rendered. The actual
fiber length is shown, whereas the fiber diameter is magnified by a factor of five for
visualization purposes.
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Figure 8. Top view of the streamwise fluid velocity streaks in the near-wall region (z+ = 10) and
instantaneous fiber distribution. Reference simulation: St+n = 0.01, ρp

ρ = 1.3, φ = 2.12 · 10−5.

Figure 9. Top view of the streamwise fluid velocity streaks in the near-wall region (z+ = 10) and
instantaneous fiber distribution. Reference simulation: St+n = 10, ρp

ρ = 1300, φ = 2.12 · 10−5.

The two cases at lower volume fraction, shown in Figure 8 for the St+n = 0.01 fibers
and in Figure 9 for the St+n = 10 fibers respectively, already show some modification in
the spatial distribution of the velocity streaks. These appear to be somehow weaker and
characterized by a smoothing of the velocity field. Also, fibers seem to align along low
speed streaks, in agreement with previous numerical studies [42], but in disagreement with
the experiments of Shaik et al. [43].

As could be expected, the near-wall flow field modifications appear to be more evident
at the higher volume fraction, as shown in Figure 10 for the St+n = 0.01 fibers and in
Figure 11 for the St+n = 10 fibers respectively. The velocity streaks appear more regular
and the spacing between them seems to increase, especially in the case of fibers with
higher inertia, in accordance with numerical simulations of turbulence modulation by
sub-Kolmogorov spheroids [25]. From a qualitative point of view, it can be observed again
that fibers exhibit a preferential alignment in the low-speed streaks. This is especially
visible in the case of inertial fibers, which are able to accumulate more efficiently than
tracer-like fibers in the near-wall region by virtue of the turbophoretic mechanism that
controls their wall-normal transport. In turn, this leads to an increase of the local (near-wall)
volume and mass fractions, which generate a stronger feedback force from the fibers to
the fluid.
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Figure 10. Top view of the streamwise fluid velocity streaks in the near-wall region (z+ = 10) and
instantaneous fiber distribution. Reference simulation: St+n = 0.01, ρp

ρ = 1.3, φ = 2.12 · 10−4.

Figure 11. Top view of the streamwise fluid velocity streaks in the near-wall region (z+ = 10) and
instantaneous fiber distribution. Reference simulation: St+n = 10, ρp

ρ = 1300, φ = 2.12 · 10−4.

A comment is in order about the conformation attained by the fibers as they are
transported by the turbulent flow. Albeit characterized by a certain degree of bending
stiffness, fibers are not able to maintain the initial conformation and cannot remain fully
stretched. Rather, they undergo deformation and behave like flexible objects, as clearly
displayed in Figure 12. In this figure, we isolate a relatively small volume of the flow
domain to allow a real-scale rendering of the fibers, considering the simulation with inertial
rods (St+n = 10) at higher concentration (φ = 2.12 · 10−4) as reference. It is possible to
appreciate a bundle of stretched fibers seemingly moving away from the wall, from left to
right, probably due to a strong shearing event. Around them, instead, curved fibers can be
observed, with the most likely conformation being that of a regularly bent object. Some
extreme bending angles can be seen from time to time: An investigation of such extreme
deformations, however, would require a discussion over the interplay between turbulence
and fiber bending stiffness in the two-way coupling regime, which is beyond the purposes
of the present work.
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Figure 12. Visualization of the flow streamlines within a volume of size `+x = 200; `+y = 100; `+z = 70
in wall units, centered at a distance of 50 wall units from the wall (for the reference case of St+n = 10
fibers and φ = 2.12 · 10−4 as volume fraction). The streamlines are colored according to the magnitude
of the fluctuating fluid velocity. The fibers are also shown, rendered as thin black filaments.

3.3. Mean Velocity Profiles

The mean velocity profiles of the fiber-laden simulations are shown in Figure 13.
To correctly compare these profiles with those of the unladen case, the velocity is normalized
by the shear velocity obtained from the actual mean wall shear stress of the two-way
coupled simulation. Only the streamwise velocity component u is plotted, as the other two
components have zero mean. Our results indicates that there is a proportionality between
the fiber volume fraction φ and the attained drag reduction, with a higher concentration of
particles determining stronger reduction. This effect is more subtle for the inertial fibers.
Apparently, an onset volume fraction is trespassed between the two simulations, which
leads to a switch from drag increase in the low-φ case to drag reduction in the high-φ case.
We can quantify these trends by defining the drag reduction percentage as done in [22]:

%DR =

[
1−

(
uL

τ

uU
τ

)2]
× 100, (14)

where the superscript L indicates the friction velocity obtained in the two-way coupled
simulations while the superscript U indicates the same quantity for the unladen flow. As re-
ported in Table 1, our results indicate a gentle drag reduction, except for one drag increase
result. As a comparison, previous numerical investigations [22–25] reported a 10-times
higher drag reduction percentage with a 10-times higher mass loading. The comparison
with experiments is less satisfactory, as the measured drag reduction percentages reported
in the literature are always larger than those reported in the table, even for the very low
concentrations [15,21]. These discrepancies, however, can be ascribed to several aspects
of the present simulations, among which two emerge. The first aspect is the flexibility of
the simulated fibers, which are not perfectly rigid as those considered in the experiments.
The second, and most relevant, aspect is the fiber aspect ratio, which was too large to be
measured in the experiments, and therefore estimated to be several thousands [15]. In our
numerical study, we are limited to less slender fibers, in order to not be overwhelmed by
an excessively-high number of fiber elements (which would be necessary to maintain a
volume fraction high enough to produce appreciable turbulence modulation).
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Figure 13. Mean streamwise fluid velocity along the wall-normal coordinate. The left panel refers
to the φ = 2.12 · 10−5 case, the right panel refers to the φ = 2.12 · 10−4 case. The curves relative to
the St+n = 0.01 fibers are plotted in blue while the curves relative to the St+n = 10 fibers are plotted
in pink. The curve of the unladen flow case is plotted in dashed black for reference. All cases are
normalized according to the shear velocity yield by the corresponding simulation.

Table 1. Percentage of drag reduction, %DR (defined as in Equation (14)), for the different cases
simulated in the (φ, St+n ) parameter space considered in this study. Drag increase is obtained when
%DR < 1, whereas drag reduction is obtained when %DR > 1.

St+n = 0.01 St+n = 10

φ = 2.12 · 10−5 1.44% 0.90%

φ = 2.12 · 10−4 1.48% 2.84%

3.4. Root Mean Square Profiles of the Velocities

The profiles of the root mean square (rms) of the fluid velocities allow more insight
into the physical mechanism that controls drag modulation. The rms of the streamwise
fluid velocity is shown in Figure 14 for all the simulated cases. Tracer-like fibers enhance
the rms peak, in agreement with the previous simulations with inertialess spheroids [25].
This rms modulation effect reduces with the volume fraction. Inertial particles, instead,
suppress this peak and, at higher φ, produce a shift of the peak away from the wall.

It can also be observed that all the simulations show a gentle increase of the rms
profiles away from the wall. This corresponds to a suppression of turbulent activity and
an enlargement of the buffer layer, in qualitative agreement with previous studies on
polymer-induced drag reduction [44]. Considering the spanwise rms, shown in Figure 15,
tracer-like fibers determine a peak that is located further away from the wall with respect to
the unladen case. In addition, at low volume fraction, the mean profile is shifted upwards
as one moves away from the wall. This is not observed with the inertial fibers, which
appear to shift the profiles downward at increasing volume fraction. Finally, the overall
physical picture is coherent also for the wall-normal rms, shown in Figure 16. In this case,
all simulations show a gentle reduction, proportional to the volume fraction and to the
inertia of the fibers, with the exception of the tracer fibers at low concentration, which
seem to slightly detach the profile peak from the wall and increase its value in the center of
the channel.
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Figure 14. Root mean square (rms) of the streamwise fluid velocity along the wall-normal coordinate.
The left panel refers to the φ = 2.12 · 10−5 case, the right panel refers to the φ = 2.12 · 10−4 case.
The curves relative to the St+n = 0.01 fibers are plotted in blue while the curves relative to the St+n = 10
fibers are plotted in pink. The curve of the unladen flow case is plotted in dashed black for reference.
All cases are normalized according to the shear velocity yield by the corresponding simulation.

Figure 15. Root mean square (rms) of the spanwise fluid velocity along the wall-normal coordinate.
The left panel refers to the φ = 2.12 · 10−5 case, the right panel refers to the φ = 2.12 · 10−4 case.
The curves relative to the St+n = 0.01 fibers are plotted in blue while the curves relative to the
St+n = 10 fibers are plotted in pink. The curve of the unladen flow case is plotted in dashed black
for reference.
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Figure 16. Root mean square (rms) of the wall-normal fluid velocity along the wall-normal coordinate.
The left panel refers to the φ = 2.12 · 10−5 case, the right panel refers to the φ = 2.12 · 10−4 case.
The curves relative to the St+n = 0.01 fibers are plotted in blue while the curves relative to the
St+n = 10 fibers are plotted in pink. The curve of the unladen flow case is plotted in dashed black
for reference.

3.5. Axial Momentum Balance

In the flow configuration considered in this study, the mean axial momentum balance
in the unladen case is determined solely by the viscous shear stress, τvisc = µ∂ū/∂z,
and the mixed axial-wall normal Reynolds stress, τturb = ρu′w′. The sum of these two
contributions provides the total shear stress, τtot =

1
2 (dp/dx)h, which is a linear function

of the wall-normal coordinate [31]:

µ
∂ū
∂z︸︷︷︸

τvisc

− ρu′w′︸ ︷︷ ︸
τturb

=
1
2

dp
dx
· h︸ ︷︷ ︸

τtot

(15)

When a dispersed phase is added to the carrier fluid, an extra stress term must be
accounted for in the balance. This extra stress is determined by the presence of the dispersed
phase, and is generally referred to as particle extra stress τextra in the following. This term is
calculated directly from the two-way coupling force, defined as in Equation (7), in the form
of a cumulative integral over a given coordinate xj:

τextrai,j =
1
Lj

∫ Lj

0
F2w,idxj. (16)

The momentum balance given by Equation (15) then becomes:

µ
∂ū
∂z
− ρu′w′ + τextrax,z =

1
2

dp
dx
· h, (17)

where τextrax,z =
1
h

∫ h
0 Fxdz (simply referred to as τextra hereinafter, for ease of notation). The

different contributions to the total balance in the unladen flow case are shown in Figure 17,
whereas the contributions in the fiber-laden cases are shown in Figures 18 and 19. Achieving
a linear profile for the axial momentum balance is computationally intensive even in the
unladen flow case, as statistics need to be calculated on very long averaging windows.
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Figure 17. Unladen-flow momentum balance along the wall-normal coordinate. The viscous shear
stress dominates near the wall, while the Reynolds stress takes over away from it. The gray line
indicates the maximum value of the Reynolds stress, which is used to compare present results with
the fiber-laden ones.

Figure 18. Axial momentum balance at low volume fraction (φ = 2.12 · 10−5). Panels: (left)
St+n = 0.01; (right) St+n = 10 .

Figure 19. Axial momentum balance at high volume fraction (φ = 2.12 · 10−4). Panels: (left)
St+n = 0.01; (right) St+n = 10 .

Figure 17 demonstrates that our simulations have reached a statistically steady state
and ensures that the reported drag reduction is not depending on beneficial but temporary
turbulent activity. For the two cases at the lower volume fraction, shown in Figure 18, we
can appreciate an effect of the mass loading on the intensity of the fiber extra (axial-normal)
stress τextra. This stress is larger for the inertial fibers, while the disturbance given by the
tracer-like fibers appears to determine an irrelevant contribution to the momentum balance
of the flow (as it is reasonable to expect). At higher volume fraction, as can be seen from
Figure 19, the effect of the mass loading is even more clear, as the inertial fibers determine a
significant increase of τextra, which qualitatively behaves like a turbulent stress and directly
feeds from the Reynolds stress τturb. Finally, we note that, even if the stress determined by
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the tracer-like fibers has slightly increased with the volume fraction, its contribution to the
total momentum balance is still very small.

3.6. Particle Stresses

Equation (16) can be generalized to calculate the mean particle normal stresses, which
reveal the non-Newtonian contribution of the dispersed fibers. Fibers introduce a dominant
axial-normal stress τx,z, that peaks close to the wall before decreasing and vanishing to zero
at the center of the channel due to the symmetry of the flow configuration. The intensity
of this profile is proportional to the local volume fraction of the dispersed fibers, as one
would expect, but also to their inertia. This picture holds for the other non-zero normal
stress, τz,z, which is shown in Figure 20 and indeed shows a different profile. Starting from
the wall, τz,z increases up to a distance of about 50 wall units and then maintains an almost
constant value in the rest of the channel.

Figure 20. Particle normal stresses: (left) φ = 2.12 · 10−5; (right) φ = 2.12 · 10−4.

Another interesting feature is the fact that, away from the wall, the τx,z component is
dominated by the τz,z component produced by the tracer-like fibers, whereas the situation is
the opposite for the inertial cases. Compared with previous studies [25], we can appreciate
a difference related to the peak of τx,z and τz,z, which appear to be less localized than
previously observed [25].

4. Conclusions

In this paper, we have presented a statistical characterization of fiber-laden turbulent
channel flow in the two-way coupling regime. Statistics refer to almost inertia-less and
highly inertial slender fibers whose length extends up to the inertial range of turbulent
scales, and were gathered performing highly-resolved Euler–Lagrangian direct numerical
simulations and considering four different cases in the Stokes number and fiber volume
fraction parameter space. Our study sets itself apart from previous numerical works,
as we considered longer particles with a slightly higher aspect ratio but at considerably
lower volume fraction [22–25]. The general picture that emerges from a brief statistical
characterization of the laden flows highlights the importance of the volume fraction, which
is the key parameter in determining the intensity of the drag reduction. The mass load
is also an important parameter as, for inertial fibers, we report a minimal concentration
for the onset of drag reduction, below which we have obtained, instead, drag increase.
Looking at the turbulence intensities, we appreciate two slightly different behaviors: one
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efficient case is determined by tracer fibers at low volume fraction, when they determine
slightly stronger turbulence intensities, especially for the peak of the axial component
and in the bulk of the flow. Instead, the three other simulations highlight a more classical
picture, where the turbulence intensities are weakened proportionally with the inertia of
the dispersed particles, especially for their peak [44]. Keeping this is mind, we look at the
axial momentum balance, where the non-Newtonian, axial-normal particle extra stress
appears: from available theories on polymer-induced drag reduction, it is known that this
term is limiting the possible amount of drag reduction, therefore it must be considered
an undesired effect [44]. At the considered volume fractions, tracer-like fibers do not
generate significant extra stresses, while inertial fibers do, feeding from the Reynolds stress
proportionally to the mass load. However, tracer-like fibers are capable of introducing a
more appreciable normal extra stress, of opposite sign. We speculate here that this stress
acts to reduce the axis-wall normal momentum transfer, which can be thought of as the
fundamental mechanism on which drag reduction is based [44]. This term, differently
from previous studies, shows a profile with non-zero mean all over the channel section
and we argue that this is determined by the length of the tracked fibers, which extends
well into the inertial range of turbulence at the considered flow Reynolds number [22–25].
The effectiveness of the tracer-like fibers could be then related to their production of purely
normal extra stresses without introducing a relevant particle stress in the momentum
balance. Inertial fibers do not exhibit the same feature at lower concentration, as the
resulting drag is increased. Instead, at higher volume fraction, the ratio between these two
terms becomes more favorable and drag reduction is obtained.
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Nomenclature

%DR Drag-reduction percentage
ū Mean velocity component
dp
dx Epurated axial pressure gradient
Ω Flow vorticity
Φ Angle between the rigid fiber orientation vector and

the velocity gradient direction in a viscous shear flow
τi,j Generic particle stress component given by the ith

force component over the jth direction
τi Generic stress component
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Li Length of the turbulent channel flow over th ith direction
rms Root Mean Square of a variable
u′ Fluctuating velocity component
Ī Identity matrix
J̄n Inertia-tensor of any rod element
γ̇ Shear rate of the viscous shear flow
` Half-length of any rod element
εR Regularization time-scale of the ERPP method
λn Aspect ratio of any rod element
λtot Aspect ratio of a full chain of rods
ω = (ωx, ωy, ωz) Rod element rotational velocity
Dn Drag Force experienced by the nth rod element of any fiber
F2w Two-way coupling Eulerian force
HD

n Hydrodynamic torque on the nth rod element due to the flow velocity gradient
o = (ox, oy, oz) Rod element orientation
p = (px, py, pz) Rod element position
TD

n Hydrodynamic torque on the nth rod element
due to the relative spin between particle and flow

u = (u, v, w) Flow velocity vector at a given Eulerian coordinate
v = (vx, vy, vz Rod element linear velocity
x = (x, y, z) Eulerian coordinate vector in the absolute frame of reference
Xn Constrain force between the n− 1th and the nth rod elements of any fiber
Yn Constrain momentum between the n− 1th and the nth rod elements of any fiber
µ Fluid viscosity
∇ Gradient
ν Fluid kinematic viscosity
∂ Partial derivative
φ Volume fraction of the fibers
ρ Fluid density
ρn Density of any rod element
σR Regularization length-scale of the ERPP method
τw Characteristic response time of the flow at the wall
τp,n Response time of any rod element
a Radius of any rod element
dx, dy Grid spacing in the homogeneous directions
dt time-step
dzmax Maximum grid spacing in the non-homogeneous direction
dzmin Minimum grid spacing in the non-homogeneous direction
EY Young’s Modulus of the rod elements
g Gaussian function of the ERPP method
h Channel Half-height
L Length of any stretched fiber
mn Mass of any rod element
nx, ny, nz Number of grid-points in the three coordinates (x,y,z)
Nrods Total number of dispersed rods
P Equivalent pressure gradient
PPMw Parts Per Million concentration of fibers in weight
Reτ Shear Reynolds number
St Stokes number
T Period of a fiber in viscous shear flow
t Time
uτ Shear velocity
Vchannel Volume of the turbulent channel flow
Vrod Volume of any rod
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