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Abstract: Reduced-order models (ROMs) based on proper orthogonal decomposition (POD) are
widely used in industry. Due to the rigid requirements on the input data, these methods struggle
with discontinuous parameters, e.g., optional rear spoiler on a car. In order to also include these
types of parameters, a new method is presented that splits the full-order model (FOM) domain
with its discontinuous parameters into multiple ROM subdomains. The resulting subdomains then
again comply with the ROM requirements, and the established and proven ROM methods can be
applied. The steps involved in computing a ROM based on the proposed method, by setting up
the subdomains, mapping the FOM data into the domains, as well as computing the ROMs on
the domains, are shown in detail in this paper. The method is employed on two use cases. The
academic one-dimensional use case focuses on how the steps involved are employed and analyzes
the introduced errors. The second use case’s FOM is based on the DrivAer body with an optional
rear spoiler computed using computational fluid dynamics (CFD) and demonstrates the usage in an
industrial environment.

Keywords: aerodynamics; reduced-order modeling (ROM); proper orthogonal decomposition (POD);
radial basis function (RBF); computational fluid dynamics (CFD)

1. Introduction

Reduced-order models (ROMs) nowadays play an important role in industry and
significantly improve how full-order model (FOM) results are used with respect to optimiza-
tion problems, merging experimental and numerical data as well as within an interactive
design process [1–3]. By computing FOM solution snapshots for various parameter com-
binations in the so-called offline phase, these results can be evaluated and exploited in
near real time during the online phase. In this paper, the order reduction is performed
using proper orthogonal decomposition (POD) [4] coupled with a radial basis function
(RBF) [5] interpolation method (POD+I) for predictions of unknown parameter combina-
tions. The main FOM input in mind is a computational fluid dynamic (CFD) solution.

Utilizing POD+I, especially for industrial use cases, is often not straight forward, since
many aspects of the POD computation needs to be taken into account. Due to the POD
requirement of conform meshes across the input snapshots, these methods struggle with:

• Discontinuous parameters.
• Complex geometry transformations.
• Nonlinear effects across the parameter domain

often times not being modeled accurately.
In this paper, a new approach in dealing with the aforementioned shortcomings is

introduced. The proposed method is referred to as Overset POD (oPOD) since it shares
some similarities with the overset mesh CFD approach in which multiple overlapping
meshes are used within the CFD context.

In the oPOD approach, the ROM domain is separated into multiple subdomains.
For each subdomain a POD+I model is computed. The individual predictions for an
unknown parameter combination are then merged together for the complete ROM domain.
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By separating the domains, the POD requirements can be fulfilled more easily. However,
this introduces difficulties in mapping the FOM data to the subdomains. The difficulties that
can arise are possible subdomain elements, that, due to mesh deformation, are no longer
part of the FOM domain. Furthermore, in order to address this issue, an enhanced snapshot
reconstruction method is proposed that alleviates this problem, so that the well-established
ROM methods can be used.

The main focus of oPOD is to broaden the usage of possible parameters by allowing
discontinuous parameters and likely complex geometry transformation or modeling non-
linear effects. This is demonstrated on two test cases. The main applications of oPOD in
mind are ROM prediction visualizations in the context of an industry-grade interactive
design process.

The novel contribution of this paper is the proposed oPOD work flow, which models
discontinuous parameter and complex geometry transformations by separating the ROM
domain. This is covered in Section 2. Another original contribution is an enhancement of
the snapshot reconstruction algorithm which is originally based on [6]. This part is covered
in Section 3.3.

This paper is organized as follows: Section 2 introduces the oPOD and explains in
detail the problem it addresses. Moreover, an overview of similar methods is given and
the new contributions of this paper are outlined. In Section 3, the theoretical background
and necessary algorithms are introduced and reviewed, followed by Section 4, in which
numerical results for an analytic test case as well as the DrivAer body in a full CFD
environment are analyzed. The final Section 5 discusses the obtained results.

2. Overset POD Method

In this section, the oPOD method, its terminology, as well as the steps involved in
creating and using an oPOD are described. First, the key problems oPOD addresses are
explained in detail and a brief overview of the method is given, followed by an in-depth
explanation in the following subsections and a summary. In order to better describe and
illustrate potential use cases and the oPOD method itself, a schematic CFD case of a
parameterized airfoil with and without a flap is utilized, as displayed in Figure 1.
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Figure 1. Schematic airfoil and flap CFD use case with parameters.
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Figure 1. Schematic airfoil and flap CFD use case with parameters. (a) Airfoil for pd = w/o FLAP.
(b) Airfoil and flap for pd = w/ FLAP.

The use case consists of an airfoil in a flow with velocity U and the continuous
parameters: angle of attack α and trailing flap at position p f . The discrete parameter
pd ∈ [w/o FLAP, w/ FLAP] controls whether or not a flap is present in the simulation.

2.1. Problem Definition

A hard requirement for using POD is a congruent ordering of values across all snap-
shots. For snapshots resulting from CFD simulacvtion, the ordering is determined by the
CFD index space which is unique for each generated CFD grid. Hence, utilizing snapshots
for different geometries is problematic. Utilizing mesh morphing (see [7]) keeps the CFD
element order and deforms the mesh with its geometries to a new configuration. Snapshots
resulting from these transformations share the same index space and can be used in a POD
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context. This strategy works well for a wide range of deformation problems but has its
short comings. Large or nonlinear deformations can lead to mesh quality degradation and
therefore negatively affect the CFD calculations. The same problem applies to deformations
close to a wall or stationary object.

This is schematically depicted in Figure 2 for different parameters p f . The cells
between the stationary airfoil and the morphed flap are significantly stretched and a good
resolution of the flow characteristics in this region is impaired.
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Figure 2. Schematic mesh deformation of airfoil and flap use case. (a) Small distance between airfoil
and flap. (b) Large distance between airfoil and flap.

While the problems with mesh deformations are mostly gradual with increasing
magnitude of the deformation, it is not possible to model discontinuous parameters with
POD. Figure 1 shows the use case with and without a flap. For both cases, a new grid needs
to be generated and the resulting snapshots do not share the same CFD index space.

2.2. General oPOD Overview

In general, oPOD uses a set of CFD snapshots that are all based on a consistent set
of parameters. Dependent on the use case, the CFD domain is split into multiple oPOD
subdomains (step 1). For each subdomain, a new mesh is generated, which can, depending
on the oPOD application, be significantly coarser than a CFD mesh. The CFD snapshots are
then mapped onto the created oPOD subdomains (step 2) and a subdomain-specific local
POD+I reduced-order model is created (step 3). In order to perform an oPOD prediction
(step 4), the relevant POD+I models in the corresponding subdomains are queried and the
individual predictions are combined to again fill the complete oPOD domain.

2.3. oPOD Domains (Step 1)

The criteria on how the CFD snapshots are split into the oPOD domains are use-case-
specific and one of the most critical steps in the oPOD process. During this step, it is
important to keep in mind how an oPOD prediction (step 4) is performed and how the
multiple oPOD domains interact with one another.

The primary reason for creating an oPOD subdomain is to handle snapshots that are
based on different CFD index spaces. As discussed in Section 2.1, the main reasons this
occurs are a CFD input deck where no mesh morphing was applied and each snapshot is
based on a unique CFD index space.

The subdomain creation is demonstrated below for the discontinuous parameter pd
for the CFD flow example above.

Discontinuous Parameter

In general, a separate oPOD domain decouples certain regions from one another. It
is therefore possible to embed a discontinuous CFD snapshot parameter in a single or
multiple overlapping domains.

This is visualized in Figure 3 in which the discontinuous CFD snapshot parameter pd
is used to model a single airfoil or an airfoil with a trailing flap. The oPOD domains created
based on the CFD domain is a background domain that only contains the airfoil for
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pd = w/o FLAP and for pd = w/ FLAP a separate foreground domain . In Figure 3, the
background domain almost shares the same bounds as the CFD domain and only models
the flow around as well as the wake of airfoil. The foreground domain models the region
around the flap and the trailing wake of it.
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Figure 3. oPOD example domain specification for varying parameter pd. (a) Airfoil for
pd = w/o FLAP. (b) Airfoil and flap for pd = w/ FLAP.

A prediction for a sought parameter p∗ =
[
α∗, p∗f , p∗d

]
now would query the model

of the background domain and depending on the value of p∗d the foreground model (if
p∗d = w/ FLAP). An interpolation region can be used on the boundary of the foreground
domain to smooth out the predictions of the background and foreground models (more on
this is discussed in step 4).

In this example, it is quite obvious that the setup of the domains is very dependent
on the use case. Since, depending on pd, the wake of the flow would have significantly
different features, the foreground domains need to extend as far into the background
domain as necessary in order to accurately model these features. Moreover, any other
parameterization or a larger value range for the parameter α would lead to a different setup
of the foreground domains.

2.4. Mapping Snapshots from CFD to oPOD Domains (Step 2)

After setting up the oPOD domains resulting in new meshes for each domain in step 1,
the CFD snapshots need to be mapped onto these meshes. If any geometric deformation
on the CFD snapshot was applied, it needs to be applied to the oPOD domain as well
by using, among others, radial basis functions [8,9] or the linear elasticity equations [10].
The resulting elements of the deformed oPOD meshes may end up outside of the CFD
domain. By using the method of signed distances [11,12] these elements can be identified
and are left out of the mapping process.

With the prepared and aligned oPOD domains to the corresponding CFD snapshots,
the modeled variables can be mapped from the CFD snapshots to the oPOD domains.
Possible mesh interpolation methods are a consistent interpolation scheme such as the
advancing front algorithm [13], an R-tree spatial search algorithm [14] or a conservative
interpolation method by local Galerkin projection [15].

Another important feature of the mapping process is that not all CFD snapshots need to
be mapped onto all oPOD domains. Visiting the example in Figure 3 again shows that each
domain only receives snapshots for the corresponding value of pd. Hence, this parameter
is not part of the domain-specific POD+I model since it is constant for all domain-specific
snapshots. Moreover, the parameter p f is irrelevant for the background domain.

2.5. POD+I Creation in oPOD Domains (Step 3)

Once the oPOD domain-specific snapshots are prepared in steps 1 and 2, the POD+I
model of each domain can be computed. In the case that all points/cells/elements of the
oPOD subdomain are part of the CFD domain, a POD+I model based on the mapped
snapshots can be computed. Otherwise, possibly due to transformations, it is possible
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that the domain for a number of snapshots lie outside of the corresponding CFD domain.
In this case, not all variables of the CFD snapshot could be mapped on the corresponding
oPOD snapshot domain. In order to also use these snapshots for the local POD+I models,
a snapshot reconstruction algorithm needs to be employed. This reconstruction is discussed
in detail in Section 3.3.

The Algorithm 1 summarizes steps 2 and 3. It shows how, based on the CFD snapshots
Wi

CFD and a domain-specific reference grid G, a local oPOD domain POD+I model can
be created. By looping over all available CFD snapshots, the relevant domain-specific
snapshots are identified and the corresponding parameter vector is transformed to the
local domain-specific parameters (lines 3 to 5). If a geometry transformation is applied,
the reference grid G is transformed, resulting in a transformed grid Gxi . Otherwise, the
reference grid G is used (line 6). After mapping the CFD snapshot on the transformed mesh
Gxi , the resulting snapshots with the corresponding parameters are stored in separate sets
(lines 7 to 9). After the loop finishes, the local POD+I model is computed based on the
snapshots and parameters present in the stored sets (line 10).

Algorithm 1 oPOD domain-specific algorithm for local POD+I model creation.
Require:

• n CFD snapshots Wi
CFD for parameter pi ∈ P with i = [1, · · · , n]

• oPOD domain-specific reference grid G
• oPOD domain-specific parameter transformation px = T(p) ∈ Px with Px ⊆ P

1: Px ← ∅
2: Wx ← ∅
3: for i← 1, n do
4: if Wi

CFD is relevant for local POD+I then
5: pxi

← T(pi)

6: Gxi ← TRANSFORM(pxi
, G)

7: Wi
x ← MAP(Wi

CFD, Gxi )

8: Px ← Px ∪
{

pxi

}

9: Wx ←Wx ∪
{

Wi
x
}

10: POD+I← CREATEPOD+I(Px, Wx)

2.6. oPOD Prediction (Step 4)

An oPOD prediction for a sought parameter p∗ is performed by querying the local
POD+I models in only the relevant oPOD domains. Since the parameters used by the local
POD+I models differ, it is necessary to filter or possibly transform the oPOD parameters
to the parameters used by the local models. Depending on the construction of the oPOD
domains, the predictions of various oPOD domains can be smoothed out. This is especially
necessary if the domains are not large enough to model domain-specific phenomena
and a more visualization-driven application is focused. Here, the signed distances from
Section 2.4 can be used to smooth out the predictions of the multiple domains.

With the signed distances di, computed at each element of the foreground domain with
respect to the edge of the domain or a geometric object, and the interpolation distance r,
the interpolation region ( Figure 3) is defined. By mapping the results of the background
domain onto the foreground domain (similar to step 2), the predictions W∗f and W∗b of the
fore and background model, respectively, are now present in each element of the foreground
domain. The interpolated prediction Ŵ∗ is now computed with

Ŵ∗i =





W∗f ,i di ≥ r

W∗b,i +
di
r

(
W∗f ,i −W∗r,i

)
0 ≤ di < r

. (1)
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2.7. Summary

An alternative visualization of Algorithm 1 for the creation of the POD+I models in
the separate oPOD subdomains is displayed in Figure 4 as a flow chart.
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the oPOD subdomain POD+I model. (b) Transformation and mapping of oPOD subdomain reference
grid to a specific CFD snapshot.

Based on a set of already created oPOD subdomains, Figure 4a displays how, for a
specific subdomain Gj, the CFD snapshots and parameter are mapped, transformed and
the resulting snapshots Wx and parameters px are used to compute the domain-specific
(POD+I)j model. The details of the “map and transform CFD snapshots” block are shown
in Figure 4b. In a loop over all CFD snapshots, it is checked if a specific CFD snapshot
Wi

CFD with the parameter pi is relevant for the current oPOD subdomain Gj. If this is
the case, then the parameter and reference grid are transformed and the CFD solution is
mapped onto the transformed grid Gx. The resulting snapshot Wx and parameter px are
stored and used to compute the domain-specific (POD+I)j model in Figure 4a.

All resulting subdomain models (POD+I)j are stored and used again for an oPOD
prediction of a sought-after parameter combination as outlined in Section 2.6.
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3. Theory

The aim to use or enhance predictions of reduced-order models is a major focus in the
field and “. . . has seen tremendous development in the past two decades, especially in the
broad domain of computational mechanics” [16]. An overview of the latest snapshot-based
methods for parameterized partial differential equations are available in [1,16].

Related approaches to oPOD can be found in the literature. Shifted POD [17] “. . . extends
the POD by introducing time-dependent shifts of the snapshot matrix” [17]. With this
shift, it is possible to improve the POD predictions considerably by reducing the nonlinear
effects across the snapshots. While it is not the key focus of this paper, an oPOD subdomain
can be transformed and therefore “shifted” analogous the shifted POD, making use of a
similar improvement as a consequence. The Domain-Decomposition POD (DD-POD) [7]
utilizes POD in the context of CFD in order to model turbulent flows around parameter-
ized geometries. Here, the ROM subdomain is coupled to CFD through an overlapping
region using a Schwarz-type method [18], resulting in a nonlocal CFD boundary condition.
This is comparable to oPOD in the sense that oPOD subdomains are also coupled to the
surrounding domain.

The remaining section reviews the methods involved in computing a POD+I model
with a special focus on snapshot reconstruction, which is needed in oPOD in the case the
an oPOD subdomain transformation leads to elements outside the FOM domain.

3.1. Radial Basis Functions/Kriging

Radial basis function (RBF) or Kriging models are suitable to model complex functions.
A comprehensive guide can be found in [5,19], and a short overview over the core method
and features is given here.

With samples X = [x1, x2, . . . , xn]
T ∈ Rn×m and responses y = [y1, y2, . . . , yn]

T ∈ Rn,
the model approximation f̂ of an unknown sample x∗ can be approximate by

f̂ (x∗) = wTψ =
n

∑
i=1

wiψ(x∗, xi)

with n, m ∈ N, the basis function ψ and the weights w. The weights are determined by
solving the linear system of equations Ψw = y, with Ψ ∈ Rn×n being the Gram matrix
which is defined as Ψi,j = ψ

(
xi, xj

)
, i, j = 1, . . . , n [19] (Section 2.3).

Popular choices for the RBF model basis function ψ are thin plate spine (TPS) with
ψ(r) = r2 ln r and cubic with ψ(r) = r3, with r being the euclidean distance of the two
sample points r(x1, x2) = ‖x1 − x2‖. A characteristic feature of the model basis functions is
that their response decreases or increases monotonically with respect to the distance of the
two samples [5].

The Kriging basis function is defined with ψ(x1, x2) = exp
(
−∑m

j=1 θj
∣∣x1,j − x2,j

∣∣pj
)

and introduces a varying exponent p, which typically is set to either 1 or 2, and a hyper-
parameter vector θ, which can be determined by a maximum likelihood estimation [19]
(Section 2.4).

3.2. Proper Orthogonal Decomposition

In the field of fluid dynamics, three established reduced-order model-based proper
orthogonal decomposition (POD) approaches exist by either using an interpolation coupled
method (POD+I) [6,20,21], a CFD flux residual minimization scheme [22,23] or a Galerkin
projection-based framework [24]. A comprehensive introduction can be found in [4,16,24].
A brief review of POD is given below.

For a set of independent parameters p = [p1, . . . , pd] ∈ Rd and CFD flow solution
snapshots Wi = W

(
pi) ∈ Rns , i = 1, . . . , m; the snapshot matrix is defined by

Y :=
[
W1, . . . , Wm

]
∈ Rns×m.
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By solving the m×m dimensional snapshot correlation eigenvalue problem
(

YTY
)

Vk = λkVk, k = 1, . . . , m (2)

the normalized eigenvectors Vk ∈ Rm can be found. By ordering the eigenvalues and
corresponding eigenvectors based on λ1 ≥ λ2 ≥ · · · ≥ λm, the m POD modes form an
orthonormal basis, which is given by

Uk =
(√

λk

)−1
YVk ∈ Rns , k = 1, . . . , m. (3)

The coefficients ai
k are determined with Equations (2) and 3 by

ai
k =

〈
Wi, Uk

〉
=

1√
λk

(
Wi
)T

YVk =
√

λkVk
i .

Initial snapshots Wi can be expressed with the newly found basis

Wi(a) =
m

∑
j=1

ai
jU

j (4)

and an approximate snapshot W∗ at an untried parameter combination p∗ can be computed
by a coefficient vector a∗ analogous to Equation (4) with

W∗(a∗) =
m

∑
j=1

a∗j Uj.

The coefficient vector a∗ can be obtained by interpolating its components with a
RBF or Krigin model at the parameter combination p∗ based on the data set

{(
pi, ai)}m

i=1.

The POD coefficient matrix A is then defined with A =
[
a1, . . . , am]T ∈ Rm×m and the

POD modes with U =
[
U1, . . . , Um

]
∈ Rns×m. A mode reduction of mr is applied to the

POD by stripping the last mr rows and columns from the POD coefficient and modes
matrix, respectively.

3.3. POD+I with Snapshot Reconstruction

Based on a snapshot reconstruction method introduced in [6,25], it is possible to
iteratively guess and fill possibly missing elements of the snapshots. For a fixed number of
iterations, a POD based on the current snapshot ensemble is computed, and the missing
elements are repaired by using the resulting POD modes of the current iteration. In [6],
a constant number of modes p is proposed. Setting p too low results in only low-level
features being set in the missing elements, while setting p too high does not average out
the to-be-detected features sufficiently.

In this paper, an improved method is introduced by determining p separately in each
iteration of the snapshot reconstruction with the R2-Score of the corresponding interpolation
model of the POD coefficients. The R2-Score is a measure for the accuracy of a surrogate
model. An R2-Score of 1 denotes a perfect accuracy in the prediction, while an R2-Score of
0 denotes a model that constantly predicts the expected value of the responses regardless
of the model input. Ref. [26] suggests to reduce the modes of a POD based on the R2-Score
of the POD coefficients surrogate models by reducing the modes of the POD to the point
that all coefficient surrogates have an R2-Score > 0. By using the R2-Score measure in the
snapshot reconstruction procedure, it is possible to include the snapshot features depending
on the current state of the snapshot ensemble during this iterative process.

The Algorithm 2 enlists in detail the snapshot reconstruction procedure with the initial
setup in lines 1 and 2 where the initial snapshot matrix 1Y is constructed by setting the



Fluids 2022, 7, 242 9 of 18

missing values to the mean of the snapshot matrix W̄. In kmax iterations, the reduced POD
modes and coefficients are obtained with the R2-Score reduction and an R2-Score cut-off
set to 0 (lines 4–5). Lines 7–9 apply the mask matrix to the modes and a best guess for
the POD coefficient vector a is computed and applied to the corresponding column of the
snapshot matrix of the next iteration (line 10). At last, the final POD modes and coefficients
are computed after the loop finishes based on the final snapshot matrix kmax Y resulting
from the last iteration.

Algorithm 2 Masked POD computation.
Require:

• n snapshots Wi for parameter pi ∈ P with i ∈ [1, . . . , n] and P = [p1, . . . , pn]
T

• A mask matrix Mi
j ∈ {0, 1}ns×m =

{
1 if Wi

j is available
0 if Wi

j is missing

1: W̄j ← 1
∑i Mi

j
∑i

{
Wi

j if Mi
j = 1

0 if Mi
j = 0

. Compute mean

2: 1Yi
j ∈ Rm×n =

{
Wi

j if Mi
j = 1

W̄j if Mi
j = 0

. Create snapshot matrix

3: for k← 1, kmax do
4: A′, U′ ← POD(kY) . Create POD coefficients and modes for kY
5: A, U← R2-SCOREREDUCTION(A′, U′, P) . Reduce coefficients and modes based

on R2-Score reduction

6: for j← 1, mr do
7: u← Uj

∣∣∣
Mj

. Apply mask on jth mode

8: f← Wj
∣∣∣
Mj

. Apply mask on jth snapshot

9: a← uT(uuT)−1f . Solve for coefficient vector

10: k+1Yj
∣∣∣
¬Mj
← Ua|¬Mj . Set jth column of k+1Y on unmasked values ¬Mj

11: A, U← POD(kmax Y) . Create POD coefficients and modes for kmax Y

4. Results

In this paper, oPOD is applied on two test cases. Both test cases have a discrete
parameter pd that allows to optionally add or remove a feature to the overall process,
splitting the domain into a separate background and a foreground POD+I. The first test
case is a two-parameter one-dimensional process of an analytic function. It is well-suited
to demonstrate the investigated oPOD method and analyze the effects each step has on
the model prediction as well as the introduced errors. The second test case is the DrivAer
body [27] with four parameters computed in a CFD environment.

4.1. Analytic Test Case

The analytic test case is split into two subsections. Both sections model the same
process y in the domain x ∈ [0, 1]. The first section analyzes the performance of oPOD
when all snapshot data is available to the model, while in the second section, only a subset
of the information for the foreground model is available. Here, the reconstruction of the
snapshot matrix, as depicted in Section 3.3, is applied. The to-be-modeled process consists
of three distinct parameters. With a discrete parameter pd, and two continuous parameters
p1 and p2, the analytic test case is described by

y(x, p1, p2, pd) =

{
p1 f (x, 0.5, 1) + f (x, p2, 0.05) if pd = ON

p1 f (x, 0.5, 1) if pd = OFF
, (5)
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with the Gaussian function f (x, µ, σ) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
and the parameters p1 and

p2 in the parameter space P = [0, 100] × [0.3, 0.7] for p1 ∈ [0, 100] and p2 ∈ [0.3, 0.7].
Both the background as well as the foreground model are sampled using an equidistant
full-factorial sampling. The snapshots for the background model are obtained by setting
p1 = {0, 50, 100} and the foreground snapshots by p1 × p2 with p1 = {0, 50, 100} and
p2 = {0.3, 0.4, 0.5, 0.6, 0.7} leading to 15 samples for the foreground and three samples for
the background model. For the oPOD predictions, a signed distance of 0.075 is used to
linearly smooth out the predictions of the foreground and background models.

4.1.1. Full Model Data

All resulting snapshots are visualized in Figure 5a for pd = ON and Figure 5b for
pd = OFF.
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Figure 5. Resulting snapshots for background and foreground model of the analytic test case.
(a) Resulting snapshots with parameter pd = 1. (b) Resulting snapshots with parameter pd = 0.

As displayed in Figure 5b, the parameter p1 introduces a scaling factor to the Gaussian
function, while the parameter p2 shifts a local bell curve which can be seen in Figure 5a.
While the background model spans the complete domain, the foreground domain is limited
to x f = [p2 − 0.2, p2 + 0.2] ⊂ x. Moreover, the foreground model is dynamically shifted
according to parameter p2.

Figure 8 shows how a prediction with oPOD compares with a standard POD+I model.
The POD+I model was trained solely on the snapshots with pd = ON for the complete
domain x. As it can be seen in Figure 8a, the strong nonlinearities in the snapshots are
difficult to model for the POD+I model. It specifically struggles in the region of the peak
of the bell curve. oPOD is better capable of modeling this region, since the foreground
domain x f is shifted along with the curve, and therefore differences in the snapshots are
smaller and easier to model (analogous to [17]). Figure 8b shows how the interpolation
in oPOD for the background PODb+I and the foreground POD f +I model is performed.
With an interpolation distance set to r = 0.075 from the domain boundary, the output
of both models is linearly smoothed out. At the domain boundary for x = 0.15, oPOD
uses the values of the background model PODb+I, while at x = 0.15 + r the values of the
foreground model POD f +I are used. In between, the values are linearly interpolated with
respect to the distance from the domain boundary. This interpolation scheme results in a
good approximation to the to-be-modeled process.
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Figure 9. L2 prediction errors in the parameter space P for oPOD with and without snapshot
reconstruction for pd = ON. Samples of oPODs are marked with .
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Figure 8. Process with POD+I and oPOD predictions for p = [25, 0.35, ON]. (a) Complete domain.
(b) oPOD model interpolation.

The L2 prediction errors across the parameter space for pd = ON are depicted
in Figure 6. The error e is given for parameter p∗1 and p∗2 by the model prediction
oPODi

(
xi, p∗1 , p∗2

)
compared with the process true value Yi = y

(
xi, p∗1 , p∗2

)
for varying

xi ∈ x with e
(

p∗1 , p∗2
)
= ‖oPOD− Y‖. Figure 6a shows the L2 error for the standard POD+I

model while Figure 6b shows the L2 errors for the oPOD predictions. It is important to note
the different color ranges in the color bars of the two figures. As expected, the errors close
to the snapshot sample locations in the parameter space are small and increase with greater
distance, but the errors for oPOD compared with POD+I are significantly smaller.
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Figure 6. L2 prediction errors in the parameter space P for POD+I and oPOD for pd = ON. Samples
of ROMs are marked with •. (a) L2 error for POD+I. (b) L2 error oPOD.

4.1.2. Incomplete Model Data

In contrast to the previous section, only the foreground model is now computed on
the bases of incomplete model data. Setting the cut-off length lco = 0.3, all data for x < 0.3
and x > 0.7 is stripped from the snapshot matrix and reconstructed using Algorithm 2.
As depicted in Figure 7 with the areas, the loss in data is for some snapshots in the
foreground model significant and reduces the available data to half compared with the
full data.
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Figure 7. Comparison of available data for full model data and incomplete model data. (a) Full
model data snapshot set for pd = 1. (b) Incomplete model data snapshot set for pd = 1.

The error introduced with the snapshot reconstruction for the chosen lco is negligible
as the oPOD prediction with missing data almost matches the oPOD without missing data
(see Figure 8).

Figure 8b depicts how the foreground and background models are interpolated in the
interpolation region. In the range from [p∗2 − 0.2, p∗2 + 0.2] = [0.15, 0.25], the model output
is linearly interpolated starting from the output of the background model at x = 0.15 and
ending at the output of the foreground model at x = 0.25, matching the output of the
to-be-modeled process.

The L2 error comparison of oPOD with and without snapshot reconstruction in Figure 9
shows that the error increases due to the reconstruction of the snapshots. Compared with
the errors for oPOD without snapshot reconstruction, the largest errors are no longer in
between the snapshot samples but on the border of the parameter domain at p∗ = [100, 0.3].
This is due to the fact that in those regions errors due to the reconstruction of the snapshots
are introduced.
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reconstruction for pd = ON. Samples of oPODs are marked with .
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Figure 9. L2 prediction errors in the parameter space P for oPOD with and without snapshot
reconstruction for pd = ON. Samples of oPODs are marked with •. (a) oPOD L2 error without
snapshot reconstruction. (b) oPOD L2 error with snapshot reconstruction.

Figure 10 displays how the error introduced in the snapshot reconstruction increases
with increasing lco and the number of missing values in the snapshots data. The plotted
cut-off error eco(lco) is the maximum oPOD prediction error for a specific cut-off length lco

eco(lco) = max
p∗1 ,p∗2

elco(p∗1 , p∗2),
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with elco being the error evaluation for an oPOD with the corresponding lco. For this aca-
demic use case, the error for lco < 0.3, in which up to 50% of data is reconstructed, remains
very small. For larger lco, the error increases up to the point where the reconstruction of
snapshot data is infeasible, since the portion of data that needs to be reconstructed is too
large (75% for lco = 0.4).
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4.2. DrivAer Test Case

The DrivAer body [27] is used to demonstrate the oPOD capabilities for industrial
CFD simulations. All snapshots are computed using OpenFOAM® [28] with the Reynolds-
averaged Navier-Stokes (RANS) equations, a k-ω SST turbulence model and a free stream
velocity of 30 m

s . Each simulation consists of approximately 50 million cells with the geome-
tries being deformed using mesh morphing based on radial basis functions. The simulation
is based on five parameters. The four continuous parameters (see Figure 11) are the diffusor
angle

(
pdi f f ∈ [0, 1]

)
at the lower rear body and the position (px, pz ∈ [−0.01, 0.1]) and

rotation (pθ ∈ [−30, 10]) of the spoiler.
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The fifth parameter pd ∈ [w/ SPOILER, w/o SPOILER] is discontinuous and controls
whether or not the spoiler is part of the CFD domain resulting in a hypercube param-
eter domain P = px × pz × pθ × pdi f f × pd. The to-be-modeled variables are the win-
dowed average velocity field U and pressure coefficient cp of the last 2000 iterations of the
RANS simulations.

Figure 12a shows the oPOD domain decomposition used for the test case. Within the
CFD domain (not displayed in its correct size for visualization purposes), the back-
ground domain encapsulates the complete DrivAer body as well as its wake and is
responsible for modeling the front of the body, and in case of pd = w/o SPOILER, also the
wake. For pd = w/ SPOILER, the foreground domain models the wake and the flow
around at the rear of the body. It contains all deformation-affected geometry parts and
expands upstream as far as necessary in order to model the upstream effects of the spoiler.
Moreover, it extends to the back of the ROM domain due to the dominant effect the spoiler
has on the wake of the flow field.
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Figure 12. oPOD domain decomposition and signed differences for the DrivAer use case. (a) oPOD
domain decomposition. (b) Signed distance field slice of the foreground model.

For the results presented below, the foreground domain is modeled using 74 snapshots
which are placed in the parameter space P f = px × pz × pθ × pdi f f × (pd = w/ SPOILER)
using the quasi-random number Halton sequence [29]. The background domain is mod-
eled using five equidistantly distributed samples in the parameter space Pb = pdi f f ×
(pd = w/o SPOILER). While the background model only depends on pdi f f as its parame-
ter, the foreground model is built using all continuous parameters.

In Figure 12b, the midslice of the applied signed distance field ratio d
r (step 4, Section 2.6)

is shown. Setting the interpolation region radius to r = 0.15, all domain boundaries except
the rear boundary are interpolated according to Equation (1). The signed distance field is
not affected by the DrivAer body since the foreground model should be used directly in
the wake.

4.2.1. oPOD Prediction Evaluation

For the predictions of U and cp below a single prediction point p∗ =
(

p∗x, p∗z , p∗θ , p∗di f f

)

= (0.01, 0.06,−13.36, 0.43), which is not part of the oPOD sampling, is chosen.
Depicted in Figures 13 and 14, the high-fidelity CFD solutions as well as the oPOD

predictions of the magnitude of the velocity field and cp are shown. Compared with the
high-fidelity CFD solutions, the differences of the oPOD predictions with and without
spoiler are negligible. The wake of the body is modeled correctly for both states of the
discontinuous parameter pd, and the transition of the background and foreground models
at the edge of the foreground model is smooth without any discontinuities. Especially in the
spoiler region, the model predictions are in very good agreement with the CFD solutions.
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with the background model. But since it is beneficial to limit the sub domain to the region 402

of interest due to memory and performance reasons as well as possible complex geometry 403

transformations, an interpolation region can be required. 404

The effect of the interpolation region is displayed in figure 15. Marked by the white 405

circles are the areas, in which the interpolation effect of the predicted values at the border 406

of the foreground and background domain are most pronounced. 407

The final analysis of oPOD is a comparison against an alternative approach on model- 408

ing the discontinuous spoiler parameter pd. In this approach, a domain with a fixed mesh 409

on which the solutions of the snapshots are mapped, is used. As a consequence, the cells in 410

the spoiler area occasionally are on the upper or lower side of the spoiler, depending on the 411

snapshots parameter, or do feature a flow without spoiler at all. This can be problematic for 412

the POD+I model, since high non linearities of the modeled variables in the corresponding 413

cells are introduced due to the fact that these cells are subject to high fluctuations compared 414

to the parameters. 415

Figure 16 compares the alternative method for modeling discontinuous parameters 416

with oPOD. Displayed in figure 16a is the oPOD prediction for a solution with spoiler. It 417

can be seen that the stagnation point in the front as well as the separation point at the 418
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solution for cp with spoiler. (b) oPOD prediction for cp with spoiler. (c) CFD solution for cp without
spoiler. (d) oPOD prediction for cp without spoiler.

4.2.2. oPOD Analysis

The plots in Section 4.2.1 show oPOD predictions with an enabled interpolation
region between the background and foreground oPOD subdomains. As mentioned above,
the prediction of a significantly large foreground subdomain model, which encapsulates all
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variances introduced by the to-be-modeled parameters, does not need to be interpolated
with the background model. However, since it is beneficial to limit the subdomain to the
region of interest due to memory and performance reasons as well as possible complex
geometry transformations, an interpolation region can be required.

The effect of the interpolation region is displayed in Figure 15. Marked by the white
circles are the areas in which the interpolation effect of the predicted values at the border of
the foreground and background domain are most pronounced.
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Figure 15. Influence of oPOD interpolation region. (a) oPOD prediction with interpolation. (b) oPOD
prediction without interpolation.

The final analysis of oPOD is a comparison against an alternative approach on model-
ing the discontinuous spoiler parameter pd. In this approach, a domain with a fixed mesh
on which the solutions of the snapshots are mapped is used. As a consequence, the cells in
the spoiler area occasionally are on the upper or lower side of the spoiler, depending on the
snapshots parameter, or do feature a flow without spoiler at all. This can be problematic for
the POD+I model since high nonlinearities of the modeled variables in the corresponding
cells are introduced due to the fact that these cells are subject to high fluctuations compared
with the parameters.

Figure 16 compares the alternative method for modeling discontinuous parameters
with oPOD. Displayed in Figure 16a is the oPOD prediction for a solution with spoiler.
It can be seen that the stagnation point in the front as well as the separation point at the
trailing edge of the spoiler are accurately modeled. Moreover, the recirculation area beneath
the spoiler is closely attached to the spoiler geometry. For the alternative approach, the
model struggles with predicting these specific features, as the nonlinearities in the cells are
too severe.

Version July 6, 2022 submitted to Journal Not Specified 17 of 19

(a) oPOD prediction close up (b) Alternative POD+I close up

0 5 10 15 20 25 30 35
U
[m

s
]
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trailing edge of the spoiler are accurately modeled. Also the recirculation area beneath the 419

spoiler is closely attached to the spoiler geometry. For the alternative approach the model 420

struggles with predicting these specific features, as the non linearities in the cells are too 421

severe. 422

5. Conclusion 423

A novel method for handling discontinuous parameters for POD+I ROMs is presented. 424

The steps involved are discussed and the method is demonstrated for two use cases. The 425

industrial DrivAer use case shows significant improvements compared to an alternative 426

way of modeling discontinuous parameters. It is possible to perform complex geometry 427

transformation in the vicinity of static walls without degrading the CFD mesh. The oPOD 428

prediction errors for the analytic use case are 30 times smaller compared to the POD+I 429

method. This is due to the introduction of the transforming sub domains, which reduces 430

the non linearities from the model perspective considerably (analogous to the shifted POD 431

[17] method). In case of incomplete data due to oPOD sub domain transformations an 432

improved snapshot reconstruction method is proposed. It is shown, that for the analytic 433

use case the error only slightly increases with an increase in missing data. Compared to the 434

standard POD+I method the error is ten times smaller for an equivalent of 50% missing 435

data. The DrivAer as well as the analytic use case make use of a discontinuous parameter 436

which is seamlessly included in the newly proposed oPOD method. 437

The demonstrated results motivate for further research. Possible fields could focus 438

on automatically setting up the oPOD sub domains. Currently, this is a manual task and 439

human insight is required to determine the oPOD sub domain bounds. A future method 440

could automatically detect the errors introduced at the sub domain bounds, resize the sub 441

domains accordingly or regulate the size of the interpolation region. Also, a classification 442

for various use cases could be of interest to further increase the robustness of the new 443

method. 444
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5. Conclusions

A novel method for handling discontinuous parameters for POD+I ROMs is presented.
The steps involved are discussed and the method is demonstrated for two use cases. The in-
dustrial DrivAer use case shows significant improvements compared with an alternative
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way of modeling discontinuous parameters. It is possible to perform complex geometry
transformation in the vicinity of static walls without degrading the CFD mesh. The oPOD
prediction errors for the analytic use case are 30 times smaller compared with the POD+I
method. This is due to the introduction of the transforming subdomains, which reduces the
nonlinearities from the model perspective considerably (analogous to the shifted POD [17]
method). In case of incomplete data due to oPOD subdomain transformations, an improved
snapshot reconstruction method is proposed. It is shown that for the analytic use case
the error only slightly increases with an increase in missing data. Compared with the
standard POD+I method, the error is ten times smaller for an equivalent of 50% missing
data. The DrivAer as well as the analytic use case make use of a discontinuous parameter
which is seamlessly included in the newly proposed oPOD method.

The demonstrated results motivate further research. Possible fields could focus on
automatically setting up the oPOD subdomains. Currently, this is a manual task and
human insight is required to determine the oPOD subdomain bounds. A future method
could automatically detect the errors introduced at the subdomain bounds and resize
the subdomains accordingly or regulate the size of the interpolation region. Moreover, a
classification for various use cases could be of interest to further increase the robustness of
the new method.
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The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics
DD-POD Domain-Decomposition POD
FOM Full-order model
oPOD Overset POD
POD Proper orthogonal decomposition
POD+I POD with interpolation
ROM Reduced-order model
RANS Reynolds-averaged Navier-Stokes
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