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Abstract: Elasto-inertialturbulence (EIT), a new turbulent state found in polymer solutions with
viscoelastic properties, is associated with drag-reduced turbulence. However, the relationship
between EIT and drag-reduced turbulence is not currently well-understood, and it is important to
elucidate the mechanism of the transition to EIT. The instability of viscoelastic fluids has been studied
in a canonical wall-bounded shear flow to investigate the transition process of EIT. In this study,
we numerically deduced that an instability occurs in the linearly stable viscoelastic plane Couette
flow for lower Reynolds numbers, at which a non-linear unstable solution exists. Under instability,
the flow structure is elongated in the spanwise direction and regularly arranged in the streamwise
direction, which is a characteristic structure of EIT. The regularity of the flow structure depends on
the Weissenberg number, which represents the strength of elasticity; the structure becomes disordered
under high Weissenberg numbers. In the energy spectrum of velocity fluctuations, a steep decay law
of the structure’s scale towards a small scale is observed, and this can be recognized as a ubiquitous
feature of EIT. The existence of instability in viscoelastic plane Couette flow supports the idea that
the transitional path toward EIT may be mediated by subcritical instability.

Keywords: non-Newtonian fluids; viscoelastic fluids; instabilities; direct numerical simulation

1. Introduction

Viscoelastic fluids are easily produced by adding a small amount of long-chain poly-
mers to a Newtonian solvent, such as water. These fluids exhibit a property by which the
skin friction in wall-bounded turbulence is significantly reduced [1]. Many researchers
have experimentally and numerically studied the mechanism of drag reduction [2–5].

Certain aspects of the drag-reduction mechanism are generally accepted [6,7]. Poly-
mer molecules move randomly under Brownian motion caused by collisions among the
molecules, resulting in an equilibrium state called a random coil. In wall-bounded turbu-
lent flow, polymers are stretched along the flow direction due to the strong shear stress near
the wall. The force to be relaxed when tending towards the equilibrium state is associated
with the elasticity of the polymeric fluid. The time scale of polymer relaxation is called
the relaxation time, and the viscoelastic flow state is characterized by the Weissenberg
number Wi, which is the ratio of the relaxation time to a time scale of shear flow. The
elastic forces experienced by the stretched polymers near the wall suppress streamwise
vortices [8–10]. The effect of viscoelasticity that modifies a sustaining process of Newtonian
turbulence has been observed in a relatively low-Wi flow, which leads to drag-reduced
turbulence. In this flow state, the turbulent drag reduction rate increases with the poly-
mer concentration. It is well-established that an increasing polymer concentration would
manage to approach the maximum drag reduction (MDR) asymptote, as predicted by
Virk [3]. The MDR is the limiting state in which the dynamics of turbulence are weakened
and turbulence can be barely sustained. In higher concentrations of a solution, viscoelastic-
ity is known to cause a flow instability that is significantly different from the Newtonian

Fluids 2022, 7, 241. https://doi.org/10.3390/fluids7070241 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7070241
https://doi.org/10.3390/fluids7070241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-0036-4560
https://orcid.org/0000-0001-8126-9578
https://doi.org/10.3390/fluids7070241
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7070241?type=check_update&version=2


Fluids 2022, 7, 241 2 of 19

turbulence. Advanced numerical simulations in recent years have succeeded in capturing
such instabilities, and have found a flow dominated by structures arranged in the spanwise
direction, unlike the familiar turbulence dominated by streamwise structures, such as streak
structures near the wall [11,12]. This flow state has been termed elasto-inertia turbulence
(EIT), as it is not only triggered by a purely elastic instability, but additionally requires
inertial instability. The EIT state, the existence of which has been established predominantly
by numerical simulations, has been experimentally confirmed in the past few years, and it
has been agreed to be an essential feature of viscoelasticity.

The pipe flow of polymer solutions may undergo a transition that is different to that
of a Newtonian fluid [13–15]. However, the cause for this remains unclear, even when
considering both the resultsthat the transition is triggered earlier than in a Newtonian fluid
and that the transition is delayed. Samanta et al. [11] first demonstrated the flow regimes
of viscoelastic pipe flows at high shear rates using tubes with smaller diameters than
those used in previous pipe experiments. This achievement revealed that viscoelasticity
triggers turbulence below the critical Reynolds number, Re, of the Newtonian fluid flow,
and modifies the conventional Newtonian laminar-turbulent transition at high Wi values.
They also found that the friction factor of the EIT state follows the friction law of the MDR
asymptote. Since then it has been hypothesized that EIT is associated with the MDR asymp-
tote, and results supporting this association have been demonstrated. To investigate the
association between the MDR asymptote and EIT, Choueiri et al. [16] focused on the path to
EIT instability using the modified laminar-turbulent transition in a viscoelastic fluid. Their
flow state diagram of the viscoelastic fluid, drawn based on the Re and the concentration of
the polymer plane, systematically shows the transition phenomena obtained from previous
studies. They found that increasing the polymer concentration at a fixed, relatively low
Reynolds number resulted in a transition from Newtonian turbulence to laminar flow. By
further increasing the concentration while keeping the Reynolds number fixed, the tran-
sition to the MDR regime occurred regardless of the initial state of the Newtonian fluid.
Some studies have focused on drag-reduced flow and have considered this separately from
EIT. In other words, they regarded drag-reduced flow as a flow state that originates from
Newtonian turbulence and that is modified according to the increase in either concentration
(in experiments) or Wi (in simulations). However, the pipe experiments conducted by
Choueiri et al. [16] and the numerical simulations conducted by Lopez et al. [17], in support
of their experimental work, confirmed that the MDR asymptote, as the final state of the
drag-reduced flow, undergoes a re-entrant transition from the laminar flow. According
to a series of studies by Hof’s group [11,16,17], the MDR asymptote originates from an
instability that is different to that observed in Newtonian turbulence, and that the dynamics
of the MDR asymptote have characteristic features in common with EIT. As summarized
here, these results, in the context of the transition to EIT, demonstrate that drag-reduced
flow is a phenomenon wherein Newtonian turbulence and EIT coexist, and in the transition
under a constant Reynolds number, Newtonian turbulence is weakened as the concentra-
tion increases, and eventually is replaced by EIT. The MDR asymptote exists as a boundary
of the marginal flow state, beyond which Newtonian turbulence cannot be maintained
during this scenario.

Garg et al. [18] investigated the linear stability of viscoelastic pipe flow, finding it
to be linearly unstable. This instability gives rise to the early transition of pipe flow at
the significantly lower critical Reynolds number of viscoelastic pipe flow than that of
Newtonian pipe flow, and this is considered as the first stage of EIT. This instability has
additionally been confirmed in plane Poiseuille flow. Some advanced stability analyses of
viscoelastic flow have revealed several unstable solutions and demonstrated that elastic
instability can occur without inertia in the EIT, and appears with an infinite elasto-inertial
hierarchy [19–22]. This suggests that viscoelastic instability could develop through a
tangled nonlinear process. The transition process of viscoelastic flow has not yet been
clarified [19]. A nonlinear mechanism of EIT has been proposed by Morozov and van
Saarloos [23] using a simple model. Their model was based on elastic instability caused
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by curved streamlines, associated with purely elastic instability [24,25]. Using nonlinear
stability analysis, they predicted that Couette and Poiseuille flows may undergo a subcritical
transition to EIT [23,26]. They also found that the subcritical instability of viscoelastic flow
has a structure that is very similar to that of EIT, as confirmed in other studies [12,20,27].

The stability of viscoelastic Couette flow has been investigated for models of vari-
ous constitutive equations using several methods [28–32]. There is a consensus that the
widely-used models (upper convective Maxwell, Oldroyd-B, Giesekus, and the FENE-P
model) demonstrate the linear stability of viscoelastic Couette flow. Therefore, if the tran-
sition to EIT occurs in Couette flow, the instability grows through a nonlinear process.
Obtaining a nonlinear solution of viscoelastic Couette flow is important for understanding
the subcritical transition of viscoelastic fluids. This nonlinear solution provides an initial
template to obtain unstable eigenfunctions that are difficult to predict. Furthermore, unlike
pipe and Poiseuille flow, the effect of the absence of a linear instability solution on the
transitional process of viscoelastic fluids can be inferred. In viscoelastic flow, especially
in Couette flow, there are few studies focusing on the subcritical transition, and the full
picture of the transition is as yet unknown. In this paper, we investigate the mechanism of
the transition of the viscoelastic Couette flow to EIT, and the characteristics of EIT using
three-dimensional direct numerical simulation. The current numerical simulation method
for EIT still has many problems and needs to be improved.

2. Numerical Method and Procedure

Our three-dimensional direct numerical simulation was performed under the incom-
pressibility condition, coupled with a constitutive equation. The flow system used is a
wall-bounded shear flow, i.e., a plane Couette flow driven by moving the upper and lower
walls, as shown in Figure 1. The streamwise, wall-normal, and spanwise directions are
denoted as x, y, and z, respectively. The non-slip boundary condition at the walls and
the periodic boundary conditions in x and z are applied. The dimensional continuity and
momentum equations are, respectively, given by

∇ · u = 0, (1)

ρ
{∂u

∂t
+ (u · ∇)u

}
= −∇p + µ0∇2u +∇ · τ, (2)

where ρ, u, p, and τ represent the density of the fluid, a velocity vector, pressure, and the
polymeric stress tensor, respectively. These equations may be scaled with the wall speed Uw
and the half-channel height δ. Regarding the polymeric stress tensor, scaling with µpUw/δ
allows us to obtain a non-dimensional momentum equation as

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇p∗ +

β

Re
∇2u∗ +

1− β

Re
∇ · τ∗. (3)

Here, the viscosity ratio β is defined as the ratio of the solvent viscosity to that of
the solution β = µs/µ0 = µs/(µs + µp), where µs and µp are the viscosity of the solvent
and polymer contributions, respectively, and µ0 represents the zero-shear viscosity of the
solution. The superscript ‘∗’ indicates the scaled value within the equations. We define
two dimensionless parameters, the Reynolds number Re = Uwδ/ν, and the Weissenberg
number Wi = λUw/δ, where ν is the kinematic viscosity and λ is the elastic relaxation time.
The polymeric stress tensor τ is solved by means of the constitutive equation, coupled with
the continuity and momentum equations. The Giesekus model [33] for the constitutive
equation is employed and given by

τ + λ
5
τ +

α

µp
τ · τ = 2µpD, (4)
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where D is the deformation velocity tensor, α is the non-dimensional mobility factor, and
5
τ

represents the upper convective derivative of the polymeric stress, which can be written as

5
τ =

∂τ

∂t
+ (u · ∇)τ − (∇u) · τ − (τ · ∇u)T. (5)

Moreover, we introduce the dimensionless conformation tensor cij, as follows

τij =
µp

λ
(cij − δij), (6)

where δij is the Kronecker delta. In the actual process of DNS, the following governing
equation of cij is solved numerically:

∂cij

∂t∗
+ u∗k

∂cij

∂x∗k
= cik

∂u∗j
∂x∗k

+ ckj
∂u∗i
∂x∗k
− 1

Wi
{

cij − δij + α(cik − δik)(ckj − δkj)
}

. (7)

Uw

Uw

y

x

z
2�

Figure 1. Configuration of the plane Couette flow.

We follow the same numerical method used by Nimura et al. [34,35]. The fourth-order
central finite difference scheme is used in the x and z directions, whereas the second-order
central scheme in y. For the time integration, the second-order Crank–Nicolson scheme
and the second-order Adams–Bashforth scheme are employed for the wall-normal viscous
term and the other terms, respectively. The fractional step method is adopted to couple
Equations (1) and (3). The pressure Poisson equation is solved using the tridiagonal matrix
algorithm (TDMA) in y and the fast Fourier transform (FFT) in x and z, without the iterative
method. This numerical procedure has been fully established for the Newtonian turbulent
channel flow by Abe et al. [36]. As for the constitutive equations with the Giesekus
model, a flux limiter of the MINMOD scheme is adopted to approximate the spatial
derivatives in the advective terms; thus, an artificial diffusive term is not included, as first
introduced by Yu and Kawaguchi [37] and commonly used even in recent works [38–41].
The periodic boundary conditions are applied in x and z: u(Lx, y, z) = u(0, y, z) and
u(x, y, Lz) = u(x, y, 0). The moving wall surfaces are non-slip: u = (−Uw, 0, 0) at y = 0,
and u = (Uw, 0, 0) at y = 2δ.

For the initial condition of the velocity field, we induce a moderately weak random
disturbance, applied to the entire channel, to the linear solution of the plane Couette flow;
thus, u = Uw(y/δ− 1). The magnitude of the disturbance amplitude is set sufficiently
small for only the main mode to grow after the initial disturbance decays rapidly. We
preliminarily confirmed that the growing mode is consistent in such a range of sufficiently
small magnitudes of amplitude. It was also confirmed that the mode of growth after
the decay of the disturbance is consistent within a sufficiently small range of the initial
amplitude. In the present study, the Reynolds number is fixed at either 10 or 100, and some
rheological parameters are set as α = 0.001 and β = 0.9. Regarding α, we referred to the
values in the literature [37,42], which were confirmed to be in good agreement with the
experimental counterparts. The additive concentration is assumed to be diluted.

Figure 2 shows the configuration of numerical grids used consistently for all cases in
this study. The size of the domain, (Lx × Ly × Lz)/δ3 = 12.8× 2.0× 6.4, and the number
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of grid points (Nx × Ny × Nz) = 256× 96× 64 are kept fixed for all cases, which lead to
streamwise/spanwise grid resolutions of ∆x∗ = 0.05 and ∆z∗ = 0.1, respectively. The
non-uniform grids with ∆y∗ = 0.017–0.023 are used in y. For a grid convergence test, see
Appendix A. Within our simulations, we simulated the viscoelastic flow field where the
elasticity was increased with constant inertia, or more specifically, the Reynolds number
was fixed and the Weissenberg number was increased to systematically investigate the
Wi-dependence of elasto-inertial instability. At high Weissenberg numbers, it is difficult to
numerically simulate the viscoelastic flow due to the numerical instability of the constitutive
equation caused by the absence of a diffusion term. It is often extremely difficult to
accomplish a simulation with the desired high-Wi regimes in a steady state. Therefore,
we gradually increased the Weissenberg number, and demonstrated the results up to the
Weissenberg number that developed the flow into a steady state without numerically
diverging when sufficient time had elapsed.

Figure 2. Mesh geometry in the present simulation, viewed in the x–y plane (left) and the z–y
plane (right).

The flow states presented in Section 3 were statistically steady in terms of the time
series of a spatially averaged kinetic energy of the velocity fluctuations. The kinetic energy
K is a value integrated in the whole domain, as follows:

K =
1

LxLyLz

∫∫∫ u′i
2

dxdydz, (8)

where u′ represents the fluctuation value from the mean velocity, described below in
Section 3.1. Figure 3 shows the time series of K for cases that exhibit the onsets of instabilities.
The growth of an instability can be seen in the time evolution from t = 0, at which a
disturbance is induced in the laminar flow.In all cases, K finally converges and the flow
state reaches a statistically-steady state after tUw/δ = 2000. The flow fields shown in
Section 3 are the typical ones in the steady state, obtained after the artificial disturbance
was attenuated and the unstable mode was developed well.

We varied the Weissenberg number while fixing two Reynolds numbers, Re = 10 and
100, and investigated whether viscoelastic instability appeared. These Reynolds numbers
are below the Rec ≈ 324 obtained by Duguet et al. [43] as the threshold to sustain turbulence
of the Newtonian Couette flow. These are also lower than the region of existence of exact
coherent structures (ECSs) for the plane Couette flow (Re ≥ 127.7), which is known to be a
non-linear unstable solution [44–46]. Thus, if any instability appears in a flow field below
these Reynolds numbers, it is considered to be due to viscoelasticity.

0 500 1000 1500 2000 2500 3000 3500 4000
10

-20

10
-15

10
-10

10
-5

Figure 3. Time series of kinetic energy K for typical cases of Re and Wi.
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3. Results and Discussion
3.1. Onset of a Viscoelasticity-Induced Instability

Figure 4 shows the profiles of the mean velocity 〈u〉, which change as the Weissenberg
number increases for each Reynolds number; enlarged views of the center of the channel
are inserted. The operation 〈·〉 represents the time average and · is the spatial average
on the x–z plane parallel to the walls. These profiles are almost the same as the laminar
solution of Couette flow throughout the channel. The velocity gradient, i.e., the shear
rate, decreases locally at the channel center for Wi ≥ 20, as shown in Figure 5. It is clear
that the velocity profile forms an inflection point at the channel center or at three points
around it. For Wi = 10 at both Reynolds numbers, the mean velocity profile has no
inflection point, meaning instabilities cannot occur in the flow fields and the laminar flow is
maintained. An instability can be observed in the flow fields for Wi ≥ 20 at both Reynolds
numbers, where inflection points are formed in the velocity profile. As will be shown later,
spanwise-oriented structures are formed in the presence of this instability. At the high
Weissenberg number Wi = 1000 for Re = 100 in Figure 5b, four inflection points are present
around the center of channel. However, there is hardly any difference in the flow structure
caused by the additional inflection points in the velocity profile. In the case of Re = 10,
for high Weissenberg numbers of Wi > 30, the growth of the spanwise-oriented structures
was confirmed, but this simulation diverged numerically and the steady state could not
be obtained.

Figure 4. Mean velocity profiles for increasing Wi, with (a) Re = 10 and (b) Re = 100, with the insert
magnified around the channel center.

Figure 5. Mean velocity gradient profiles for increasing Wi, with (a) Re = 10 and (b) Re = 100
corresponding to the mean velocity profiles in Figure 4.

Figure 6 shows the spatio-temporal averaged rms (root-mean-square) of velocity
fluctuations. It is clear that the intensity of velocity fluctuations in either direction increases
with an increasing Weissenberg number. This tendency was confirmed for both Re = 10
and Re = 100, and the profiles of both numbers are similar. It can be estimated that there is
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no dependence on the Reynolds number within this range. These RMS velocity profiles
are almost symmetric profiles, centered on y/δ = 1, and the symmetry of the flow does
not break above and below the channel center. There is a sharp peak in the intensities of
velocity fluctuations in the streamwise direction urms at the center. The intensities in other
directions, vrms and wrms, have a peak around the center, but weaken locally at y/δ = 1.
These profiles deviate significantly from inertia-dominated turbulence.

0 0.5 1 1.5 2
0

1

2

3

4

5

6
10

-3

Figure 6. RMS velocity ui rms profiles for increasing Wi at each Reynolds number, (a) Re = 10 and (b)
Re = 100.

Figure 7 shows the flow structure observed as a fully developed state at Re = 10 in the
x–z plane in the channel center y/δ = 0. The contour represents the fluctuating velocity v′

in the wall-normal direction, and the vectors represent the fluctuating velocity u′ and w′

in the plane. Here, the fluctuating velocity u′i is defined as u′i = ui − ui; however, v and w
are nominally zero. Hence, v′ ≈ v and w′ ≈ w. It can be seen that positive and negative
regions of v′ appear alternately, as shown in Figure 7, and elongated spanwise-oriented
structures are shown to locally align in the streamwise direction. Such structures have
been observed in other systems, such as Poiseuille flow [11,12] and pipe flow [17,18]. In
pressure-driven flows, spanwise-oriented structures are formed near the wall, whereas
in the current Couette flow, the flow structures visualized in Figure 7 are concentrated in
the channel center. These structures are simpler for lower Weissenberg numbers at the
same Reynolds number. As the Weissenberg number increases, the intensity of velocity
fluctuations increases, the regularity of the flow structure is lost, and three-dimensional
turbulent structures are formed. Such Weissenberg-number-dependence of structures
shows the same tendency for a different Reynolds number, specifically, Re = 100. The
dependence on the Reynolds number can be observed in the distribution of v′. At a high
Reynolds number of Re = 100, a large-scale flow with a spatial size of > 2δ in x and z
is formed, as shown in Figure 8. The large-scale flow is not obvious at a low Reynolds
number Re = 10 within the Weissenberg number range of 10 ≤Wi ≤ 30 that was simulated
without the numerical divergence. It can be observed that the formation of the flow is not
a feature of the high Weissenberg flow, but rather a feature of the flow at a moderately
high Reynolds number, because large-scale flows also appear in the flows of Re = 100 and
Wi = 20 (see Figure 8). The large-scale flow is described in detail in the next section.
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Figure 7. Snapshots of elongated spanwise-oriented structures in the x–z plane at the channel center
for Re = 10 and (a) Wi = 20 and (b) Wi = 30. Color contours and vectors show v′ and in-plane
velocity components (u′, w′), respectively.

Figure 8. Snapshots are the same as Figure 7, but for Re = 100 and (a) Wi = 20, (b) Wi = 100,
(c) Wi = 500, and (d) Wi = 1000.

3.2. Scale of EIT Structures

To investigate a statistical property of the spanwise-oriented structures, the two-point
correlation coefficient of velocities were calculated. The two-point correlation coefficient is
defined as the correlation of the velocity fluctuations for each direction at a fixed y, and is
normalized with the RMS values of velocity fluctuations. It can be written as follows:

Ruiuj(∆x, y) =

〈
u′i(x, y, z) · u′j(x + ∆x, y, z)

u′i,rms · u′j,rms

〉
, (9)

Ruiuj(∆z, y) =

〈
u′i(x, y, z) · u′j(x, y, z + ∆z)

u′i,rms · u′j,rms

〉
. (10)

The two-point correlation coefficients for Re = 10, as functions of the streamwise or
spanwise distances where ∆x and ∆z form a reference point, are plotted in Figure 9. These
correlation coefficients are averaged over time and space in the channel’s center plane.
The streamwise wavelength of the spanwise-oriented structure coincides with the first
positive peak that appears after Rvv drops negatively from unity. According to Figure 9a,
the wavelengths in the streamwise direction are λx = 0.65δ for Wi = 20 and λx = 0.70δ
for Wi = 30. The wavelength of the spanwise-oriented structure λx tends to increase as
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the Weissenberg number increases. The correlation coefficient of the streamwise velocity
Ruu also has a peak at the same position; however, the value of Ruu does not drop to
negative values. It is presumed that this is because the velocity does not have sufficient
strength to form a vortical motion. The structure of EIT found by Dubief et al. [12] also
highlighted that spanwise-oriented structures are not sufficiently strong to form vortices. A
negative peak is observed at ∆x ≈ 3–4δ for Ruu and Rww, which indicates a wavelength
larger than the wavelength of the spanwise-oriented structure. This corresponds to the
wavelength of the large-scale flow that is slightly evident in the flow field plotted in Figure 7.
The wavelength of a large-scale flow cannot be estimated using the present simulations,
because only the approximate two wavelengths are captured in the computational domain
in the streamwise direction. In Figure 9b, the two-point correlation coefficient as a function
of the spanwise distance ∆z indicates that there is no small-scale structure in the spanwise
direction, and demonstrates that the large-scale flow is affected by the periodical condition,
as well as the streamwise direction. Therefore, in order to capture the large-scale flow
induced by viscoelastic instability, simulations are required in the calculation domain,
expanded in the streamwise and spanwise directions. The Reynolds-number-dependence
of flow structures can be observed in Rvv for Re = 100, as shown in Figures 9 and 10. At
Re = 10, a small-scale structure causes Rvv to negatively drop away from unity, whereas at
Re = 100, a large-scale flow causes Rvv to negatively drop at a large distance. It is therefore
considered that the scale of the flow that dominates the flow field has changed from a
small-scale structure to a large-scale flow, and this large-scale flow can be seen to clearly
appear within Figure 8. This does not necessarily mean that a high Reynolds number does
not give rise to the formation of spanwise-oriented structures. Considering the correlation
of the flow fields separated in each scale, drops from positive to negative occur in each
case. The wavelength of spanwise-oriented structures is defined as the distance of the first
positive peak of Rvv after dropping from unity, even if it does not change from positive
to negative. The wavelength of spanwise-oriented structures depends on the Reynolds
number. According to Figure 10, the wavelength in the streamwise direction is λx = 0.50
for both Wi = 20 and Wi = 100 cases at Re = 100. For Re = 10 and Re = 100, at the
same Weissenberg number Wi = 20, the wavelength when Re = 100 is smaller than that
when Re = 10. It is presumed that the dependence on the Reynolds number is larger than
the dependence on the Weissenberg number. The wavelength of a large-scale flow with a
higher Reynolds number Re = 100 cannot be estimated because it is also affected by the
size of the computational domain, and the domain is insufficient to capture a large-scale
flow that is free from the periodic boundary.

Figure 9. Two-point correlations as a function of (a) the streamwise distance ∆x and (b) the streamwise
distance ∆z at the channel center for Re = 10 and varying Wi. The solid lines represent Ruu,
the dashed lines Rvv, and the dash-dotted lines Rww.
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Figure 10. Two-point correlations as a function of (a) the streamwise distance ∆x and (b) the stream-
wise distance ∆z are the same as in Figure 9, but for Re = 100.

By estimating the wavelength of spanwise-oriented structures using the correlation
coefficient as the threshold value, the filter operation is applied to the fluctuating velocity
field, and spanwise-oriented structures and the large-scale flow are separated. The small-
and large-scale velocity fields are described as us

i and ul
i , respectively, and the fluctuating

velocity decomposition is written as u′i = us
i + ul

i , where u′i is the total velocity field before
decomposition. They are strictly separated at the threshold in Fourier space and the
cross-correlation between the small- and large-scale velocity fields is zero. Note that the
large-scale component of v is almost zero, that is, v′ = vs. A three-dimensional visualization
is used to show the flow structures of each scale based on the decomposed velocity fields
in Figures 11 and 12. In these figures, the threshold of the isosurface is the same in all cases.
The width of the visualized grid mesh is the same in all directions and is equal to δ, but does
not correspond to the computational grid width of DNS. Figure 11 shows snapshots of a
typical flow field for Wi = 20 and 30 at Re = 10. The red and blue isosurfaces represent the
positive and negative values of the second invariant of the velocity gradient tensor

Q =
1
2

∂ui
∂xj

∂uj

∂xi
, (11)

i.e., the regions of rotational motion and extensional/compressional motion, respectively.
Each region is arranged alternately in the streamwise direction, and the sizes are approxi-
mately equal to each other. Their size matches the wavelength of the small-scale structure,
confirmed by the two-point correlation coefficients. The regions of the second invariant
represented by these isosurfaces are almost unchanged when drawn as the second invari-
ant of the small-scale velocity field, and thus most of the displayed region of topological
structures is contributed by the small-scale velocity field. These spanwise-oriented struc-
tures displayed by the isosurfaces of Q represent the characteristic structure of the EIT
demonstrated by Samanta et al. [11], Dubief et al. [12] and Lopez et al. [17] in other flow
systems. Moreover, the large-scale flows ul are shown by superimposing spanwise-oriented
structures with black and white translucent regions, and black and white regions indicate
positive and negative values of ul , respectively. The positive and negative structures of u′,
elongated in the streamwise direction, are similar to the ECS of viscoelastic Couette flow, the
existence of which was found by Stone et al. [10]. These three-dimensional visualizations
provide confirmation that the dynamics of the large-scale flow and spanwise-oriented struc-
ture are closely related. The spanwise-oriented structure is a structure in which a straight
vortex along the spanwise axis is bent locally. These vortex dynamics are reminiscent of the
hairpin vortex found in wall turbulence. According to this dynamic mechanism, a high-
speed region is generated along the bent direction, and a large-scale flow is considered to
be formed. A large-scale flow with a positive value is observed at a position bent in the
positive direction in the streamwise direction, and the other is observed with a negative
value at a position bent in the opposite direction. Considering that a large-scale flow is
rarely formed in two-dimensional flow, the large-scale flow is regarded to be a secondary
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flow induced by the deformation of the spanwise structure. As the spanwise structure is
deformed at the position where a large-scale flow exists, the three-dimensionality of EIT
and the development of the large-scale flow are closely correlated.

(a) (b)

Figure 11. Spanwise-oriented structures and large-scale flows in the decomposed velocity fields
for Re = 10 at (a) Wi = 20 and (b) Wi = 30. The red and blue isosurfaces represent spanwise-
oriented structures indicated by Q at Q∗ = 0.01 and −0.01, respectively. Black and white transparent
isosurfaces represent large-scale flows indicated by ul∗ = 0.005 and −0.005, respectively.

(a) (b)

(c) (d)

Figure 12. Spanwise-oriented structures and large-scale flows are the same as in Figure 11, but for
Re = 100 at (a) Wi = 20, (b) Wi = 100, (c) Wi = 500, and (d) Wi = 1000.

As mentioned earlier and as shown in Figures 9 and 10, the streamwise wavelength
of spanwise-oriented structures is dependent on the Reynolds number; the wavelength
decreases as the Reynolds number increases. Figure 12 shows snapshots of the flow field
of Re = 100 with a varying Weissenberg number, and it can be seen that slightly smaller
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spanwise-oriented structures than those in in Figure 11 are observed. Large-scale flows
develop as the Weissenberg number increases, and this leads to the formation of a three-
dimensional turbulence. At Re = 100 and Wi = 20, nearly two-dimensional structures
are arranged regularly and the intensity of the large-scale flow is weaker. There is no
qualitative difference in flow structure for high Weissenberg numbers of Wi ≥ 100.

Figure 13 shows a magnified visualization of the small-scale structure located in the
center of the channel gap. Figure 13a visualizes a typical velocity field with the vectors of
in-plane flow (us, vs) at an arbitrary z, which are superimposed on a color contour of the
spanwise vorticity ωs

z, based on the small-scale velocity us. A positive ωs
z corresponds to a

counter-clockwise vortical motion and vice versa. The region where the small-scale velocity
exhibitsa vortical motion rather than a shear motion can be also indicated by a negative
value of the Qs criterion, based on the small-scale velocity components, as in Figure 12.
Those vortices appear in staggered rows above and below the center of the channel. The
region of high ωs

z, except for the layer (0.98 < y < 1.02) appearing in the center of the
channel shown in (a), is consistent with the regions with negative Qs as plotted in (b). It
can be noted that this layer has a sufficient possibility of being a numerical phenomenon,
because the thickness of this layer corresponds to the length of the two grids in the y
direction. However, the row of vortices formed across the layers closely resemble the thin
layered structure observed in the EIT of plane Poiseuille flow, as demonstrated by [47]. The
difference is that the EIT in plane Poiseuille flow has a thin sheet structure that is elongated
in the top-right and bottom-left directions in the x–y plane and is formed near the wall,
whereas in plane Couette flow, the row of vortices is unchanged with respect to the mean
flow and appears in the center of the channel. Figure 13c visualizes the viscoelastic forces
in the same plane and instance in time with (a) and (b), and the contour shows the trace of
the conformation tensor tr(cij), which indicates the degree of polymer extension. A large
polymer extension occurs at the position between the two vortices that are located above
and below the center line on the sheet structure, and a strong viscoelastic force is acting on
the fluid. This force acts in opposite directions across the center line, strengthening each of
the upper and lower spanwise vortices. We can therefore infer that the viscoelastic force
produces the vortices appearing in the small-scale velocity field. Moreover, the viscoelastic
force acting continuously around the center of the channel is the cause of the decreasing
velocity gradient at the channel center, as shown in Figures 4 and 5.

We additionally confirm the visualization of the large-scale flow in the x-y plane.
Figure 14 shows the large-scale flow in the decomposed velocity field (ul , vl , wl). The large-
scale flow exhibits a structure that covers the entire channel gap and has an interval longer
than that of the small-scale structure visualized in Figure 13. The small-scale structure and
large-scale flow are less correlated because their wavelengths are significantly different,
and the large-scale flow is slightly disordered with respect to the regularly arranged small-
scale structure.
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Figure 13. (a) Decomposed velocity field and corresponding elastic force field by the polymeric stress
tensor for (–1) Re = 10 and Wi = 20 and (–2) Re = 100 and Wi = 100. Vector: (a,b) (us∗, vs∗), (c)
(∂τ′xj/∂xj, ∂τ′yj/∂xj). Contour: (a) ωs∗

z = ∂vs∗/∂x∗ − ∂us∗/∂y∗. (b) Second invariant of deformation
tensor Qs based on the small-scale components, and (c) tr(cij).

Figure 14. Large-scale flow in the decomposed velocity field for Re = 100 and Wi = 100. Vector: (ul ,
vl). Contour: wl∗.

The eigenvalues of the conformation tensor cij represent the principal stretches of
the polymer. The 3 × 3 tensor of cij has three eigenvalues. Let us now denote them
as σ1, σ2, and σ3. The magnitude of the eigenvalue physically indicates the degree of
polymer deformation along the corresponding principal axis. From the viewpoint of
thermal equilibrium, the current eigenvalues should be positive, and the symmetric matrix
of the tensor cij is a positive-definite matrix [48,49]. These characters lead to “σ1, σ2, σ3 > 0”,
which has been satisfied in the whole domain developing in time, according to the present
DNS. This fact that our obtained min(σi) ≈ 0, but was never ≤ 0, clearly demonstrates that
the current simulated cij are strictly positive-definite matrices. Note further that 0 < σi < 1
represents a compression of the polymer, whereas 1 < σi indicates a stretch. Some typical
wall-parallel distributions of the three eigenvalues for Re = 10 and Wi = 20 at the channel
center are shown in Figure 15. Although the current set of eigenvalues is not sorted with
respect to their magnitudes, on average σ3 > σ2 > σ1. For instance, the time average of the
lowest value of each eigenvalue reveals a relation of min(σ3)� min(σ2) ≈ 1 > min(σ1). In
Figure 15, σ3 clearly exhibits a distribution similar to the small-scale structure, observed via
the flow visualization of Figure 11. It can be inferred that the main stretch of the polymer
is caused by the small scale. Other-directional stretching is extremely low compared to
that in the principal axis relevant to σ3. As for σ2, its spatial distribution seems rather large
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compared to the small-scale structures and this may be related to the large-scale flow. It
is interesting to note that two different principal axes of stretching are associated in each
case with different well-defined structures, but further discussions, determining these
eigenvectors, are required. Figure 16 shows the distributions of the eigenvalues for higher
Wi and Re and they again demonstrate clearly the Wi-dependence of polymer stretching.
The degree of the polymer stretching depends on Wi, and it can be confirmed from the
figure that local σi values increase as Wi increases. However, it should be noted that the
trends observed in the low Wi and Re case in Figure 11 can be seen here as well. The small-
scale spanwise-oriented structures are relevant to the largest eigenvalue (σ3), whereas the
distribution of intense σ2 resemblesthe large-scale flow. The minimum eigenvalue of σ1
is approximately globally distributed with zero values, although there are locally large
values, perhaps due to slightly-twisted spanwise vortices.

Figure 15. Contour of eigenvalues in the x–z plane at channel center y = δ for Re = 10 and Wi = 20.

Figure 16. Contour of eigenvalues in the x–z plane at channel center y = δ for Wi = 100 (top) and
Wi = 500 (bottom), fixed at Re = 100.

As discussed in relation to the visualizations and correlation coefficients, it was found
that the EIT of plane Couette flow is a flow in which large- and small-scale flows coexist.
The energy spectrum of the velocity fluctuation reveals the level of energy with each scale
and the behavior of its decay. For a dilute polymer solution, the polymer has no effect on
the dissipation of energy in the fluid, and the role of the polymer itself is to transfer the
stored kinetic energy to a small-scale flow of the solvent [50]. Therefore, it is known that the
EIT is different from the energy cascade of Newton turbulence. Dubief et al. [12] showed
a k−14/3 steep decay law, where k represents the wavenumber, in the energy spectrum of
EIT, but there is no theoretical significance of the −14/3 exponent as yet. Additionally,
Pereira et al. [51] observed a similar k−14/3 decay law in high-drag-reduced turbulence. It
is characteristic that decay scaling that is steeper than Newtonian turbulence appears in
the relatively-high-wavenumber region. Furthermore, Pereira et al. [51,52] indicated that
the spectrum has a steep decay law of k−8, which is steeper than during the hibernation
events appearing in high-drag-reduced turbulence.Although there is no theoretical support
for this decay law, it is recognized as a common property of EIT that the energy spectrum
has a steep decay law in the specific wavenumber region at the limit of inertia with high
elasticity, that is, the MDR asymptote.

Figure 17 shows the time-averaged longitudinal one-dimensional energy spectra
Euiuj as a function of the streamwise wavenumber kx for Re = 10 and Re = 100 with a
varying Weissenberg number at the channel’s center plane. The energy spectra of velocity
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components in each direction and for each typical case of varying Weissenberg number
are plotted. For Re = 10, as confirmed in the discussion on correlation coefficients, a peak
of the energy spectrum that appears in the low wavenumber region, i.e., a large-scale
flow, is not formed in Evv. The other components, Euu and Eww, have similar profiles.
The energy spectra of the streamwise and spanwise directions have the first peak in the
low-wavenumber region, which corresponds to the large-scale flow, and have the second
peak in the region where the wavenumber kxδ ≈ 10, which corresponds to the spanwise-
oriented structure. The decay of the energy spectrum in the streamwise direction Euu can
be scaled by the k−7

x power law in the moderate-wavenumber domain 10 < kxδ < 30. This
suggests that there is an energy cascade from the scale of spanwise-oriented structures to
the smaller scale. It can be seen that the decay of the energy spectrum follows a power
law, scaled with the same exponent as for other components in this wavenumber region.
As the peak of Evv is in the low-wavenumber region, a large-scale flow is formed for the
higher Reynolds number Re = 100. In well-developed EIT at a high Weissenberg number
(Wi = 100), the energy spectrum of the streamwise direction Euu for Re = 100 can also
be scaled with the same exponent as Euu of Re = 10 in the same medium-wavenumber
region. However, scaling with the same exponent deviates from the decay of the energy
spectrum of the other components. Although there is no quantitative agreement between
the decay law of the EIT energy spectrum confirmed in plane Couette flow and the decay
law obtained in previous studies, based on this result, it can be inferred that EIT has a
steeper decay law than that observed in Newtonian turbulence.

Figure 17. Longitudinal one-dimensional energy spectra of the velocity fluctuation as a function of
kx for (a) Re = 10 and (b) Re = 100 with varying Wi. The solid lines represent Euu, dashed lines Evv,
and dash-dotted lines Eww.

4. Conclusions

We performed a direct numerical simulation of viscoelastic-plane Couette flow at
very low Reynolds numbers and investigated the characteristics of viscoelasticity-induced
instability. The model used for simulating the viscoelastic fluid of dilute solutions was
the Giesekus model and the specific parameters of the model that determined the charac-
teristics of the fluid rheology were α = 0.001 and β = 0.9. The Reynolds number, which
is a flow parameter, was fixed at one of two very low values, Re = 10 and Re = 100.
The Weissenberg number, which is a rheological parameter representing elastic strength,
was gradually increased for each Reynolds number, focusing on the Weissenberg-number-
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dependence of viscoelasticity-induced instability. Instabilities were observed for both low
and high Reynolds numbers, and we concluded that this instability represented EIT, based
on its characteristic structural features. Although the present simulation for Re was limited
to Re = 10 and 100, the critical Wi that triggered the transition to EIT was approximately
Wi ≈ 20. The structure of EIT had a cylindrical shape and was elongated in the spanwise
direction and aligned in the streamwise direction. Moreover, the structure was concentrated
in the region of the channel center. The topological structure identified by the second invari-
ant of the velocity gradient tensor had alternating rotational and extensional/compression
regions. The mean velocity profiles of the flow field in which this structure was formed
had inflection points around the channel center. Except for the inflection points, the mean
velocity profiles were almost unchanged, based on the solution of laminar flow, even if
EIT occurred. The two-point correlation coefficients revealed that there were structures of
different scales in the EIT. The small wavelengths with strong correlations corresponded
to spanwise-oriented structures that characterized EIT, whereas the large wavelengths
represented a large-scale flow elongated in the streamwise direction. The wavelength
of the spanwise-oriented structures was approximately λx ≈ 0.5δ, and the wavelength
of the large-scale flow was λx = 3–4δ in the streamwise direction. The wavelength of
spanwise-oriented structures depended on the Reynolds number, and smaller structures
were observed at the higher Reynolds number. The spanwise-oriented structure lost its reg-
ularity as the Weissenberg number increased and became a disordered structure, whereas
the large-scale flow developed and its intensity increased. The distributions of eigenvalues
of cij, which represent the degree of polymer deformation, were similar to those of the
structures that appeared in the flow field. One of the eigenvalues with a distribution similar
to the small-scale structure had a much larger value than the other eigenvalues. The stretch-
ing of the polymer was inferred to be mainly due to spanwise-oriented structures. The
magnitude of the eigenvalues increased as Wi increased, and thus the degree of polymer
elongation depended on Wi. The energy spectra of the velocity fluctuations indicated that
there could be an energy cascade from the scale of spanwise-oriented structures to the
smaller scale. The exponent of the decay law in the energy spectrum observed was larger
than −5/3, which is well-known as the exponent of the energy cascade for Newtonian
turbulence. We obtained a k−7

x power law for the streamwise energy spectrum Euu(kx).
This steep decay law may be one of the ubiquitous features of EIT.
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Appendix A. Grid Convergence
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Figure A1. Time series of kinetic energy K whilechanging the grid resolutions for a grid conver-
gence test.

We performed a grid convergence test with respect to the spatial resolution by varying
the values of (∆x, ∆z) as follows. We selected (∆x, ∆z) = (0.2, 0.2) as Case A, (0.1, 0.1) as
Case B, and (0.05, 0.1) as Case C, for Re = 10 and Wi = 20. This test was conducted to track
the time evolution of the kinetic energy K, defined as in Equation (8), from the initial field
with the same weak disturbance. In Case A, K reached a very weak fluctuating level as
its final state. A two-dimensional spanwise-oriented structure was formed steadily in this
state. This trend was the same for Case B and the spanwise-oriented structure was rather
steady, without strong fluctuations. Those resolutions might be sufficient to capture the
onset of the spanwise-oriented structure. The flow obtained at the highest resolution in
Case C exhibited more complicated three-dimensional structures that were very similar to
the structure of the EIT in the pressure-driven channel flow. Then, the main DNSs reported
in this paper were performed with this resolution.
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