
����������
�������

Citation: Brown, J.; Zimny, J.; Radko,

T. Identifying the Origin of

Turbulence Using Convolutional

Neural Networks. Fluids 2022, 7, 239.

https://doi.org/10.3390/

fluids7070239

Academic: Mehrdad Massoudi

Received: 10 June 2022

Accepted: 8 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Identifying the Origin of Turbulence Using Convolutional
Neural Networks

Justin Brown * , Jacqueline Zimny and Timour Radko

Naval Postgraduate School, One University Circle, Monterey, CA 93943, USA;
jacqueline.zimny12@gmail.com (J.Z.); tradko@nps.edu (T.R.)
* Correspondence: jmbrown2@nps.edu

Abstract: Though turbulence is often thought to have universal behavior regardless of origin, it may
be possible to distinguish between the types of turbulence generated by different sources. Prior work
in turbulence modeling has shown that the fundamental “constants” of turbulence models are often
problem-dependent and need to be calibrated to the desired application. This has resulted in the
introduction of machine learning techniques to attempt to apply the general body of turbulence
simulations to the modeling of turbulence at the subgrid-scale. This suggests that the inverse is
likely also possible: that machine learning can use the properties of turbulence at small scales to
identify the nature of the original source and potentially distinguish between different classes of
turbulence-generating systems, which is a novel pursuit. We perform numerical simulations of three
forms of turbulence—convection, wake, and jet—and then train a convolutional neural network to
distinguish between these cases using only a narrow field of view of the velocity field. We find that
the network is capable of identifying the correct case with 86% accuracy. This work has implications
for distinguishing artificial sources of turbulence from natural ones and aiding in identifying the
mechanism of turbulence in nature, permitting more accurate mixing models.

Keywords: wakes; machine learning; jets

1. Introduction

Conventional wisdom would suggest that turbulence retains little memory of its origin.
This is the fundamental assumption of the majority of turbulence models that exist in the
literature: the turbulent cascade is a general process where energy enters at the injection
scale and eventually dissipates at the dissipation scale in a way that is essentially scale- and
problem-independent. We challenge this assumption by performing numerical simulations
of stratified turbulence with three different origins: a wake, local convection, and a jet.
We then successfully train a Convolutional Neural Network (CNN) to distinguish the
turbulence that arises from a these three systems from other forms of turbulence using only
local measurements.

This challenge to the global nature of turbulence has been a topic of recent interest.
Since the early work by Smagorinsky [1], which provided a universal estimate for the
behavior of turbulence, turbulence modeling has become an important component of
large-scale numerical simulations of fluid dynamics. Such modeling includes large-eddy
simulations (LES)—where the dissipation scale of turbulence is not resolved and a subgrid-
scale model is employed to cover the behavior of the turbulent cascade from the grid scale to
the dissipation scale—and Reynolds-averaged Navier–Stokes—where the non-linear terms
of the governing equations are approximated with analytical closures. Both these families
of turbulence modeling require calibration of the model constants to simulations and
experiments in order to apply the models to problems in reality. An important consideration
of this work is that these “constants” are typically problem-dependent. For examples, see
the work of Galperin and Orszag [2] and Canuto and Cheng [3]. In particular, Canuto and
Cheng [3] demonstrated that the problems of plane-strain and homogenous shear can show

Fluids 2022, 7, 239. https://doi.org/10.3390/fluids7070239 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7070239
https://doi.org/10.3390/fluids7070239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-2716-5174
https://orcid.org/0000-0002-5682-280X
https://doi.org/10.3390/fluids7070239
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7070239?type=check_update&version=1

Fluids 2022, 7, 239 2 of 17

substantial differences in these constants and therefore in the behavior of the turbulence as
a whole. Because turbulence models must be tailored to the individual problem in ways
that are difficult to generalize, machine learning techniques have been employed for more
general applications.

Much of the history of the application of machine learning to turbulence modeling is
compiled in the recent review by Beck and Kurz [4]. A number of studies have successfully
used machine learning to determine the closures required in LES and RANS models [5–13].
Such studies are taking the large body of data regarding turbulence (both experimental
and numerical) and determining the relatively small number of turbulence metrics that are
useful for controlling the behavior of the turbulent cascade, which is an ideal application for
machine learning techniques. Some of these studies take direct numerical simulations (DNS)
or laboratory experiments, filter them at the appropriate grid-scale, and determine the
turbulence metrics, such as the Reynolds stress. An artificial neural network (ANN) is then
used. The filtered spatial information is input to the network, and the turbulence metrics are
output. Others, such as Parish and Duraisamy [7], use these results to develop functional
terms that can be used in LES and RANS models to adapt more typical turbulence closures.
All this prior work accepts that turbulence is inherently affected by its surroundings,
and so it stands to reason that machine learning techniques could also be applied to the
classification of turbulence.

Attempts to use machine learning to identify turbulence are remarkably uncommon.
It has been known that some biological organisms (such as harbor seals, as shown in [14])
are capable of identifying and following wake turbulence, and this has motivated a series
of biomimetic studies in an attempt to glean information about turbulent regions. Recently,
studies by Colvert et al. [15] and Alsalman et al. [16] showed that ANNs and clustering
techniques could be used to successfully identify types of turbulent structures based on
limited data in airfoil wakes. Li et al. [17] used a machine learning technique known as
extreme gradient boosting to identify the region of a wake where turbulence is present and
showed that these techniques were more generally applicable than ad-hoc determinations.
Given such success, this raises the question as to how capably machine learning techniques
can distinguish between turbulence produced by different sources, such as wakes, jets,
overturning convection, shear, etc.

In this study, we perform a series of numerical simulations of various forms of tur-
bulence. These simulations generate convective turbulence, jet turbulence, and wake
turbulence, and we measure the velocity fields of each simulation. We design and train
a convolutional neural network to distinguish unique characteristics of these three forms
of turbulence. Though many studies of turbulence modeling have used the large-scale
characteristics of a region of turbulence to determine the small-scale behavior, the attempt
to use the small-scale characteristics to classify the large-scale behavior is relatively new.
Past studies have been limited only to distinguishing characteristics between the same type
of source, whereas this study shows that it is possible to use comparable techniques to
distinguish between different sources with 86% accuracy. Section 2 describes the numerical
simulation methodology used to create data samples for wakes, jets, and convective turbu-
lence. Section 3 discusses the results of the numerical simulations, details the convolutional
neural network used in this study, and provides the results of the training and validation
of the neural network. Section 4 offers a discussion and conclusion of the results.

2. Materials and Methods

We employ the Massachusetts Institute of Technology General Circulation Model
(MITgcm), which is a flexible computational fluid dynamics solver that can simulate
oceanographic phenomena from basin-wide scales to micro-scales [18]. This code is widely
used in the oceanographic community and has undergone rigorous verification and val-
idation [19]. MITgcm uses a finite-volume method and can be configured to solve the
equations of motion using the Boussinesq approximation in the absence of planetary rota-
tion. These approximations are justified by the relatively small scale (100 m) and short time
frame (<1 h) of the simulations, which permit ignoring the Coriolis term and nonlinearities

Fluids 2022, 7, 239 3 of 17

in the equation of state. In addition, the typical velocity of the flow is much smaller than
the sound speed, which permits the assumption of incompressibility. These equations of
motion are given by

∇ · u = 0, (1)
ρ− ρ0

ρ0
= −α(T − T0), (2)

∂T
∂t

+ u · ∇T = kT∇2T + Q, (3)

∂u
∂t

+ u · ∇u = −∇p
ρ0
− ρ

ρ0
gk̂ + ν∇2u + Fî, (4)

where u is the velocity vector, ρ is the density, ρ0 is a reference density, α is the ther-
mal expansion coefficient, T is temperature, kT is the thermal diffusivity, k̂ is the unit
vector in the z-direction, î is the unit vector in the x-direction, and ν is the kinematic
viscosity. Equation (1) describes mass continuity, Equation (2) is the linear equation of
state, Equation (3) describes the temperature evolution, and Equation (4) is the momen-
tum evolution equation. The Q and F terms are external heating and forcing functions,
respectively, which are used to generate turbulence.

Each simulation is run in a three-dimensional domain in x, y, and z with a background
temperature gradient of 0.03 ◦C m−1and with small perturbations taken from a uniform
distribution. The grid is rectilinear with uniform 0.33-m resolution in all spatial directions,
which is comparable to or finer than our prior work (e.g., [20]). Figure 1 depicts the
simulated domain for all cases. We define Lx, Ly, and Lz as the lengths of the domain in the
x, y, and z directions, respectively. The domain sizes for each simulation are included in
Table 1, which fully describes the characteristic parameters of each simulation.

−xoff 0 Lx − xoff

−Lz

0

x

z

ub

a) propagating object

−Ly2
Ly
2

−Lz

0

y

z

b) jet

−Ly2
Ly
2

−Lz

0

y

z

c) convection

0.0

0.2

0.4

0.6

0.8

u
[m

/s
]

−1.0

−0.5

0.0

0.5

1.0

T
[◦

C
]

Figure 1. The simulation forcing for each case. (a) For the propagating object, the velocity is forced
within the object boundary. (b) For the jet case, the velocity is forced according to the background
velocity field as shown. (c) For the convection case, the temperature is forced according to the
background temperature perturbation field as shown.

Fluids 2022, 7, 239 4 of 17

Table 1. Domain parameters.

Parameter Wake Jet Convection

Viscosity (ν) 4.5× 10−3 m2s−1 8.0× 10−3 m2s−1 1.0× 10−1 m2s−1

Thermal diffusivity
(kT) 4.5× 10−3 m2s−1 8.0× 10−3 m2s−1 1.0× 10−1 m2s−1

Thermal expansion
coefficient (α) 2.0× 10−4 ◦C−1 2.0× 10−4 ◦C−1 2.0× 10−4 ◦C−1

Domain length in x
(Lx) 938.7 m 117 m 117 m

Domain length in y
(Ly) 100 m 100 m 100 m

Domain length in z
(Lz) 100 m 100 m 100 m

Au − 1 m/s −
Ac − − 7 m ◦C
σ 5 m 5 m 5 m

2.1. Propagating Object

To study the turbulence of a wake, an ellipsoid is towed through a quiescent medium at
a velocity ub along its longest axis. The forcing F simulates the effects of a moving immersed
boundary condition within the mesh, which is stationary. Though a moving mesh might
allow for finer resolution near the body (and hence permit a higher Reynolds number), such
a numerical setup can have substantial issues in incompressible calculations (see, e.g., [21]).
Thus, the boundary condition is implemented to translate through the mesh and is enforced
using a local forcing function. The forcing is given by the difference between the local fluid
velocity and the desired object velocity, ub, divided by a characteristic relaxation time, τ:

F =

{
u−ub

τ , inside object,
0, elsewhere,

(5)

The forcing is present only within the ellipsoidal geometry of the object, which is
bounded by

1 <
(x− xb)

2

σ2
x

+
(y− yb)

2

σ2 +
(z− zb)

2

σ2 , (6)

where xb, yb, and zb describe the position of the propagating body, σ is the length of
the principle semi-axes in y and z, and σx is the principle semi-axis in x. No boundary
condition is imposed on the temperature field at the ellipsoid surface; instead, the interior
temperature is permitted to diffuse naturally. We choose an elongated body with σ = 5 m
and σx = 50 m. The position of the propagating ellipsoid in the x coordinate is given by

xb = ubt + x0,b, (7)

where x0,b = 0 m is the starting point in x, which is offset xoff = 100 m away from the
−x boundary. The origin of the domain is set to be the surface point above the body. The
position of the body in y, yb, is 0 m, and the position in z, zb, is −50 m. In this study, three
propagating body simulations are performed with different values of ub: 3 ms−1, 5 ms−1,
and 7 ms−1.

2.2. Jet

To generate a form of turbulence to contrast with the wake, we consider the turbulence
generated by a continuously forced jet. We simulate a jet flow by creating an initial velocity
profile defined as

u = Au exp
(
− (y− y0)

2 + (z− z0)
2

σ2

)
, (8)

Fluids 2022, 7, 239 5 of 17

where u is the bulk velocity in the x-direction, Au is the amplitude of the jet (1 ms−1) at
the jet axis center, and σ describes the characteristic radius of the jet, which we placed at
y0 = 0 m and z0 = −50 m. The jet amplitude is perturbed by a small sinusoid along the
x direction to seed instability. We continuously force the jet and allow perturbations to
evolve into turbulence over time. The forcing for the jet, F, is given by

F =
γj

τ
u, (9)

where γj is defined as

γj = −
∫
(u− u)udV∫

u2dV
, (10)

which allows us to adjust the mean velocity without affecting the microstructure that is
valuable to this study. We perform one simulation of this kind with Au = 1 ms−1.

2.3. Convection

As our second example of non-wake turbulence, we continuously generate convective
motions by localized heating and cooling. To produce convective turbulence, we force a
dipole in the temperature field, with a region of persistent cooling directly above a region
of persistent heating. This forcing generates local instability, driving vertical motions and
turbulent flow. Persistent thermal forcing, Q, was introduced to induce convection and is
defined as follows:

Q =
γc

τ
T, (11)

where γc is given by

γc = −
∫ (

T′ − T
)
TdV∫

T2dV
, (12)

and T is the desired temperature perturbation dipole, described by

T = −2Ac

σ2 (z− z0)e
− (y−y0)

2+(z−z0)
2

σ2 , (13)

where Ac determines the amplitude of the convective forcing, and T′ is the thermal pertur-
bation away from the horizontally averaged temperature field, 〈T〉, given by

T′ = T − 〈T〉. (14)

Stratification-driven turbulence such as this likely carries different signatures than the
wake and jet cases as forcing is largely vertical for convection and horizontal for wakes and
jets. We perform one simulation of this kind with Ac = 7 m ◦C.

2.4. Artificial Neural Network Methodology

The architecture of the neural network is diagrammed in Figure 2 and constructed
using TensorFlow [22]. The input layer to the network is a two-dimensional segment of an
x-normal slice of the u field, and each sample is labeled according to the type of simulation
from which it originates. These segments are constructed by decomposing the slices into
50-pixel-by-50-pixel images, as shown in Figure 3, in terms of local coordinates y′ and z′.
The first several layers of the network alternate between convolution layers with filter
sizes of 7-by-7 pixels and max pooling layers that pool over 2-by-2-pixel regions. The first
convolution layer uses 8 filters and the second, 16 filters. After the final convolution layer, a
fully connected layer of 20 neurons is used before connecting to the classification layer. The
classification layer uses a soft-max activation function to convert the final values into the
probability that the image belongs to one of the four possible classes: no notable turbulence
(N), wake turbulence (W), jet turbulence (J), or convective turbulence (C). Except for the
final classification layer, the rectified linear unit (ReLU) activation function is used. To

Fluids 2022, 7, 239 6 of 17

protect against overfitting and speed up training, batch normalization layers are used
between convolution layers, and a dropout layer is introduced between the fully connected
layer and the classification layer. The use of batch normalization in convolutional neural
networks is fairly commonplace (see, e.g., [23–25]), and the benefits and details of batch
normalization are described in Ioffe and Szegedy [26]. The batch normalization works as
follows: given a vector of layer outputs from a convolution layer, Xi,k, for observation i in a
batch of 32 and filter k, the batch normalization transforms Xi,k according to

X̂i,k =
Xi,k − Xk√

Vk + ε
, (15)

where Xk and Vk are the mean and variance of the values in the batch across space and
observations. The quantity ε = 0.001 is a small number used for numerical stability in
cases with small variance. These values are not averaged across filters and so can take on
different values for each filter. Before applying the ReLU activation function, the X̂i,k are
scaled and offset by learnable parameters β and δ as follows:

Yi,k = δX̂i,k + β. (16)

50px
22px

x8 x16
7px

7px
Jet

Conv.

Wake

x20
No Turb.

44px
16px

Figure 2. A diagram of the Convolutional Neural Network architecture, showing the process of
classifying one image. Yellow boxes indicate a convolution with a 7-pixel filter, and red boxes indicate
a max pooling operation. The final layer is a fully-connected layer that connects to each of the filtered
results from the final convolution layer. The final layer outputs the probability that the original
image comes from each of the three classifications, and the classification with the highest probability
is chosen.

Because this serves to normalize the activations across the batch, it makes it more
challenging for the network to develop filters that are trained to specific characteristics of
an individual observation, preventing overfitting. This also typically decreases the time
taken to train the network.

Our dataset is composed of the x-velocity fields for the various simulations performed
in this study. The fields are gathered at varying times and slice displacements with respect
to x and t at which the samples are substantially decorrelated (cross-correlations of <0.1),
as described in Table 2. Each x-normal slice (a 100-m square) is broken up into individual
samples, which are spaced 8 m apart on average, and the centers of these samples are
randomly shifted by up to 8 m in y and z to ensure important features (such as the wake
center) are not always located in the same set of pixels.

Additionally, for many of the slices through these simulations, there are large regions
where no substantial turbulence is present, which we identify by regions where the max-
imum of |u| is less than 0.01 ms−1 or the maximum of |∇u| is less than 0.005 s −1, and
we disregard all regions where the maximum of |u| is less than 0.001 ms−1 as completely
quiescent. The data are normalized by subtracting the mean and dividing by the standard
deviation. Together, this produces a dataset with 28,304 samples of regions where no
substantial turbulence is present, 319,057 samples of convective turbulence, 60,177 samples
of jet turbulence, and 13,997 samples of wake turbulence.

Fluids 2022, 7, 239 7 of 17

0

10

z
′

[m
]

No Turb. No Turb. No Turb. No Turb. No Turb. No Turb.

0

10

z
′

[m
]

Conv. Conv. Conv. Conv. Conv. Conv.

0

10

z
′

[m
]

Jet Jet Jet Jet Jet Jet

0 10

y′ [m]

0

10

z
′

[m
]

Wake

0 10

y′ [m]

Wake

0 10

y′ [m]

Wake

0 10

y′ [m]

Wake

0 10

y′ [m]

Wake

0 10

y′ [m]

Wake

Figure 3. Samples for each case of the normalized x component of the velocity field. The first row
shows samples without substantial turbulence, the second, samples with convective turbulence, the
third, samples with jet turbulence, and the fourth, samples with wake turbulence.

To avoid an imbalance of the individual types of turbulence, we randomly select a
subset of approximately 14,000 samples of each of these to keep for our machine learning
algorithm. From the chosen 56,544 samples, approximately 20% of the samples of each
case are selected as our validation set, and the remaining 45,213 are augmented by being
flipped horizontally, vertically, and in both directions to produce a final training set of
180,852 samples of 17 m by 17 m turbulence and a final validation set of 11,331 samples.
Both horizontal and vertical reflections of the u field in y and z are also valid solutions to
the equations and representative examples of turbulence; such augmentation is common
practice for training CNNs. The CNN training is performed using the Adam optimization
algorithm with a learning rate of 0.001, and the loss function is a categorical cross-entropy
function. The output of the final layer of the network acting on an image, s, is a set of
probabilities, pi(s), which measure the likelihood that the image belongs to each possible
classification (distinguished with index i). Because of the soft-max activation function,
∑K

i=1 pi(s) = 1, where K = 4 is the number of possible classifications. If there are S total
images in the batch (32) or validation set (11,331), the loss function is given by

loss = − 1
S

S

∑
j=1

K

∑
i=1

ti(sj) log2 pi(sj), (17)

where sj is the jth image in the batch, and ti(sj) = 1 when sj is a member of class i and 0
otherwise. We train the model for 100 epochs at which point the loss value for the validation
set no longer improves, and the training is ended to prevent overfitting to the training set.
We choose a single, fully connected layer with 20 neurons before the classification layer to
minimize overfitting and complexity. Increasing the number of neurons in this layer to 30
provides only a 0.4% increase in accuracy of classification, which is insufficient to justify
the additional cost. Adding a second hidden layer with 20 neurons results in substantial

Fluids 2022, 7, 239 8 of 17

overfitting, where the accuracy of classifying the training set is comparable to the other
configurations, but the accuracy is 10% lower for the validation set.

Table 2. The data spacing for each simulation.

Case ub ∆t ∆x

Moving Object 3 m/s 10 s 400 m
Moving Object 5 m/s 10 s 33 m
Moving Object 7 m/s 10 s 150 m

Jet - 10 s 10 m
Convection - 10 s 10 m

3. Results

Figure 4 displays the x component of the velocity field of the simulation with an
ellipsoid propagating at 5 ms −1. At early times, the flow around the body is laminar prior
to the onset of turbulence, which is evidenced by the structure of the wake at x < 100 m, so
we only use data after x = 200 m for analysis. Soon thereafter, near-wake turbulence forms
behind the propagating ellipsoid (see Figure 4a) and remains in the domain throughout
the simulation. The near wake structures have not yet experienced the effects of buoyancy
forces and, therefore, have not yet transitioned to intermediate wake structures. We
see that the smallest scale features created immediately after the passage of the body
dissipate quickly, and the larger features persist and are generally of comparable size
to the body. These larger scale features alternate vertically in a structure akin to a von
Kárman vortex street, which is typically seen in turbulent wakes. These localized, highly
turbulent structures generate a signature which is remarkably different from generic space-
filling turbulence. They will serve as important signatures to allow the neural network to
distinguish wakes from different forms of turbulence.

−75

−50

−25

0

z
[m

]

a)

−75

−50

−25

0

z
[m

]

b)

0 200 400 600 800

x [m]

−75

−50

−25

0

z
[m

]

c)

0

1

2

3

4

5

6

u
[m

/s
]

Figure 4. The x-component of the velocity field at y = 100 m, u, of the ellipsoid case with ub = 5 m/s
after (a) 40 s, (b) 90 s, and (c) 140 s.

Fluids 2022, 7, 239 9 of 17

Figure 5 displays the production of turbulent flow from a continuously forced 1 ms−1

jet. At the beginning of the simulation, the initial sinusoidal perturbations in the jet
amplitude grow, and large vortical structures form at the jet edges (see Figure 5a). Nonlinear
interactions continue to influence the shape of the jet until the flow becomes turbulent
(see Figure 5b). The early jet in Figure 5a,b is narrow, but it widens over time as fluid
becomes entrained into the turbulent flow, which is evidenced by the broadened structures
in Figure 5c,d. The continuously forced jet continues to generate turbulent flow in a broad
but well-defined region, with the most intense flow remaining in the vicinity of the jet
axis. This structure is relatively common in typical jet turbulence (see, e.g., [27]), where
the turbulent and non-turbulent regions are separated by the Turbulent/Non-Turbulent
interface. For the jet to expand, it must entrain surrounding material, and this entrainment
is largely comprised of small-scale “nibbling” behavior [28,29]. Because the expansion is
comprised of many small mixing events, the wake expands roughly uniformly, which is
distinct from the more focused turbulent events in the prior wake simulation.

−80

−60

−40

−20

0

z
[m

]

a) b)

0 50 100

x [m]

−80

−60

−40

−20

0

z
[m

]

c)

0 50 100

x [m]

d)

0.0

0.2

0.4

0.6

0.8

1.0

u
[m

/s
]

Figure 5. The x-component of the velocity field, u, of a simulation with a continuously forced, 1 m/s
jet. Panel (a) shows a sinusoidal structure developing at 250 s. Panel (b) shows the turbulent structures
generated from instabilities in the sinusoidal displacement at 340 s. Panels (c,d) show the migration
of the jet maximum in the positive-x direction at 1000 and 1290 s, respectively.

For vertically driven flows, we find that persistent forcing of convection also produces
turbulent structures from a stratified fluid. The temperature field, shown as the perturbation
from the surface temperature, ∆T, in Figure 6a shows fluid at the onset of convective
instability, where plumes of warm and cool fluid have introduced mixing as indicated
by the velocity field shown in Figure 6c. The fluid near the upper and lower boundaries
remains stratified as it has not yet been mixed by convective turbulence. As time progresses
to Figure 6b,d, the turbulence fills the domain isotropically. Unlike in the other cases, the
thermal forcing leads to direct vertical motion rather than turbulent vertical entrainment.
This causes much more rapid expansion throughout the domain than in the wake or jet cases.

Fluids 2022, 7, 239 10 of 17

In addition, this forcing results in a nearly isothermal region. This permits more isotropic
turbulence than in either of the other cases, which demonstrate stratified turbulence.

−80

−60

−40

−20

0

z
[m

]

a) b)

0 50 100

x [m]

−80

−60

−40

−20

0

z
[m

]

c)

0 50 100

x [m]

d)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

∆
T

[◦
C

]

−0.2

−0.1

0.0

0.1

0.2

w
[m

/s
]

Figure 6. The temperature field and z component of the velocity field for the convection case at
t = 750 s and t = 3000 s. The temperature field is displayed in Figure (a,b) for the early and late times,
respectively. The vertical component of the velocity fields for the same times are shown in (c,d).

Figure 7 shows the kinetic energy density spectra of the turbulent flows, which help
to identify properties of turbulence that might prove useful to classification. To determine
the kinetic energy spectrum, we define the specific kinetic energy, K, as

K =
1
2

(
u2 + v2 + w2

)
, (18)

from which the kinetic energy density spectrum at position x and at time t is given by

EK(t, x, k) = Ek(t, x, ky, kz)→ F (K(t, x, y, z)), (19)

where ky and kz are the y and z components of the wavevector, k, and F is the two-
dimensional discrete Fourier transform in y and z. We separate k into 50 discrete bins,
where the ith bin has a wavenumber of ki = (ikmax)/50 for kmax = 9.4 m−1. The mean
kinetic energy in each bin, EK(t, x, ki), is the mean of EK(t, x, ky, kz) for all modes that meet

the condition ki <
√

k2
y + k2

z < ki+1, and we can further average these spectra in space at

intervals of 50 m in x to yield 〈EK〉(t, ky, kz). We calculate the mean and standard deviation,
Eσ, of the spectra from these slices, and then plot these in Figure 7. The energy injection
scale for these cases is at a wavenumber of 0.63 m−1, determined by the size scale of the
forcing (2σ). Energy cascades from the injection scale to higher wavenumbers where larger
turbulent structures break into smaller structures until they reach the Kolmogorov length
scale, where the energy is dissipated. We also see energy at smaller wavenumbers than
the injection scale, which indicates an inverse energy cascade. The energy spectrum of
convective turbulence is considerably shallower than that of the jet.

Fluids 2022, 7, 239 11 of 17

100 101

|k| [m−1]

10−7

10−6

10−5

10−4

10−3

10−2

〈E
K
〉(
t,

k
)

[m
2
/s

2
]

Convection (t = 4000s)

Jet (t = 1290s)

Wake (ts = 10s)

Wake (ts = 20s)

Wake (ts = 30s)

Wake (ts = 40s)

Wake (ts = 50s)

Figure 7. The energy density spectra of the wake case at various times since the passage of the
propagating ellipsoid (indicated in the legend), convection, and jet.

In Figure 7, we also plot the spectra for the wake simulation with ub = 5 m/s at
varying times since the propagating body has passed. We find that, as time elapses, the
kinetic energy density decreases. These two-dimensional spectra are calculated from slices
taken normal to the x-axis at 100-m intervals starting at x = 250 m at a global time of
t = 100 s (and with the time elapsed since the object has passed varying from ts = 10 s to
ts = 50 s) to ignore the startup transient features. The general shape of the spectrum in
the wake case shows a slope that is roughly consistent with the power law of convective
turbulence. We also see variability in the energy density structure of the wake case. For
example, a local minimum exists near wavenumber 2 m−1 for the spectrum calculated
at 10 s since the passage of the propagating body. Later spectra do not appear to have
such a local minimum. Since the inertial range of the spectra differs between the wake
case and the environmental cases, especially at higher wavenumbers, an artificial neural
network may be able to distinguish wake turbulence from environmental turbulence based
on small-scale features.

Convolutional Neural Network Results

Table 3 contains the confusion matrix of the neural network on the validation set
after training on the training set, showing the number of cases classified correctly and
incorrectly. The model performs at an overall 86% accuracy. Wakes, jet turbulence, and
convective turbulence are classified correctly 76.9%, 84.0%, and 95.0% of the time, respec-
tively, demonstrating that wake turbulence is the most difficult to classify and that the
continuously forced convective turbulence is more easily identified. The classifications
that prove most challenging for the network are distinguishing between wake turbulence
and no turbulence, jet turbulence and convective turbulence, and jet turbulence and wake
turbulence (in order of increasing skill).

These results can also be visualized through the use of a receiver operating character-
istic curve (or ROC curve), which measures how the true positive and false positive rates
of binary classification vary with an arbitrary threshold. All predictions from the network
produce a probability that a given image s belongs to class i, pi(s). We begin by considering
just two classes, i and j, and construct the ROC curve for each possible pair of classes in

Fluids 2022, 7, 239 12 of 17

Figure 8a. We restrict our sample to images that are instances of classes i and j, and the
probability that our image belongs to class i is then

p′i,j(s) =
pi(s)

pi(s) + pj(s)
. (20)

We consider a threshold θi,j for p′i,j(s), so s is classified as an instance of class i if
p′i,j(s) > θi,j. Any image that is correctly identified as a member of class i is considered a
“true positive,” where any image incorrectly identified as a member of class i is considered
a “false positive.” The true positive rate (TPR) is the ratio of the number of true positives
to the total number of actual instances of class i, and the false positive rate (FPR) is the
ratio of the number of false positives to the total number of actual instances of class j. By
varying θi,j from 0 to 1, the number of true and false positives change: when θi,j = 0, no
images are identified as instances of class i, and when θi,j = 1, all images are identified
as instances of class i. This produces a monotonic characteristic curve in FPR–TPR space
from (0, 0) to (1, 1) and would ideally pass through (0, 1) for a perfect classification model.
Better models will generally be closer to this point. We see that—consistent with the rates
shown in Table 3—the greatest confusion lies in distinguishing wakes from cases without
turbulence, wakes from jets, and jets from convection.

Table 3. The classification confusion matrix, showing the number of times the prediction by the
network matched the true classification.

True
Pred. No

Turbulence Convection Jet Wake Total Correct

N 2501 84 64 207 87.6%
C 0 2700 135 6 95.0%
J 38 295 2430 129 84.0%

W 326 68 239 2109 76.9%

Total Correct 87.3% 85.8% 84.7% 86.0% 86.0%

It is also possible to consider the classes individually, instead using the probabilities of
whether an image is designated as a member of class i or as a member of any other class,
as shown in Figure 8b. In this case, we compare our threshold value, θi to pi(s) instead,
and a false positive is defined as an image with pi(s) > θi but that is actually a member
of any class except i. In this case, we use the full sample of our test set. Again, consistent
with Table 3, convective turbulence is the most easily identified, and wake turbulence is the
least. In this study, the cost of misclassification is assumed to be equal, so the thresholds
are chosen accordingly (e.g., θi,j = 0.5), but they could be adjusted by a user of the network
if the cost of misclassification is not equal amongst the classes.

To analyze the performance of the Convolutional Neural Network, we use the Gradient-
weighted Class Activation Mapping technique (Grad-CAM) as described in Selvaraju et al. [30].
This technique determines how the final classification score (pi) for a given image changes
on the feature map in the last convolutional layer of the system and determines which
regions of the image are most significant in determining the final classification. Examples
of this technique are shown in Figure 9 for the same images from Figure 3. Of note, the
cases without turbulence and those with wake turbulence are somewhat easy to identify by
eye, as the cases without turbulence show little to no presence of eddies or concentrated
features, and the wake turbulence tends to be more intense but focused on a small fraction
of the domain. Jet- and convection-originated turbulence are more difficult to distinguish
visually, but are typically classified by the turbulent motions filling the entire sample and
having less small-scale turbulence. As was indicated by the confusion matrix, the majority
of these images are classified correctly, but the images that cause confusion are worth
investigating in more detail.

Fluids 2022, 7, 239 13 of 17

0.00 0.25 0.50 0.75 1.00

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

a)

C vs N

J vs N

W vs N

J vs C

W vs C

W vs J

0.00 0.25 0.50 0.75 1.00

FPR

b)

N

C

J

W

Figure 8. (a) The receiver operating characteristic curves considering how likely two class instances
are correctly identified or mistaken as one another. (b) The receiver operating characteristic curves
considering how likely each individual class is correctly identified. The dashed lines indicate the
characteristic curves of randomly guessing whether an image belongs to a specific class or not.

0

10

z
′

[m
]

N (W) N (N) N (N) N (N) N (N) N (N)

0

10

z
′

[m
]

C (C) C (C) C (C) C (C) C (C) C (C)

0

10

z
′

[m
]

J (J) J (J) J (C) J (J) J (J) J (J)

0 10

y′ [m]

0

10

z
′

[m
]

W (W)

0 10

y′ [m]

W (W)

0 10

y′ [m]

W (W)

0 10

y′ [m]

W (W)

0 10

y′ [m]

W (W)

0 10

y′ [m]

W (W)

Figure 9. The same samples from Figure 3 with their true label above the figure and the predicted
label in parentheses. The velocity is shown in grayscale, and the results from Grad-CAM are
shown in color, with the brightest yellow regions showing the locations that are most significant to
determining the final classification. Red letters indicate that the neural network failed to predict the
true classification of the problem.

Fluids 2022, 7, 239 14 of 17

In Figure 10, we focus on samples of regions without turbulence and those with wake-
originated turbulence, presenting samples where both are classified correctly and where
the two are misclassified as one another. Consistent with our discussion of Figure 9, the
cases where regions without turbulence are most difficult to identify are regions where
velocity maxima are apparent at boundaries. The original classification for these samples
was made by measuring the magnitude of the velocity perturbations, but this information
has been normalized out of the sample. Such classification mistakes would be unlikely in
realistic use cases and are easily caught by visual inspection. Conversely, the regions where
wake turbulence are correctly classified show strong localized turbulence, and those that
are misclassified visually resemble cases without turbulence. Such examples have strong
enough velocity magnitudes to indicate the presence of a wake, but would be intrinsically
difficult to correctly classify either visually or by this technique. The results from Grad-
CAM confirm that wakes are most easily identified by small, intense structures or by large
regions without structures, and that regions without turbulence are most easily identified
by weak gradients especially near the edges of the domain.

0

10

z
′

[m
]

N (N) N (N) N (N) N (N) N (N) N (N)

0

10

z
′

[m
]

N (W) N (W) N (W) N (W) N (W) N (W)

0

10

z
′

[m
]

W (W) W (W) W (W) W (W) W (W) W (W)

0 10

y′ [m]

0

10

z
′

[m
]

W (N)

0 10

y′ [m]

W (N)

0 10

y′ [m]

W (N)

0 10

y′ [m]

W (N)

0 10

y′ [m]

W (N)

0 10

y′ [m]

W (N)

Figure 10. Additional samples from the dataset presented in the same manner as Figure 9 that
highlight cases where (top) regions without turbulence are correctly identified, (second row) regions
without turbulence are mistaken for wakes, (third row) regions of wake turbulence are correctly
identified, and (bottom) regions of wake turbulence are mistaken for regions without turbulence.

Figure 11 shows a similar diagram for the classification of convection- and jet-originated
turbulence. The results from Grad-CAM suggest that convectively driven turbulence is
most clearly identified by vertical finger structures of strong velocity, and the network
has the most difficulty identifying convection when such structures are largely absent.
The reason for the classification of the jet cases is more difficult to ascertain visually, but
the results from Grad-CAM typically highlight regions of low turbulence in the region,
and the jet cases that are most frequently misclassified are those for which the turbulence
nearly fills the domain. From our examples slice in Figure 6, this would be reasonable, as

Fluids 2022, 7, 239 15 of 17

convection tends to lead to large-scale mixing, but the jet-originated turbulence remains
more localized.

0

10
z
′

[m
]

C (C) C (C) C (C) C (C) C (C) C (C)

0

10

z
′

[m
]

C (J) C (J) C (J) C (J) C (J) C (J)

0

10

z
′

[m
]

J (J) J (J) J (J) J (J) J (J) J (J)

0 10

y′ [m]

0

10

z
′

[m
]

J (C)

0 10

y′ [m]

J (C)

0 10

y′ [m]

J (C)

0 10

y′ [m]

J (C)

0 10

y′ [m]

J (C)

0 10

y′ [m]

J (C)

Figure 11. Additional samples from the dataset presented in the same manner as Figure 10 but for
convection- and jet-originated turbulence.

4. Discussion

We have employed the Massachusetts Institute of Technology general circulation
model to simulate different mechanisms of turbulence generation (convection, jets, and
wakes) and have designed a neural network that can identify the original source with high
accuracy. This neural network classifies these turbulent flows using small-scale features in
the velocity field. Such machine learning classification of the source of turbulence based on
local measurements is a novel addition to studies of turbulence in fluids. For convection,
the network appears to focus on vertical, finger-like structures that are common in such
flows. For wakes, the neural network identifies pockets of small-scale scale turbulence
in otherwise quiescent regions. Jet turbulence appears to be somewhat in between these
cases, with large-scale turbulence and pockets of quiescent regions. The neural network
correctly classifies turbulence 86% of the time and has the most difficulty distinguishing
between regions without turbulence and regions with only weak wake turbulence. This
is comparable to the results of Alsalman et al. [16], who found overall accuracies of 78%
to 88% in their attempts to distinguish between different forms of wake turbulence. The
network also has difficulty in cases of space-filling jet-originated turbulence, which is
occasionally misclassified as convection. These results show that it is possible to identify
turbulence solely based on high-resolution spatial data, which complements the work
of Colvert et al. [15] and Alsalman et al. [16], who showed that similar machine learning
processes could classify turbulence based on more limited sampling.

This neural network could have several notable applications to studies of turbulence
in nature. In oceanography and meteorology, three-dimensional measurements of local
turbulence are extremely difficult, and it is rarely evident from local measurements what
the originating source of the turbulence is (e.g., local convection, breaking internal waves,

Fluids 2022, 7, 239 16 of 17

natural or artificial wakes, etc.). Different forms of turbulence can have differing key
features regarding their local transport, intermittency, and mixing efficiency. For a striking
example of this in oceanography, we note the work of Laurent and Schmitt [31], which
demonstrates different mixing characteristics of shear and salt-fingering, both local forms
of turbulence. The neural network described here could eventually be applied to the
measurements used by oceanographers and meteorologists to identify the likely sources of
observed turbulence. Such information would then promote better understanding of local
heat and scalar transport, which could be used to improve large-scale numerical models
and climate prediction.

In addition, the success of this neural network has important implications for the
study of fluid dynamics and engineering. The network demonstrates clearly that different
originating sources of turbulence have different local characteristics and that the turbulence
retains a memory of its original source. This suggests the possibility of using the techniques
common in convolutional neural network analysis (such as grad-CAM) to identify the
key physical features that distinguish these forms of turbulence. This would substantially
extend the work of the existing literature [5–13] in order to provide better physical interpre-
tations rather than just turbulence model closures, which have more limited translations to
physical flow characteristics. This improved understanding of general turbulence could
potentially see use in LES and RANS modeling in the broader fluid engineering community.

These potential applications of the neural network are presented in the sense of a
holistic turbulence identification scheme, but the network so far has only been applied to
simulated data and then only for a few instances of turbulence. Immediate future work
in this field would be best focused on extending the library of instances of turbulence. To
make the network more generally applicable would require a greater number of samples
of turbulence from a broader range of turbulent sources. Simulations and laboratory
studies are critical to developing this breadth as it is possible in such setups to generate
turbulence from specific sources. As the library of available turbulence expands, the neural
network could be employed to not just identify the type of turbulence but potentially
determine some characteristics of the origin, such as the speed of a passing object or the
time elapsed since an intermittent event. For example, a study by Alsalman et al. [16]
showed that it is possible for neural networks to identify some of the characters of an airfoil
based on its downstream turbulence. This would expand the use of the network to not
just local turbulence identification but also applications to potentially generating some
history of local conditions, which might be useful for monitoring the presence of marine
life or artificial bodies. Together, this work demonstrates a pathway to understanding and
applying turbulence in a holistic and physically motivated manner.

Author Contributions: Conceptualization, T.R.; methodology, J.B.; formal analysis, J.Z.; investigation,
J.Z.; resources, T.R.; data curation, J.Z.; writing—original draft preparation, J.Z.; writing—review
and editing, J.B.; visualization, J.B.; supervision, J.B. and T.R.; project administration, T.R.; funding
acquisition, T.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Office of Naval Research, Grant No. N0001420WX00354.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Mendeley Data:
Brown, Justin; Zimny, Jacqueline (2022), “Identifying the Origin of Turbulence using Convolutional
Neural Networks”, Mendeley Data, V1, doi:10.17632/tty8xzd2ks.1.

Acknowledgments: We gratefully acknowledge the support in preparing this manuscript by Marko
Orescanin. The authors acknowledge the use of the Onyx supercomputer at the US Army Engineering
Research and Development Center, which contributed to the research results reported within this
repository. URL: https://www.erdc.hpc.mil (accessed on 7 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.erdc.hpc.mil

Fluids 2022, 7, 239 17 of 17

References
1. Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather. Rev. 1963, 91, 99. [CrossRef]
2. Galperin, B.; Orszag, S.A. (Eds.) Large Eddy Simulation of Complex Engineering and Geophysical Flows; Cambridge University Press:

Cambridge, UK, 1995. [CrossRef]
3. Canuto, V.M.; Cheng, Y. Determination of the Smagorinsky–Lilly constant CS. Phys. Fluids 1997, 9, 1368–1378. [CrossRef]
4. Beck, A.; Kurz, M. A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen 2021, 44. [CrossRef]
5. Ling, J.; Templeton, J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier

Stokes uncertainty. Phys. Fluids 2015, 27, 085103. [CrossRef]
6. Ma, M.; Lu, J.; Tryggvason, G. Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system.

Phys. Fluids 2015, 27, 092101. [CrossRef]
7. Parish, E.J.; Duraisamy, K. A paradigm for data-driven predictive modeling using field inversion and machine learning. J.

Comput. Phys. 2016, 305, 758–774. [CrossRef]
8. Gamahara, M.; Hattori, Y. Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2017, 2, 054604.

[CrossRef]
9. Vollant, A.; Balarac, G.; Corre, C. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning

procedures. J. Turbul. 2017, 18, 1–25. [CrossRef]
10. Wang, J.X.; Wu, J.L.; Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling

discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 034603. [CrossRef]
11. Wu, J.L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive

framework. Phys. Rev. Fluids 2018, 3, 074602. [CrossRef]
12. Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence Modeling in the Age of Data. arXiv 2018, arXiv:1804.00183.
13. Zhou, Z.; He, G.; Wang, S.; Jin, G. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial

neural network. Comput. Fluids 2019, 195, 104319. [CrossRef]
14. Dehnhardt, G.; Mauck, B.; Hanke, W.; Bleckmann, H. Hydrodynamic Trail-Following in Harbor Seals (Phoca vitulina). Science

2001, 293, 102–104. [CrossRef] [PubMed]
15. Colvert, B.; Alsalman, M.; Kanso, E. Classifying vortex wakes using neural networks. Bioinspir. Biomin. 2018, 13, 025003.

[CrossRef]
16. Alsalman, M.; Colvert, B.; Kanso, E. Training bioinspired sensors to classify flows. Bioinspir. Biomin. 2019, 14, 016009. [CrossRef]
17. Li, B.; Yang, Z.; Zhang, X.; He, G.; Deng, B.Q.; Shen, L. Using machine learning to detect the turbulent region in flow past a

circular cylinder. J. Fluid Mech. 2020, 905, A10. [CrossRef]
18. Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the

ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [CrossRef]
19. Adcroft, A. Numerical Algorithms for use in a Dynamical Model of the Ocean. Ph.D Thesis, Imperial College, London, UK, 1995.
20. Moody, Z.E.; Merriam, C.J.; Radko, T.; Joseph, J. On the structure and dynamics of stratified wakes generated by submerged

propagating objects. J. Oper. Oceanogr. 2017, 45, 1–14. [CrossRef]
21. Chandar, D.D. On overset interpolation strategies and conservation on unstructured grids in OpenFOAM. Comput. Phys. Commun.

2019, 239, 72–83. [CrossRef]
22. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow

v2.9.0-rc2. Zenodo, Genève, Switzerland. 2022. Available online: https://doi.org/10.5281/zenodo.6519082 (accessed on 7 July 2022).
23. Beck, A.; Flad, D.; Munz, C.D. Deep neural networks for data-driven LES closure models. J. Comput. Phys. 2019, 398, 108910.

[CrossRef]
24. Kim, J.; Lee, C. Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 2020, 882, A18. [CrossRef]
25. Manucharyan, G.E.; Siegelman, L.; Klein, P. A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and

Estimation of Deep Currents in Geostrophic Ocean Turbulence. J. Adv. Model. Earth Syst. 2021, 13, e2019MS001965. [CrossRef]
26. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP, Lille, France, 7–9 July 2015; Volume 37,
pp. 448–456.

27. Bisset, D.K.; Hunt, J.C.R.; Rogers, M.M. The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 2002,
451, 383–410. [CrossRef]

28. Mathew, J.; Basu, A.J. Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 2002, 14, 2065–2072.
[CrossRef]

29. Westerweel, J.; Fukushima, C.; Pedersen, J.M.; Hunt, J.C.R. Mechanics of the Turbulent-Nonturbulent Interface of a Jet. Phys. Rev.
Lett. 2005, 95, 174501. [CrossRef]

30. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]

31. Laurent, L.S.; Schmitt, R.W. The Contribution of Salt Fingers to Vertical Mixing in the North Atlantic Tracer Release Experiment.
J. Phys. Oceanogr. 1999, 29, 1404–1424. [CrossRef]

http://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1017/s0022112095231768
http://dx.doi.org/10.1063/1.869251
http://dx.doi.org/10.1002/gamm.202100002
http://dx.doi.org/10.1063/1.4927765
http://dx.doi.org/10.1063/1.4930004
http://dx.doi.org/10.1016/j.jcp.2015.11.012
http://dx.doi.org/10.1103/PhysRevFluids.2.054604
http://dx.doi.org/10.1080/14685248.2017.1334907
http://dx.doi.org/10.1103/PhysRevFluids.2.034603
http://dx.doi.org/10.1103/PhysRevFluids.3.074602
http://dx.doi.org/10.1016/j.compfluid.2019.104319
http://dx.doi.org/10.1126/science.1060514
http://www.ncbi.nlm.nih.gov/pubmed/11441183
http://dx.doi.org/10.1088/1748-3190/aaa787
http://dx.doi.org/10.1088/1748-3190/aaef1d
http://dx.doi.org/10.1017/jfm.2020.725
http://dx.doi.org/10.1029/96JC02775
http://dx.doi.org/10.1080/1755876X.2017.1307801
http://dx.doi.org/10.1016/j.cpc.2019.01.009
https://doi.org/10.5281/zenodo.6519082
http://dx.doi.org/10.1016/j.jcp.2019.108910
http://dx.doi.org/10.1017/jfm.2019.814
http://dx.doi.org/10.1029/2019MS001965
http://dx.doi.org/10.1017/S0022112001006759
http://dx.doi.org/10.1063/1.1480831
http://dx.doi.org/10.1103/PhysRevLett.95.174501
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2

	Introduction
	Materials and Methods
	Propagating Object
	Jet
	Convection
	Artificial Neural Network Methodology

	Results
	Discussion
	References

