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Abstract: In this paper, we focus on the first stage of transition to Rayleigh–Bénard convection in
soft-jammed systems (yield stress fluids) confined in a parallelepiped box heated from the bottom.
Up to yielding, the material is in a solid-state with a constant elastic modulus. By means of a linear
thermoelastic model, an analytical solution for stresses and strains induced by the gravity and the
temperature gradient is derived. The analytical solution allows us to emphasize the appropriate
dimensionless parameters. The onset of plastic deformation is then investigated using the classical
yield criteria (Tresca, von Mises and Drucker–Prager). This analysis is subsequently applied to
experimental data of the literature dealing with Rayleigh–Bénard convection in Carbopol micro gels.

Keywords: Rayleigh–Bénard convection; yield stress fluids; linear thermoelasticity

1. Introduction

When a horizontal fluid layer is heated from below and cooled from above, a density
stratification appears because of the thermal expansion of the fluid. The fluid at the bottom
will be lighter than the fluid at the top, and this top-heavy arrangement is potentially
unstable. When the temperature difference between the bottom and the top exceeds
a threshold value controlled by the viscosity and heat diffusivity, by a small amount,
convection sets in. The balance between buoyancy and viscous and thermal diffusion is
described by the Rayleigh number:

Ra =
ρgα∆TH3

ηDt
, (1)

where ρ is the fluid density, g is the acceleration due to gravity, ∆T is the temperature
difference between the bottom and top walls, H is the width of the fluid layer, α is the
volume expansion coefficient, η is the viscosity, and Dt is the thermal diffusivity.

Yield stress fluids represent a large class of materials that displays a solid-like behavior
as long as the applied stress does not exceed a critical value (τy, called a yield stress) and
displays a fluid-like behavior beyond this threshold. The physical origin of the yield stress
is related to the microscopic nature of these systems (soft objects suspensions, polymer
solutions or emulsions). A review on yield stress fluids can be found in [1–3]. The onset
of convection in such materials is the subject of controversy in the literature. The main
theoretical and experimental results on this problem are reviewed in the following section.

1.1. Rayleigh–Bénard Convection in a Yield–Stress Fluid: Literature Review

The first theoretical study of Rayleigh–Bénard convection (RBC) in a yield stress fluid
was performed by Zhang et al. [4]. They considered an inelastic yield stress fluid model
(Bingham model). Using an energy method, they demonstrated that, for a finite yield
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stress, the basic state (conductive regime) is linearly stable at all Rayleigh numbers and is
conditionally stable otherwise. In other words, convective instabilities cannot grow from a
static conductive state submitted to infinitesimal perturbations regardless the finite value
of the yield stress.

The same problem was studied by Balmforth and Rust [5] using a weakly nonlinear
stability analysis in the limit of a small yield stress. They demonstrated that there is an
unstable sub-critical branch for nonlinear convective states that bifurcates from an infinite
Rayleigh number. Moreover, the threshold in amplitude above which the system must be
kicked to initiate convection becomes increasingly lower as the Rayleigh number increases.
Vikhansky [6] adapted a lattice-Boltzmann method to numerically study convection in
yield stress fluids heated from below. His works are mainly concerned with the onset and
stoppage of convection in cavity. They demonstrated that, if a perturbation is applied to
the base state, it will decay in a finite time.

Turan et al. [7] used the regularized bi-viscosity model available in FLUENT to study
Rayleigh–Bénard convection in a square enclosure. Due to the regularization of the Bingham
model, the motionless state corresponds to a shear-thinning fluid with a large viscosity
at zero shear-rate. The authors found that the critical Rayleigh number for the onset
of convection increased with the Bingham number. The same approach was used for
rectangular and trapezoidal enclosures in [8,9], respectively. It was also extended to
Herschel–Bulkley and Casson fluids in [10,11].

From an experimental point of view, Balmforth and Rust [5] conducted a set of ex-
periments with Carbopol 940 in a rectangular tank filled to a depth between 4 and 11 cm.
Different concentrations of Carbopol were considered. They observed that the convection
sets in without imposing any external trigger for concentration of Carbopol of 0.05% where
the yield stress τy < 0.1 Pa. According to the authors, a few air bubbles or a slight lateral
variation of temperature might easily be responsible for overcoming the threshold of con-
vection. For intermediate values of τy, say 0.3 Pa < τy < 1 Pa, convection can start if a
perturbation of substantial amplitude (injection air bubbles for instance) is applied. They
observed that the amplitude of the perturbation required to initiate convection increased
with increasing yield strength.

Darbouli et al. [12] also used Carbopol 940 at different concentrations filling a cylindri-
cal cavity with a depth of 2 cm. They did not apply any finite amplitude perturbation and
observed convection for 0.005 Pa < τy < 0.1 Pa. They found that the onset of convection
occured when the yield number, Y defined by the ratio of the yield stress to buoyance force,

Y =
τy

ρgα∆TH
, (2)

is about 0.01. Further experiments using Carbopol 980 heated from below in a rectangular
cavity with a depth of the fluid layer of 2 cm were performed by Kebiche et al. [13]. Again,
without introducing any external perturbation, a convection regime was observed. In their
experiments, the yield stress varied in the range of [0.007, 1.7 Pa]. They found that, at
criticality, Yc ≈ 0.2, which was much larger than that given by Darbouli et al. [12]. This
discrepancy is likely due on the one hand to the boundary conditions in the experiments of
Kebiche et al. [13] where the thermal conductivity of the wall is lower than that of the fluid,
and on the other hand to a possible slippage of the fluid at the wall. It is well known in the
literature [14–18] that these two parameters contribute to the reduction of the criticality.

Another type of experimental study of the natural convection of viscoplastic fluids
was performed by Davaille et al. [19]. In their experiments, the convection was driven
by a localized heater positioned on the bottom wall of a rectangular tank. Three different
regimes were identified: the conductive regime, cellular motion and plumes. The transition
between the different regimes was characterized by the yield number. The onset of con-
vection (appearance of cellular motion) occurred at Y ≈ 0.01, which is in agreement with
Darbouli et al. [12].
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Interestingly enough, almost the same value of the yield number at the onset of
convection was found experimentally by Jadhav et al. [20] in the case of a viscoplastic fluid
filling a cavity with differentially heated side walls. They used Carbopol microgels with a
yield stress 0.01 Pa < τy < 0.16 Pa and a depth of 0.146 m.

Experimental observations of bifurcation to a convection regime from a motionless
state in RBC, implies the linear instability of this state. This is in contradiction with the the-
oretical studies of Zhang et al. [4] and Balmforth and Rust [5]. A variety of explanations of
the disagreement between the theory and the experiments were proposed in the literature.

According to Darbouli et al. [12] and Kebiche et al. [13], this disagreement is due to
the fact that the Bingham model used in the theoretical approach does not capture the
solid–liquid transition. Ahmadi et al. [21] hypothesized that this disagreement may be
associated with the difficulties of measuring the yield stress accurately or creating ideal
boundary conditions in experiments. The authors [21] conducted numerical simulations
of two dimensional natural convection of a regularized Herschel–Bulkley model in a long
rectangular cavity.

They illustrated that uncertainties in the temperature boundary conditions can elimi-
nate this conductive regime. Finally, regarding the microstructure of Carbopol gels used
in their experiments, Darbouli et al. [12] and Metivier et al. [22] considered the gel as a
porous medium, where the solid matrix consists of the swollen microgels and the fluid is
the water. It is well known in the literature that, for the RBC of a Newtonian fluid saturating
a porous medium, the critical conditions are independent of the permeability of the porous
medium [23–25]. However, in Metivier et al. [22], the experimental assessments depended
on the permeability and largely underestimated the critical conditions (by more than three
orders of magnitude).

1.2. Objectives, Methodology and Outline of the Paper

The yield stress is generally regarded as the transition between elastic solid-like
behavior and viscous liquid-like behavior and is related to the internal particulate network
structure. However, as indicated by Tiu et al. [26] this transition typically occurs not
at a single point but over a range of stresses starting at a lower limit, corresponding to
progressive transition between elastic and plastic deformation and ultimately ending at
a higher limit, corresponding to the transition between plastic deformation and purely
viscous fluid.

Therefore, in order to understand the onset of convection in soft jammed systems, it
is necessary to consider the different steps in the transition between elastic solid-like and
viscous liquid-like states. Here, we want to focus on the first step: the transition between
elastic and plastic deformation. The hydrogel used in the experiments described previously
behaves as an elastic solid when the applied stress is below a critical value.

Under small strain assumptions, we consider that the material can be described by a
linear thermoelastic law. The onset of yielding will be analyzed on the basis of different
criteria provided by the literature. The paper is structured as follows. In Section 2, the effect
of a temperature gradient on stress and strain fields is highlighted by artificially canceling
the gravity. In Section 3, the full problem is considered. The onset of plastic deformation
is studied in Section 4, and the analysis is applied to the particular case of experiments of
RBC in Carbopol microgels. In the conclusion section, we summarize the most relevant
results, and we give some perspectives regarding our work.

2. Problem Formulation

We consider a viscoplastic fluid filling a rigid parallelepiped container of dimensions
2` × 2L × H along x, y and z axes, respectively, (see Figure 1). The z-axis is directed
upwards with the origin located at the bottom wall. The acceleration due to gravity
reads g = −gez, where ez is a unit vector along z. The viscoplastic fluid is modeled as
a continuous medium obeying, under the hypothesis of small transformations, a linear
thermoelastic constitutive equation.
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Figure 1. Illustration of the strain εzz, stress σ and displacement uz induced by a temperature gradient.

Initially, the temperature is uniform T = T2 throughout the viscoplastic fluid layer.
This state represents the initial configuration of the system in the sense of continuum
mechanics theory. Then, the bottom wall temperature T1 is slowly increased in a quasistatic
manner, and the upper wall temperature is maintained at T = T2. At each step, it is assumed
that a temperature gradient is established under equilibrium conditions. The objective is to
determine conditions for the appearance of the first signs of irreversible (plastic) flow.

For this, we express the basic thermoelastic equilibrium equations and constitutive
Equation (i.e., stress–strain relationship) in terms of displacements, strains and stresses.

Subsequently, a second order ordinary differential equation for the vertical displace-
ment is derived and solved leading to an analytical solution. Then, the stress field in the
viscoplastic layer is calculated. The main yield criteria can therefore be used to determine
the limit of elasticity and the onset of plastic deformation.

2.1. Governing Equations

In the framework of linear thermoelasticity [27], Cauchy’s equation of motion reads:

ρ
∂2u
∂t2 = ∇ · σ + ρ g , (3)

with the constitutive equation

σ = λ Tr(ε)I + 2µε− k(T − T2)I , (4)

where

k = (3λ + 2µ) α . (5)

In Equations (3)–(5), λ is the elastic modulus (first Lamé’s parameter), µ is the shear
modulus (second Lamé’s parameter), σ is the Cauchy stress tensor, ε is the strain tensor
and u = uxex + uyey + uzez is the displacement vector. In Equation (4), it is assumed
implicitly that there are no residual stresses. The strain tensor is related to the displacement
gradient by the relation:

ε =
1
2

(
∇u + (∇u)T

)
. (6)

Combining (3), (4) and (5), the problem can be written in displacement formulation
(Navier equations) as:

ρ
∂2u
∂t2 = (λ + µ)∇(∇ · u) + µ∇2u + ρ g − k∇T . (7)
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These equations are completed by mass and energy conservation equations:

ρ = ρ0(1− Tr(ε)) (8)

and

ρCv
∂T
∂t

= K∇2T + σ : ε̇p + r, (9)

where ρ0 is the density at the reference temperature T2, Cv is the specific heat at constant
volume, ε̇p is the plastic strain rate, K is the thermal conductivity, and r is a possible internal
heat source.

2.2. Boundary Conditions

The displacement vector u and the temperature have to satisfy the following bound-
ary conditions:

ux(x = ±`/2, y, z) = 0 , (10)

uy(x, y = ±L/2, z) = 0 (11)

uz(x, y, 0) = uz(x, y, H) = 0 (12)

T(x, y, z = 0) = T1 , T(x, y, z = H) = T2 (13)
∂T
∂x

(x = ±`/2, y, z) =
∂T
∂y

(x, y = ±L/2, z) = 0 . (14)

In the following, we consider mechanical and thermal equilibrium states such that we
may drop time derivatives. We assume that there is no internal heat source in the energy
equation nor irreversible deformation, i.e., ε̇p = 0. The energy reduces to the uncoupled
conduction equation.

3. Thermal Stresses and Strains Induced by a Temperature Gradient

To highlight the contribution of the temperature gradient on stresses and deformations
generated inside the viscoplastic fluid layer, the acceleration gravity is canceled artificially.

Sufficiently far from the lateral walls, it can be assumed that the temperature T depends
only on z, with

T = T1 − ∆T
z
H

, (15)

where ∆T = T1 − T2. The Navier equations reduce to:

(λ + µ)

(
∂2ux

∂x2 +
∂2uz

∂z∂x

)
+ µ

(
∂2ux

∂x2 +
∂2ux

∂z2

)
= 0 (16)

(λ + µ)

(
∂2uy

∂y2 +
∂2uz

∂z∂y

)
+ µ

(
∂2uy

∂y2 +
∂2uy

∂z2

)
= 0 (17)

(λ + µ)

(
∂2ux

∂x∂z
+

∂2uy

∂y∂z
+

∂2uz

∂z2

)
+ µ

(
∂2uz

∂x2 +
∂2uz

∂y2 +
∂2uz

∂z2

)
+

k(T1 − T2)

H
= 0 . (18)

To obtain an analytical solution, we consider, as a first approach, a solution that
satisfies the boundary conditions and depends only on z. By doing this, we suppose
implicitly that the aspect ratio `/H is large. Based on these assumptions, the solution of
the Navier equations leads to the following expression of the displacement:

u =
χ

2
z(1− z

H
)ez , (19)
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where,

χ =
k∆T

λ + 2µ
(20)

accounts for the uniaxial deformation due to thermal stresses. The strain-tensor is then
given by

ε = χ

(
1
2
− z

H

)
ez ⊗ ez . (21)

εzz is positive for 0 < z < H/2 and negative for H/2 < z < H as illustrated in
Figure 1. The gel undergoes an expansion near the heated wall, between 0 and H/2
and a compression near the cooled wall, between H/2 and H. The gel layer is therefore
subjected to thermal stresses. They are determined by substituting (21) into the constitutive
Equation (4). We obtain:

σxx = σyy = χ

(
2µ

z
H
− λ + 4µ

2

)
, (22)

σzz = −
1
2

k∆T , (23)

σij = 0 if i 6= j . (24)

Given the well known relationships between the Lamé parameters , Young’s modulus
E and Poisson’s ratio ν,

λ =
Eν

(1− 2ν)(1 + ν)
and µ =

E
2(1 + ν)

, (25)

it can be shown straightforwardly that, for an incompressible elastic material, where
ν = 1/2, one recovers the state of the hydrostatic pressure

σxx = σyy = σzz = −
k
2

∆T. (26)

4. Strain and Stress Fields Induced by Gravity Combined with a Temperature Gradient

As indicated previously, for small deformations, the mass conservation equation
reduces to

ρ(z) = ρ0(1− εzz) ≈ ρ0

(
1− ∂uz

∂z

)
(27)

Substituting expression (27) into Equation (7), we obtain, for the z-component of the
Navier equations,

(λ + 2µ)
∂2uz

∂z2 +
k∆T

H
− ρ0 g

(
1− ∂uz

∂z

)
= 0 , (28)

with the boundary conditions

uz = 0 at z = 0, H . (29)

The solution uz is then given by

uz(z) = (1− κ)

 z
H
−

1− exp
(
− 1

Λ
z
H

)
1− exp

(
− 1

Λ

)
H , (30)
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and the only non-zero component of the deformation tensor is

εzz(z) = (1− κ)

1− 1
Λ

exp
(
− z

ΛH
)

1− exp
(
− 1

Λ

)
 . (31)

The dimensionless parameter κ defined by

κ =
k∆T

ρ0gH
(32)

is the ratio of thermal stresses to gravitational stresses, and

1
Λ

=
ρ0gH

λ + 2µ
(33)

represents the uniaxial deformation due to gravitational stresses.
The components of the stress tensor are obtained by using the linear thermoelastic

constitutive equation:

σxx(z) = (1− κ)

3Ψ−Λ
2

1− 1
Λ

exp
(
− z

ΛH
)

1− exp
(
− 1

Λ

)
− κ

1− κ

(
1− z

H

)ρ0gH , (34)

σyy(z) = σxx(z) , (35)

σzz(z) = (1− κ)

Λ

1− 1
Λ

exp
(
− z

ΛH
)

1− exp
(
− 1

Λ

)
− κ

1− κ

(
1− z

H

)ρ0gH (36)

where

Ψ =
3λ + 2µ

3ρ0gH
(37)

The hydrostatic pressure p = (1/3)Tr(ε) is then

p = (1− κ)

Ψ

1− 1
Λ

exp
(
− z

ΛH
)

1− exp
(
− 1

Λ

)
− κ

1− κ

(
1− z

H

)ρ0gH (38)

The dimensionless parameter 1/Ψ accounts for the volume variation induced by
gravitational stresses.

In Figure 2a, we represent the deformation εzz as a function of the dimensionless verti-
cal position z/H for different values of κ, Λ and Ψ. Two situations are considered: (a) εzz
induced by the gravity combined with a temperature gradient and (b) εzz induced only by a
temperature gradient. The κ and Λ values have been determined by considering a gel layer
with the following properties: H = 0.02 m, ρ = 103 kg/m3, E = 100 Pa, α = 2× 10−4 K−1

and ν = 0.4, 0.44, 0.48 and 0.49. The temperature difference was fixed to ∆T = 40 ◦C.
We note that: (i) The gravity effect is much more significant than that induced by the

temperature gradient. (ii) These two effects act in opposite ways. Hence, in the lower part
of the gel layer, the gravity induces a compression while the temperature gradient induces
an expansion and vice versa in the upper part. (iii) With increasing Λ and Ψ, the strain εzz
decreases. The resulting stress field in the gel layer is illustrated through the components
σzz and σxx represented as a function of z/H in Figure 3. σzz and σxx are of the same order.
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0 0.5 1
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(4)

0 0.5 1

-0.01

0

0.01

(1)

(4)

(a) (b)

Figure 2. (a) Illustration of the strain εzz induced by the gravity combined with a temperature gradient
for different values of κ, Λ and Ψ: (1) (κ, Λ, Ψ) = (0.0204, 1.092, 0.849), (2) (0.0340, 1.652, 1.416),
(3) (0.102, 4.477, 4.247), (4) (0.204, 8.723, 8.495). (b) The strain εzz induced only by a temperature
gradient. (1) χ = 0.0187, (2) χ = 0.0206, (3) χ = 0.0228 and (4) χ = 0.0234.

0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

(1)

(4)

0 0.5 1

-0.5

0

0.5

(4)

(1)

(a) (b)

Figure 3. Illustration of stresses (a) σzz and (b) σxx induced by gravity combined with a temperature
gradient. (1) (κ, Λ, Ψ) = (0.0204, 1.092, 0.849), (2) (0.0340, 1.652, 1.416), (3) (0.102, 4.477, 4.247) and
(4) (0.204, 8.723, 8.495).

5. Onset of Plastic Deformation: Main Yield Criteria

A number of yield criteria have been developed in the literature to determine the
limit of elasticity and the onset of plastic deformation. In this section, three criteria of
yielding—namely, the criteria of Tresca, von Mises and Drucker–Prager—are considered.

5.1. Tresca Criterion

From Mohr’s circle, it can be shown straightforwardly that the maximum of shear-
stress τmax at any point in the gel layer is given by:

τmax =
|σxx − σzz|

2
= µ|εzz| . (39)

In dimensionless form, we have

τmax

ρ0 gH
=

3
4
|Λ−Ψ||1− κ|

∣∣∣∣∣∣1− 1
Λ

exp
(
− z

ΛH
)

1− exp
(
− 1

Λ

)
∣∣∣∣∣∣ . (40)
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According to the Tresca criterion, the onset of plastic yielding is defined by the condition:

τmax = τy , (41)

where τy is the shear yield stress. The variation of τmax/ρ0gH as a function of the dimension-
less vertical position z/H is depicted in Figure 4a for different values of the dimensionless
parameters κ, Λ and Ψ. Curves (1), (2) and (3) with the associated dimensionless parame-
ters were obtained for three values of the Poisson’s ratio ν = 0.4, 0.44 and 0.48, respectively,
and by setting E = 100 Pa, H = 0.02 m, ρ0 = 103 kg/m3, ∆T = 40◦C, α = 2× 10−4 K−1.
The maximum shear-stress decreases with increasing Λ and Ψ, i.e., by increasing, for
instance, the Poisson’s ratio.

Figure 4a shows that the yielding in the gel layer starts when the yield shear stress τy
is smaller than τmax(z = 0). In Figure 4b, the thermal effects are canceled by setting ∆T = 0.
Comparatively to Figure 4a, the curves (1), (2) and (3) are slightly modified. τmax/ρ0gH
actually decreases slightly in the presence of thermal effects. Indeed, for the rheological
parameters considered here, the thermal effects are much weaker than gravitational effects
and act in opposite ways on the strain and stress fields in the gel layer. In other words, if,
for ∆T = 0, τmax < τy, then the gel layer will remain in the elastic domain when the tem-
perature difference between the top and bottom walls increases within a reasonable range.

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

(1)

(2)

(3)

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

(3)

(2)

(1)

(a) (b)

Figure 4. Variation of τmax/ρ0gH as a function of z/H for different triplets (κ, Λ, Ψ). (a) (1):
(0.0204, 1.092, 0.849), (2) (0.0340, 1.652, 1.416) and (3): (0.102, 4.477, 4.247). (b) Same parameters Λ
and Ψ with κ = 0.

The application of Tresca criterion to experiments of Kebiche et al. [13] is shown
in Figure 5a. The experimental parameters are H = 0.02 m, ρ = 103 kg/m3, µ = 10 Pa,
α = 2× 10−4 K−1 and τy = 1 Pa. The onset of convection was observed at ∆T ≈ 8 ◦C.
As the Poisson’s ratio is not given, we used two values ν = 0.4 and 0.48. This leads to two
triplets (κ, Λ, Ψ): (1.14× 10−3, 0.306, 0.238) curve 1 and (6.03× 10−3, 1.325, 1.257) curve 2.
Again, the low values of κ indicate that the thermal effects are negligible. Indeed, curves 1
and 2 are almost unchanged if one sets ∆T = 0.

The figure clearly shows that, at the beginning of the experiment, i.e., at ∆T = 0,
in a large part of the Carbopol gel layer, τmax/ρ0gH > τy/ρ0gH, i.e., the material has
already crossed the threshold of plasticity. In the experiments of Darbouli et al. [12], where
H = 0.02 m, τy = 0.1 Pa, µ = 3.25 Pa, α = 7.4× 10−5 K−1 and ∆T ≈ 50 ◦C, the whole
gel layer is yielded. Indeed, the limit τy/ρ0gH = 5.09× 10−4 almost coincides with the
abscissa axis.
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Figure 5. Variation of τmax/ρ0gH as a function of z/H. (a) Experiments of Kebiche et al. [13] where
τ̃y = τy/ρ0gH = 5.09× 10−3: (1) κ = 1.14× 10−3, Λ = 0.306, Ψ = 0.238, (2) κ = 6.03× 10−3,
Λ = 1.325, Ψ = 1.257. (b) Experiments of Darbouli et al. [12]: (1) κ = 8.58× 10−4, Λ = 9.94× 10−2,
Ψ = 7.73× 10−2, (2) κ = 4.53× 10−3, Λ = 0.431, Ψ = 0.409. The dashed line corresponding to
τy/ρ0gH = 5.09× 10−4 almost coincides with the x-axis.

5.2. Von Mises Yield Criterion

The von Mises yield criterion suggests that the yielding of materials begins when the
second deviatoric stress invariant J2 reaches a critical value. This condition is represented
by the equation √

3J2 = σy , (42)

where σy is a tensile yield strength of the material. At the onset of yielding, the magnitude of
shear yield stress in pure shear is

√
3-times lower than the tensile yield stress. The von Mises

criterion can be viewed as a particular case of the Drucker–Prager criterion. The analysis of
these criteria is done in the following section.

5.3. Drucker–Prager Yield Criterion

The Drucker–Prager yield criterion is a modification of the von Mises criterion,
whereby the hydrostatic pressure-dependent first invariant I1 is introduced. It can be
expressed as √

3J2 + A|I1| = σy , (43)

where I1 is the first invariant of Cauchy stress tensor and A a material parameter. The fol-
lowing expressions are obtained for

√
3J2 and I1:

√
3J2 = |σxx − σzz| =

3
2

∣∣∣∣∣∣(Λ−Ψ)(1− κ)

1− 1
Λ

exp
(
− z

HΛ
)

1− exp
(
− 1

Λ

)
∣∣∣∣∣∣ρ0gH, (44)

I1 =
1
3

Tr(σ) = Ψ(1− κ)

1− 1
Λ

exp
(
− z

HΛ
)

1− exp
(
− 1

Λ

)
ρ0gH − κ

(
1− z

H

)
ρ0gH (45)

In Figure 6a, we represented the values of the couple
(√

3J2/ρ0gH, |I1|/ρ0gH
)

at dif-
ferent vertical positions z/H and for different values of the dimensionless parameters κ, Λ
and Ψ. We used the same values of the dimensionless parameters κ, Λ and Ψ as in Figure 4a.
The curves have a U shape. The lowest value of |σzz − σxx| is reached at the central part of
the gel layer.
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The Drucker–Prager yield criterion is represented by setting σy = 10
√

3 Pa and two
values of A: 0.05 and 0.2. The von Mises yield criterion corresponds to A = 0. Below the
lines representing the yield criterion, the material behaves as an elastic solid. Above,
the material enters the plastic domain. Depending on the experimental conditions, the gel
in the central area may be in the elastic domain, whereas outside, it has already entered the
plastic domain. By increasing Λ and Ψ, i.e., the elastic effects, we increase the central zone
where the material remains elastic. By increasing the influence of the hydrostatic pressure
in the yield criterion, i.e., by increasing A, the onset of yielding in precipitated.

0.2 0.4 0.6
0

0.05

0.1

0.15

0.2
(1)

(2)

(3)

(4)(5)

z=0

z=H

0 0.2 0.4
0

0.05

0.1

0.15

0.2

(1)

(2)

(3)

(4)
(5)

(a) (b)

Figure 6. Values of the couple
(√

3J2/ρ0gH, |I1|/ρ0gH
)

at different vertical positions and for
different triplets (κ, Λ, Ψ). (a) (1): (0.0204, 1.092, 0.849), (2): (0.0340, 1.652, 1.416), and (3):
(0.102, 4.477, 4.247). (b) The same parameters Λ and Ψ as in (a) with κ = 0. (4): (dashed line)
Drucker–Prager criterion for A = 0.05, and (5): (dashed line) Drucker–Prager criterion for A = 0.2.
The horizontal dashed line (A = 0) is the von Mises yield criterion with σy = 10

√
3.

In Figure 6b, the thermal effects are canceled by setting κ = 0, and the extent of
the elastic or the plastic zone is not significantly modified comparatively to Figure 6a.
The numerical results show a very slight increase of the elastic zone. In addition, the two
branches of the U shape have merged.

The application of the Drucker–Prager criterion to experiments of Kebiche et al. [13]
and Darbouli et al. [12] is illustrated in Figure 7a,b. In both cases, the thermal effects are
very small compared to the gravity effects. By setting ∆T = 0, the curves are almost not
modified. It can be noted for Figure 7b, that almost all the gel layer has entered the plastic
domain by gravity effects only.
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Figure 7. Values of the couple
(√

3J2/ρ0gH, |I1|/ρ0gH
)

at different vertical positions. (a) Exper-
iments of Kebiche et al. [13]: (1) κ = 1.14 × 10−3, Λ = 0.306, Ψ = 0.238, (2) κ = 6.03 × 10−3,
Λ = 1.325, Ψ = 1.257, σy/ρ0gH = 8.83× 10−3. The dashed line is the Drucker–Prager criterion
for A = 0.1, and the horizontal line is the von Mises criterion (A = 0). (b) Experiments of Dar-
bouli et al. [12]: (1) κ = 8.58× 10−4, Λ = 9.94× 10−2, Ψ = 7.73× 10−2, and (2) κ = 4.53× 10−3,
Λ = 0.431, Ψ = 0.409, σy/ρ0gH = 8.83× 10−4.

6. Conclusions

Using the linear theory of thermoelasticity, we derived an analytical solution for
stresses and strains generated in a layer of a viscoplastic fluid confined in a parallelepiped
box. The analysis shows that the problem is governed by three dimensionless groups
denoted as κ, Λ and Ψ, where κ is the ratio between thermal and gravitational stresses and
1/Λ and 1/Ψ account for uniaxial deformation and volume variation, respectively, due to
gravitational stresses.

We demonstrated that gravity and the thermal gradient have antagonistic effects.
Indeed, gravity generates a compression at the lower part of the gel layer, whereas a
thermal gradient (the layer is heated from the bottom) generates an expansion in the
lower part of the gel layer. However, within the range of the rheological and geometrical
parameters considered and for a reasonable temperature difference, the thermal effects were
much weaker than the gravitational effects. The onset of yielding was then investigated
using the classical yield criteria (Tresca, von Mises and Drucker–Prager). We found that, in
the experiments of Kebiche et al. [13], a large part of the gel layer was yielded, whereas, in
Darbouli et al. [12], almost all the gel layer was yielded. In these experiments, κ = O(10−3),
i.e., the thermal stresses were 103-times weaker than the gravitational ones.

When the stress state enters the plastic regime due to an increase in thermomechanical
stresses (imposed by the temperature gradient and the gravitation), plastic flow occurs with
a specific distribution of displacements, strains and stresses. In our future work, we intend
to investigate more general equilibrium states of the gel and to analyze more thoroughly
the onset of yielding and the beginning of the plastic flow process. A simple model will be
considered assuming that the thermoelastoplastic behavior of the medium is independent
of the strain rate.
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Nomenclature

Cv specific heat constant volume J·kg−1·K−1

Dt thermal diffusivity m2·s−1

E Young’s modulus Pa
g acceleration of gravity m·s−2

H thickness of the viscoplastic fluid layer m
I1 first invariant of the Cauchy stress tensor Pa
J2 second invariant of the deviatoric stress tensor Pa2

K thermal conductivity W·m−1·K−1

T temperature K
∆T temperature difference between top and bottom walls K
u displacement vector m
z vertical coordinate m
α volume expansion coefficient K−1

ε strain tensor
η dynamic viscosity kg·m−1·s−1

λ first Lamé’s parameter Pa
µ second Lamé’s parameter Pa
ν Poisson’s ratio
ρ fluid density kg·m−3

ρ0 reference value of the fluid density kg·m−3

τmax maximum value of shear-stress Pa
σ Cauchy stress tensor Pa
τy yield stress Pa
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