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Abstract: Gravity-capillary waves at the water surface are an obvious example illustrating wave
propagation in the laboratory, and also nonlinear wave phenomena such as wave interactions or wave
turbulence. However, at high-enough frequencies or small scales (i.e., the frequencies typically above
4 Hz or wavelengths below 10 cm), the viscous dissipation cannot be neglected, which complicates
experimental, theoretical, and numerical approaches. In this review, we first derive, from the
fundamental principles, the features of the gravity-capillary waves. We then discuss the origin
and the magnitude of the viscous wave. dissipation in the laboratory and under field conditions.
We then show that the significant level of dissipation has important consequences on nonlinear effects
involving waves. The nonlinearity level quantified by the wave steepness must be large enough to
overcome the viscous dissipation. Specifically, using water as fluid in the field and in the laboratory,
nonlinear wave interactions and wave turbulence occur most of the time in a non-weakly nonlinear
regime, when the waves are in the capillary or gravity-capillary range.

Keywords: water waves; capillarity; nonlinear waves; wave interactions; wave turbulence

1. Introduction

The example of the surface waves propagating at the interface between the atmosphere
and a water free surface constitutes an example of prime interest for illustrating water
waves. The main restoring force is gravity at large scales, and the capillarity for scales
smaller than the capillary length, i.e., λ/(2π) <

√
γ/(ρ g) (with λ being the wavelength,

ρ the liquid density, and g the gravity acceleration at the Earth’s surface). These waves
are commonly observed, such as the waves created by the wind on the sea or the ripples
obtained by gently perturbing a water tank. Nevertheless, the surface waves present most
of the difficulties, which can occur in the physics of waves; thus spoke Richard Feynman in
The Feynman Lectures on Physics Volume I [1]: “Now, the next waves of interest, that are
easily seen by everyone and which are usually used as an example of waves in elementary
courses, are water waves. As we shall soon see, they are the worst possible example,
because they are in no respects like sound and light; they have all the complications that
waves can have”.

The water depth influences strongly the structure and velocity of waves. They are
modified by the surrounding currents and the hydrodynamic flows [2]. Their propagation
is dispersive. Finally, the wave dissipation and the wave non-linearity are often non-
negligible. For large liquid depths, the main nonlinear parameter for water waves is given
by the wave slope s, which is well approximated by the product of the wave amplitude η by
the main wavenumber k, s = η k. For example, at the laboratory scale, ripples of amplitude
of one millimeter have a nonlinear parameter of order 0.1 for a wavelength smaller than ten
centimeters. The nonlinearity is, thus, unavoidable to describe their propagation. Therefore,
three-wave processes for gravity-capillary waves and four-wave processes for gravity
waves (as the dispersion relation prevents three-wave interaction for pure gravity waves)
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have been extensively studied [3–5] since their discovery around 1960 [6–8], but nearly
exclusively for interactions which are said to be resonant, i.e.,:

ω1 ±ω2 ±ω3 = 0 and k1 ± k2 ± k3 = 0 (1)

for the three-wave interaction process, and:

omega1 ±ω2 ±ω3 ±ω4 = 0 and k1 ± k2 ± k3 ± k4 = 0 (2)

for the four-wave interaction process.
One indeed assumes that only wave interactions verifying the resonant conditions

contribute to the energy balance of the wave field [3,9,10] after averaging on a sufficient
number of periods or wavelengths, although, contrary to the nonlinear optic case [11],
the corresponding proof is not clearly presented in the literature. Then, neglecting the
dissipation, a triad (or a quartet) verifying the resonance conditions constitutes a nonlinear
dynamical system, where the components of the triad exchange energy by nonlinear os-
cillations [4], with the condition of phase coherence of the wave components during the
interaction. For a random set of numerous waves whose phases are uncorrelated, a differ-
ent framework has been developed to treat the long-term behavior statistically, namely,
the wave turbulence theory or the weak turbulence theory [12,13], among other hypotheses
of small-scale dissipation and of weak nonlinearity. The experimental application of the
wave turbulence concepts to the case of capillary waves constitutes the object of the third
part of this document. Previously, we emphasized that, for water waves at the laboratory
scale, the dissipation is far from negligible, as a capillary wave is usually damped by
viscosity, typically on a distance of ten centimeters. However, most theoretical methods
to obtain the interaction coefficients require the absence of dissipation. Despite their im-
portance, few works have investigated the nonlinear interactions of surface waves in the
laboratory. Moreover, to our knowledge, to describe their observations, the experimenters
added dissipation as a perturbing term to the inviscid theory [14,15] without decomposing
the wave velocity field into a potential part and a rotational part. Although the energy
carried by gravity-capillary waves is significantly smaller compared to long gravity waves
with a wavelength above the meter, the study of short waves is important to describe
the exchanges between the sea and the atmosphere [16,17]. These waves increase the
water surface roughness tremendously, necessary for the radar-scattering monitoring of sea
waves [18], and contribute to the overall dissipation of gravity waves [19–23]. Therefore,
gravity–capillary waves are important in environmental fluid dynamics and oceanography.
In this work, after recalling the theory of water wave propagation, we evaluate the impact of
wave dissipation due to viscosity in presence of surface contamination. Finally, we discuss
the significant consequences on nonlinear effects involving waves, with a specific focus on
the three-wave interaction mechanism and the wave turbulence of capillary waves.

2. Theory of Surface Waves Propagating at an Air/Water Interface

In this section, we introduce briefly the theory of surface wave propagation. Several
reference books [24–26] and reviews [27] have addressed this problem. We highlight also
the synthetic presentations of L. Deike [28] and G. Michel [29] in their respective Ph.D.
theses. We base our discussion mainly on a lecture of the 2009 Program in Geophysical Fluid
Dynamics at Woods Hole (Nonlinear Waves) [30], on an article of F. Dias, A.I. Dyachenko,
and V.E. Zakharov [31], and also on a recent article of G. K. Rajan and D. M. Henderson,
taking into account the possible interface contamination [32].

2.1. Free-Surface Problem

As depicted in Figure 1, we consider a liquid domain of density ρ in contact with a gas
above whose density is negligible in front of ρ. We aim to describe the waves propagating
at the liquid–gas interface in absence of external forcing. This interface is a free surface and
deforms easily by flows in liquid or gas phases or by surface wave propagation. Time is
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denoted by t, the horizontal coordinates are denoted by x and y, and z denotes the vertical
coordinate. At rest, the liquid is delimited by the domain −H < z < 0, with H being the
water depth. The horizontal domain is here supposed as infinite. The dynamics of the
viscous and incompressible liquid are governed by the conservation of mass and by the
conservation of momentum (the Navier-Stokes equation):

∇ · v = 0 , (3)
∂v
∂t

+ (v ·∇) = −∇p
ρ

+ ν∇2v + g . (4)

v(x, y, z, t) = (ux, uy, w) is the velocity field, g = (0, 0,−g) is the gravity acceleration,
ν is the kinematic viscosity, and p(x, y, t) is the pressure in the fluid. The top surface of
the deformable liquid domain defines the free surface, whose deformations are denoted
by z = η(x, y, t). The free surface for a small-enough η is supposed as not multivalued;
therefore, the wave breaking, drops ejection, and bubbles entrapment are not described by
this approach. At the free surface, the kinematic and the dynamic boundary conditions read:

∂η

∂t
+ u(x, y, η, t) ·∇η = w(x, y, η, t) , (5)

p0 − p− 2ρ ν

(
∂w
∂z

)
= γ ∇ · n , at z = η normal stresses , (6)

ρ ν

(
∂ux

∂z
+

∂w
∂x

)
= −∂γ

∂x
, at z = η tangential stresses along x , (7)

ρ ν

(
∂uy

∂z
+

∂w
∂y

)
= −∂γ

∂y
, at z = η tangential stresses along y . (8)

p0 is the atmospheric uniform pressure, n is the normal vector of the free surface, and γ(x, y)
is the surface tension coefficient of the air/water interface, which is assumed to be spatially
dependent due to a possible surface contamination with surfactants. Note that these
equations of the dynamic boundary conditions are derived with the assumption of small
deformations, i.e., ∇η � 1, in order to project the normal and the tangential viscous
stresses from the viscous stress tensor on the axis of the coordinate system, and to take the
linearized expression of the interface curvature (see [32] for a more complete expression in
two dimensions). The contribution of the surface tension to the normal stresses is given

by the Laplace law: γ∇ · n, knowing that the normal vector verifies n =
∇η√

1 + |∇η|2
un,

with un being a unitary vector parallel to n. ∇ · n defines the local interface curvature.
With the hypothesis of weak deformation ∇η � 1:

∇ · n ≈
(

∂2η

∂x2 +
∂2η

∂y2

)
. (9)

Finally, boundary conditions must be also written at the bottom in z = −H. If we
assume a solid non-deformable bottom (a non-relevant hypothesis to model the generation
of tsunamis, for example [33]), the kinematic and boundary conditions resume to:

v(x, y, z = −H) = 0 . (10)

The water wave problems consist in searching for solutions to the system of
Equations (3)–(10).
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Figure 1. Schema. Propagation of a monochromatic water surface wave at the air/water interface for
a two-dimensional wave propagating along kx. The wavelength is defined by λx = 2π/(kx) with
kx = ||kx||. The trajectory of fluid particles are nearly circular in a deep-water regime,
i.e., tanh(kx H) ≈ 1 (in the schema kx H ≈ 8.3). The displayed trajectory is not to scale.

2.2. Potential Flow Approximation

By neglecting, in a first approach, the viscous effect, and considering an inviscid fluid,
the problem is considerably simplified. The velocity derives from a velocity potential φ
such as v = ∇φ(x, y, z, t), which verifies a Laplace equation ∆φ = 0. The integration of
the Navier–Stokes equation (Equation (4)) without the viscous term leads to a Bernoulli’s
equation valid in the liquid domain:

∂φ

∂t
+
|∇φ|2

2
+ g z +

p− p0

ρ
= 0 , (11)

Combined with the normal dynamic boundary condition, we obtain:

∂φ

∂t
+
|∇φ|2

2
+ g η =

γ

ρ

(
∂2η

∂x2 +
∂2η

∂y2

)
at z = η . (12)

Although not demonstrated here, this last equation remains valid by taking the non-
linear surface tension’s normal stress (γ/ρ)∇ · n, which identifies the mean curvature of
the surface [34]. If the viscosity is assumed null, in order to balance the tangential dynamic
boundary conditions (Equations (7) and (8)), the horizontal variations of the surface tension
must be neglected.

2.3. Linear Water Wave Theory

Then, we assume a small wave amplitude, η � H, and a small free-surface defor-
mation, |∇η| � 1. The local slope of the free surface, |∇η|, is often called the wave
steepness. In a good approximation for a sinusoidal wave of wavenumber k and amplitude
η0, the steepness is given by the product s = k η0. The boundary equations can be then
linearized to obtain the following system:

∆φ = 0 , −H < z < 0 , (13)
∂φ

∂z
= 0 , z = −H , (14)

∂φ

∂z
=

η

∂t
, z = 0 , (15)

∂φ

∂t
+ gη =

γ

ρ

(
∂2η

∂x2 +
∂2η

∂y2

)
, z = 0 . (16)

Using the complex formalism, a general solution for φ can be written as a linear
superposition of plane harmonic waves of wavenumber k, of angular frequency ωk, and of
amplitude bk, verifying Equations (13) and (14):
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φ(x, y, z, t) = Re

(∫ ∫
bk

cosh(k(z + H))

cosh(kH)
eiωkt−i (kx x+ky y) dkx dky

)
, with k2 = k2

x + k2
y . (17)

Then, using Equation (15), we obtain the free-surface deformation due to the wave

propagation with an amplitude ak =
−i k bk

ω
:

η(x, y, z, t) = Re

(∫ ∫
ak sinh(kH) eiωkt−i (kx x+ky y) dkx dky

)
. (18)

By injecting the previous solutions of φ(x, y, z, t) and η(x, y, z, t) into Equation (16),
we obtain the linear dispersion relation of surface waves:

ω2
k = tanh(k H)

(
g k +

γ

ρ
k3
)

. (19)

This relation is plotted in Figure 2 and is valid in the absence of flow in the liquid
phase (except the one associated with the wave propagation). The interactions between
waves and currents can lead to complex phenomena (see Figure 3), especially in presence of
hydrodynamic turbulence [35]. These effects are not addressed; however, for completeness
with a uniform mean current U, due to the Doppler effect, the dispersion relation reads:

(ωk − k ·U)2 = tanh(k H)

(
g k +

γ

ρ
k3
)

. (20)

Here, we focus our study on the deep-water regime of wave propagation, where
k H � 1, and tanh(k H) ≈ 1. Moreover, by comparing the relative importance, in

Equation (19), between the gravity term g k and the capillary term
γ

ρ
k3 for any water

depth H, we can distinguish two regimes of wave propagation: the domain of gravity
waves for k� l−1

c and the domain of capillary waves for k� l−1
c , with the capillary length

lc =
√

γ

ρ g
. The critical wavelength between these two regimes reads λ = 2π lc, and is of

the order of 17 mm for pure water in normal conditions.
The applications of the linear water wave theory are very wide. We refer to the classic

textbooks [24–26,36] for further details about the kinematics, the dispersive effects in the
propagation, the wave patterns, etc. For completeness, we recall that the trajectories of the
fluid particles for a wave of amplitude a, with a single angular frequency ω and an associ-
ated single wavenumber k, are read in a deep-water regime by integrating Equation (17) as
a function of space and then time:

xP = x0 + a exp(k z) sin(ω t − k x) ,

zP = z0 + a exp(k z) cos(ω t − k x) . (21)

As x2
P + y2

P = (a ekz)2, the trajectories are circles of radii a ekz.
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Figure 2. (a) Theoretical linear dispersion relation for surface waves expressed in a log–log diagram
frequency f = ω/(2π) as a function of the inverse wavelength 1/λ = k/(2π). The curve is computed
using Equation (19) for a depth H = 1 m, a surface tension γ = 72 × 10−3 N m−1, and a density
ρ = 1000 kg m−3. kH = 1/H —separate shallow- and deep-water regimes. kc = 1/lc —separate
gravity and capillary wave regimes. (b) Blue phase velocity — cφ = ω/k, and red group velocity —
cg = ∂ω/∂k, as a function of 1/λ, according to the linear dispersion relation.

Figure 3. Complex pattern of surface waves due to a wave–flow interaction on the beach of Villers
sur Mer. From left to right: increasing magnification. The current, due to the flowing stream and the
wind, forces a herringbone/chevron pattern of waves. At small scales, one notes the presence of a
capillary wave train.

2.4. Hamiltonian Formulation of Water Waves

With the hypothesis of inviscid fluid, nonlinear surface wave propagation can be
alternatively described using methods of Lagrangian [37] and of Hamiltonian [38,39]
mechanics. The approach of Zakharov in a deep-water regime [38,40] is specifically useful
to address nonlinear complex problems. By introducing the velocity potential evaluated at
the free surface ψ(x, y, t) = φ(x, y, z) = η(x, y, t), t), it can be shown that the water wave
problem resumes to the two Halmiton’s equations:

∂η

∂t
=

∂H
∂ψ

, (22)

∂ψ

∂t
= −∂H

∂η
. (23)

where H is the Hamiltonian function equivalent to the energy of the fluid and defined by
the sum of a kinetic and of a potential energies, H = Hkin + Hpot, with:

Hkin =
1
2

∫ ∫ ∫ η

−∞
|∇φ|2dz dx dy , (24)

Hpot =
1
2

∫ ∫
ρ g η2 dx dy + γ

∫ ∫ (√
1 + |∇η|2 − 1

)
dx dy . (25)
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The expansion of the Hamiltonian as a function of the small parameter |∇η| (the
wave steepness) is the starting point of the statistical study of waves interacting in weakly
nonlinear regime, the wave-turbulence of water waves [12,40].

2.5. Nonlinearities in the Propagation of Surface Waves

The nonlinearity in the surface wave propagation problem has several origins:

• the convective acceleration in the Navier–Stokes equation, leading to the term |∇φ|2
in the dynamic boundary condition at the free surface (Equation (12));

• the square of the deformation of the free surface |∇η|2 involved in the free-surface
mean curvature (γ/ρ)∇ · n;

• the finite amplitude of the deformation η in the boundary conditions (Equations (5)–(8)).
In the weakly nonlinear approach, a Taylor expansion is usually performed at the free
surface close to z = 0, the level of liquid at rest:

φ(x, y, η, t) = φ(x, y, 0, t) +
∂φ(x, y, 0, t)

∂z
η + · · · (26)

Then, at first order, in the kinematic boundary condition (Equation (5)), we have:

w(x, y, η, y, t) =
∂φ(x, y, η, t)

∂z
=

∂2φ(x, y, 0, t)
∂z2 η (27)

and in the dynamic boundary condition for potential flow (Equation (12)), we have:

∂φ(x, y, η, t)
∂t

=
∂2φ(x, y, 0, t)

∂z∂t
η (28)

• the product u ·∇η = ∇⊥φ(x, y, η, t) ·∇η in the kinematic boundary condition
(Equation (5)), where ∇⊥ is the horizontal gradient (along x and y). At first order,

u ·∇η = ∇⊥φ(x, y, 0, t) ·∇η (29)

The projection of the viscous stresses at the free surface induces also additional nonlin-
ear terms, which are seldom discussed [31,32].

Using a weakly nonlinear development to Equations (5) and (12) and the Laplace
equation ∆φ = 0, one obtains, then, the following system, valid at the second order in η
and ϕ, where nonlinear terms are gathered on the right-hand side [41,42]:

∂φ

∂t
− γ

ρ

(
∂2η

∂x2 +
∂2η

∂y2

)
+ g η = − (∇φ)2

2
− ∂2φ

∂z∂t
η , z = 0 , (30)

∂η

∂t
− ∂φ

∂z
=

∂2φ

∂z2 η − ∂φ

∂x
∂η

∂x
− ∂φ

∂y
∂η

∂y
, z = 0 , (31)

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0 , −∞ < z ≤ 0 . (32)

The curvature has been assimilated to the horizontal 2D Laplacian, to stay at the
lowest nonlinear order. This set of equations constitutes the first step to address the
nonlinear wave interactions. Injecting the linear solution, which induces that φ ∼ ω/k η at
a given frequency, it can be shown that the dimensionless nonlinear parameter is the wave
steepness |∇η| of order k η. This parameter represents the typical slope of the deformed
free surface and can be roughly estimated by the product s = a k, where a is the wave
amplitude and k is the typical wavenumber. We have, indeed:

|∇φ|2
|∂φ/∂t| ∼

(ω η)2

ω2 η/k
∼ η k ,

|η ∂2φ|/|∂z∂t|
|∂φ/∂t| ∼ kη,

|η ∂2φ|/|∂2|
|∂φ/∂z| ∼ k η, (33)



Fluids 2022, 7, 137 8 of 39

|(∂φ/∂x)(∂η/∂x)|
|∂φ/∂z| ∼ k η, and

|(∂φ/∂y)(∂η/∂y)|
|∂φ/∂z| ∼ k η . (34)

2.6. Resonant Three-Wave Interactions

Focusing on the deep-water regime, we note that at the first order in |∇η|, the non-
linearity is quadratic—that is, involving quantities of order φ2, η2, or φ× η. Therefore,
as stated in the introduction, for a small-enough wave steepness, due to the quadratic
nonlinearity, the different components of the wave field interact with each other by a
three-wave mechanism. Most studies in the literature concern the resonant case, where the
angular frequencies and the wavenumbers obey the resonant conditions:

ω1 ±ω2 ±ω3 = 0 and k1 ± k2 ± k3 = 0 . (35)

A general introduction to the resonant interaction mechanism for surface waves is
given, for example, in the review of J. L. Hammack and D. M. Henderson [5], in the
lecture of the Woods Hole GFD program (Nonlinear Waves) [30], and in the book of A. D. D.
Craik [4]. This concept applies mainly to capillary waves [8] and to gravity waves close
to the capillary crossover [8] or in a shallow-water regime [6]. For pure gravity waves
in a deep-water regime, the main non-linearity is quadratic, but the three-wave resonant
mechanism is not compatible with the linear dispersion relation of pure gravity waves
ω2 = g k. A convexity argument shows, indeed, that for a dispersion relation under the
form ω ∝ kα, the verification of the resonant conditions requires α ≥ 1. The next order in
the nonlinear development is then considered, which constitutes the four-wave resonant
interaction mechanism [6]. The evolution of interacting gravity waves in the ocean is
commonly described using this mechanism [10].

Coming back to the case of the three-wave interaction, it is worthwhile to note that,
in this conservative situation, the resonant conditions (Equation (35)) correspond, respec-
tively, to the conservation of the energy and of the momentum of the waves [43]. Con-
sidering a resonant triad, i.e., three waves (1, 2, and 3) verifying the resonant conditions,
using a perturbation method [41], a multiple-scale theory [8], or a variational approach [43],
the evolution of the three waves can be described under the form of a coupled system of am-
plitude equations. For example, for a triad such as ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0,
the evolution equation of the complex amplitude As of each wave component of index s,
with the convention where s is the interpreted modulo 3, reads, under a general form [43]:

∂As

∂t
+ vg s ·∇As = i κi A∗s+1 A∗s+2 , (36)

with κs = −
J ks

4 ωs
,

and J =
3

∑
j=1

ωj ωj+1 (1 + ej · ej+1) .

in which ej = kj/k j, and vg s =
∂ωs

∂ks
is the group velocity of the wave s. In absence of

spatial gradients, the previous system exhibits generic solutions under the form of nonlinear
oscillations [4], where the three waves periodically exchange energy over a long period of
time compared to the wave period, because the hypothesis of weak nonlinearity is assumed.
In practical cases, a triad is seldom isolated. The components of the triad excite other
triads and multiple resonant interactions have to be considered [4,5], which constitutes the
starting point of the statistical study of random waves in interaction [10,13].

2.7. Non-Resonant Three-Wave Interactions

Then, we notice that the case of non-resonant or quasi-resonant interactions of sur-
face waves has been rarely studied, unlike the resonant case. Non-resonant interactions
correspond, in the three-wave case, to one of the two resonance conditions (Equation (35))
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that is not equal to zero by a mismatch δω or δk, which is assumed to be arbitrarily small
for quasi-resonant interactions. After averaging on a long time (typically large in front
of δ−1

ω ) or over a large domain (typically large in front of δ−1
k ), it is indeed assumed that

only resonant and quasi-resonant interactions contribute to the energy exchanges in a wave
field of surface waves [3,9,10]. In contrast to nonlinear optics, the distance to the resonance,
called the phase mismatch, is a key parameter to describe the experiment of type frequency
sum generation [11].

To clarify the idea, a simplified model can be useful. We consider a one-dimensional
example where the wave field contains two mother waves of constant and homogeneous
amplitude. Using the complex formalism, we have η1 = 1

2 Re
(

A1 ei (ω1t−k1x) +c. c.
)

and η2 = 1
2 Re

(
A2 ei (ω2t−k2x) +c. c.

)
. We set k1 + k2 = k3 and ω1 + ω2 = ω3 + δω,

where ω3 is given by the linear dispersion relation at the wavenumber k3. We con-
sider the response of the free surface at the wavenumber k3, for which there is a forc-
ing as a product of the mother waves due to the quadratic non-linearity, η1 × η2 =

A1 A2 ei (ω1+ω2)t−i (k1+k2)x = A1 A2 ei (ω3+δω)t−i k3x . We look at the excitations of the free
surface corresponding to a wave propagating at the wavenumber k3 and the angular fre-
quency ω3, η3 = 1

2 Re
(

A3 ei (ω3t−k3x) +c. c.
)

. This mode η3 is forced by the product η1× η2,
and we suppose that we can write an amplitude equation for the temporal evolution of A3
under the form [4,41]:

dA3

dt
= i γ3 A1 A2 eiδω t . (37)

With the initial condition A3(t) = 0, we obtain, by integration of δωt 6= 0:

A3(t) = A1 A2
(1− eiδω t)

δω
. (38)

The daughter wave oscillates in time with a period 2π/δω . In contrast, if δω t = 0 (the
resonant case), the daughter wave grows proportionally with the time:

A3,r(t) = i A1 A2 t . (39)

Then,

A3(t) = A3,r(t) e

(
i
δω t

2

)
sinc

(
δω t

2

)
(40)

With the sine cardinal function, sinc(x) =
sin(x)

x
. Then, in terms of wave amplitudes,

the ratio of a non-resonant interaction over a resonant one scales as:

|A3(t)|
|A3,r(t)|

sinc
(

δω t
2

)
(41)

In the limit of a large time t in front of 1/δω, this ratio is equivalent to a Dirac delta
function, demonstrating the relevance of the use of the term resonance. The maximal re-
sponse is indeed obtained when the triad verifies the resonant conditions and the sharpness
of this resonance increases with time. Non-resonant interactions are, thus, negligible at long
times, compared to resonant interactions, but their role should not always be neglected.
For example, recent works [44,45] have emphasized the occurrence of quasi-resonant three-
wave interactions in the turbulence of gravity–capillary waves. The allowed distance to the
resonance conditions is interpreted as the bandwidth of the dispersion relation, which is
increased due to nonlinear interactions.



Fluids 2022, 7, 137 10 of 39

2.8. A Few Words on Some Other Effects of Nonlinearities

For gravity waves, we have stated that, due to the dispersion relation shape, a resonant
three-wave interaction mechanism is prevented. However, non-resonant mechanisms can
occur, even if they likely do not contribute mainly to the net energy balance of the wave
field. The quadratic nonlinearity indeed induces a three-wave non-resonant interaction
mechanism, where a wave interacts with itself to form what it is called a bound wave:
it travels at the same velocity as the carrier wave and does not belong to the dispersion
relation. An example of prime interest is given by the Stokes expansion [25], which demon-
strates that, in stationary regimes, a gravity wave of finite amplitude is accompanied by
bound harmonics which give a non-sinusoidal shape to the wave denoted as the Stokes
wave. The dispersion relation consequently becomes nonlinear, as it depends on the square
of the wave steepness |∇η|2 at the first order. At high nonlinearity (typically a wave steep-
ness higher than 0.32 in deep water [23]), the gravity waves are unstable and break: the free
surface becomes multi-varied, the crest of the gravity waves collapses, and the energy of
the wave is mainly transferred to the flow. Capillarity is known to stabilize the free surface
and increase the critical steepness for breaking [23]. For pure capillary waves, nonlinear
effects are less discussed. To our knowledge, the experimental observation or the theoretical
description of bound waves for capillary waves has not been reported in the literature,
maybe because resonant (or nearly resonant) three-wave interactions are not prevented.
At high nonlinearity, by the means of a conformal transformation method, the wave profile
and the nonlinear dispersion relation can be analytically derived [34]. According to this
work, the maximal steepness is 4.59, corresponding to a bubble entrapment for which
the free surface becomes also multivaried. On the surface of oceans and in most natural
situations, the capillary waves are created from gravity waves by the parasitic capillary
wave mechanism [46,47], which is a direct nonlinear energy transfer. The most advanced
theoretical description, using a conformal transformation method, takes into account the
viscous boundary layer at the free surface [48]. The parasitic capillary wave-generation
mechanism is, thus, one of the most complex problems for surface waves.

3. Linear Dissipation of Surface Waves

The dissipation of the waves has been neglected until now. For gravity waves in a deep-
water regime, this hypothesis is often justified because the viscous dissipation is negligible
for wavelengths of the order of a meter or more. However, at high steepness, the breaking
wave induces an effective wave dissipation of gravity waves, with this damping generally
varying nonlinearly with the wave amplitude. In contrast, for capillary waves and even for
gravity waves close to the crossover, the effects of the viscosity must be taken into account,
which induces a linear dissipation of surface waves. The wave decreases proportionally to
its amplitude along its propagation, with a proportionality factor which is the temporal
decay rate δ. For a harmonic plane monochromatic wave, we obtain:

η(x, y, t) = η0 e−δ t ei(ω t−k·x) . (42)

In stationary regime, for surface waves continuously emitted by the means of a
wave-maker acting as a localized source, the temporal decay becomes a spatial one in the
laboratory frame by using vg = (∂ω/∂k), the group velocity.

η(x, y, t) = η0 e−δ x/vg ei(ω t−k·x) . (43)

3.1. Viscous Decay Rates for a Clean Free Surface

Experimentally, the dispersion relation of surface waves is well predicted by the
inviscid potential theory of surface waves. For a potential flow, if the vorticity is initially
zero, it remains so for all subsequent times and no dissipation can occur in the fluid
bulk [24]. Then, the effects of the viscosity occur on the frontiers of the liquid domain,
by the development of viscous boundary layers concentrating the vorticity and inducing
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the dissipation of the wave kinetic energy, which produces a decay on a time scale longer
than the period. The decay rate can be analytically computed easily only for small wave
amplitudes by linearizing the Navier–Stokes equations (Equation (4)) and the boundary
conditions (Equations (5)–(10)). To simplify, we consider a two-dimensional problem,
with a one-dimensional wave field η(x, t) confined along the y direction by two solid walls
separated by a width W. The Helmholtz decomposition [24] separates the velocity field
into irrotational (curl-free) and solenoidal (divergence-free) components:

v(x, z, t) = ∇φ(x, z, t) +∇× A(x, z, t) , (44)

where φ is the velocity potential and A = A ey is a vector stream function. We note that φ
and A do not identify to the classic velocity potential and stream function, because these
functions do not obey the same boundary conditions between the Helmholtz decomposition
and the classic case. In the fluid bulk, these two functions verify, with the hypothesis of
incompressible flow, respectively, a Laplace and a diffusion equation.

∇2φ = 0 and
∂A
∂t

= ν∇2 A . (45)

By taking the divergence of the linearized Navier–Stokes equation, we obtain:

∇
(

∂φ

∂t
+

P
ρ
+ g z

)
= ∇×

(
−∂A

∂t
+ ν∇2 A

)
= 0 . (46)

which resumes by introducing the atmospheric pressure P0 to the equivalent of Bernoulli’s
equation:

∂φ

∂t
+

P− P0

ρ
+ g z = 0 . (47)

Then, the general solutions for φ and A read for a wave propagating in the forward
direction along Ox with α1, α2, β1, and β2 as complex constants; n is a complex number:

φ = (α1 ek z +α2 e−k z) ent−kx and A = (β1 em z +β2 e−m z) ent−kx . (48)

From the decomposition into real and imaginary parts, we deduce the angular fre-
quency ω and the decay rate δ from n = i (ω + i δ). Moreover, as φ verifies a Laplace
equation and A a diffusion equation (Equation (45)), we have the constraint n = ν(m2− k2).

These expressions must be then injected into the linearized boundary conditions
(Equations (5)–(10)). The tangential stresses imply the horizontal gradient of the surface
tension. The presence of surfactants trapped at the interface indeed decreases the local
value of the surface tension. An inhomogeneous surfacic concentration of these surfactants
induces, thus, a spatial variation of the surface tension.

We suppose for now that the free surface is clean, in absence of surfactants. In absence
of horizontal gradients of surface tension, the free surface is, thus, characterized by the
cancellation of tangential stresses. We neglect, in a first step, the effect of the lateral walls
and of the solid bottom (deep-water regime), which implies α2 = β2 = 0, because u and w
go to zero as z approaches −∞. Then, the velocity field components become:

u = −(i k α1 ek z + m β1 em z) ent−kx and w = −(k α1 ek z − i m β1 em z) ent−kx . (49)

We report these expressions into:

• the linearized kinematic boundary condition, ∂η/∂t = w, taken at z = 0;
• the linearized dynamic boundary condition for normal stresses taken at z = 0:

∂φ

∂t
− γ

ρ

∂2η

∂x2 + g η − 2ν
∂w
∂z

= 0 ; (50)
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• the linearized dynamic boundary condition for tangential stresses taken at z = 0:

ν

(
∂w
∂x

+
∂u
∂z

)
= 0 . (51)

Then, we obtain, after some algebraic manipulations, the result of Lamb [24]:

(n + 2ν k2)2 + g k +
γ

ρ
k3 = 4ν2 k3 m , (52)

with n = i ω− δ , (53)

and the constraint n = ν(m2 − k2) . (54)

n can be found as a root of a polynomial of degree four, with the condition m > 0. With the
hypothesis of a viscosity that is is small enough that the dimensionless number (ν k2)/ω �
1, there is no modification of the linear dispersion relation in a deep-water regime:

ω2 = g k +
γ

ρ
k3 and δ = 2 ν k2 . (55)

For liquids of low viscosity, for which ν ∼ 10−6 m2·s−1,
ν k2

ω
. 1% for f . 1000 Hz,

justifying the hypothesis made. It can be also shown that, with the same hypothesis,
m = (1± i)

√
ω/(2ν). Consequently, the length d =

√
(2ν)/ω (analogous to a skin effect

depth) corresponds to the penetration length of the vorticity from the surface to the bulk of
the liquid. With the physical properties of water, d is smaller than λ/50 for f ∈ [0, 400]Hz.
The hypothesis of nearly irrotational flow is, thus, justified. By injecting the potential solu-
tion of the surface-wave flow into the expression of the viscous dissipation [49], the classic
damping rate δ = 2 ν k2 is recovered in absence of solid walls. Moreover, this last computa-
tion shows that the dissipation due the boundary layer at the free surface is independent
of the water depth, even in shallow-water regimes. For oceanic waves with a typical
wavelength of the order of ten meters, the corresponding dissipation is very low, as the
attenuation length would be cg/δ = 1

4

√
g/k (ν k2)−1 ≈ 2500 km. In fact, the major part of

the linear dissipation for ocean swells results from the dissipation in the air [50], which is
not taken into account in this model.

Practically, for a fluid contained in a tank with solid boundaries, additional damping
terms must be taken into account due to the presence of viscous boundary layers on solid
walls. These terms can be computed with the same method by performing a Helmholtz
decomposition of the wave field and by using the appropriate boundary conditions. Never-
theless, the algebra is more tedious, and we provide here only the results of the literature.
For a progressive wave propagating in an infinite rectangular basin of width W and depth
H, the damping rate, due to the dissipation occurring in the boundary layer on the flat
solid bottom and on the lateral walls, reads [51–53]:

δW B =

√
ν ω

2

(
tanh(k H)

W
+

k
sinh(2k H)

)
. (56)

In the deep-water regime, H → ∞, δW B →
√

ν ω

2
1

W
, only the dissipation on the

lateral walls remains.
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3.2. The Problem of the Surface Contamination

The previous damping rate obtained with the hypothesis of absence of tangential
stresses underestimates strongly the damping of the surface waves compared to measure-
ments for laboratory-generated surface waves [5,52,53], typically for frequencies above
3 Hz. The cause is the presence of surfactants at the surface of molecular films. The fluids
with high surface tension, such as water, are easily contaminated with surfactants present
in the atmosphere in a matter of a few hours [5]. Then, unless the free surface is cleaned
or renewed continuously [54,55], the surface contamination by an atmospheric surfactant
must be taken into account to predict the observed attenuation of surface waves.

Physically, the propagation of a surface wave induces a periodic compression/dilation
of the molecular film of surfactants trapped at the air/liquid interface, which, in turn,
modulates the local surface tension. The resulting tangential gradient of surface tension
acts as a strong repelling mechanism by exciting what is called a Marangoni wave, where the
local surfactant concentration oscillates at the same frequency and same wavenumber as the
surface wave, but out of phase. The strong horizontal velocity gradients in the boundary
layer damp efficiently the surface wave by viscous dissipation. Several models [56–61]
attempt to model the enhanced linear dissipation due to the presence of surfactants for
small-amplitude surface waves. We note, specifically, that the complete and recent work by
Rajan and Henderson [32] is valid for insoluble surfactants, which derives several scaling
laws for the damping rate. For a controlled concentration of an added insoluble surfactant,
the predicted damping rate is in satisfying agreement with the measurements [59,62].
However, especially in the case of a soluble surfactant, several parameters are hardly
known, such as the surfactant solubility, its bulk diffusion coefficient, and the dilational
and shear viscosities of the surfactant film. Therefore, the wave damping due to the surface
contamination is difficult to model in cases of contamination of the interface.

To be more quantitative, we reproduce the simplified approach of Ermakov [60],
which is valid for an insoluble surfactant and small-enough dissipation, which provides
the essential physics points. We consider a one-dimensional non-dissipating propagating
surface wave in a deep-water regime, η(x, t) = η0 ei(ω t−k x). The corresponding solution
for the flow will be subsequently used to compute the energy dissipation. The velocity field
v = u ex + w ez is again decomposed using a Helmholtz decomposition (Equation (44))
as a sum of a potential (up, wp) and a rotational (ur, wr) velocity field, in agreement with
Equation (45):

up = Up 0 ek z ei(ω t−k x) , wp = −i up (57)

ur = Ur 0 e((1−i)/d) z ei(ω t−k x) , wr =
k d

1 + i
ur . (58)

with d =
√
(2ν)/ω being the penetration length of the vorticity introduced in the previous

section, which verifies d� 1/k. Therefore, the rotational part of the velocity is confined
in the boundary layer of thickness d and the corresponding motion is quasi-horizontal.
To obtain the dispersion relation, the corresponding velocity field must be then injected in
the linearized dynamic boundary conditions:

∂φ

∂t
− γ

ρ

∂2η

∂x2 + g η − 2ν
∂w
∂z

= 0 , at z = 0 , normal stresses , (59)

ρ ν

(
∂u
∂z

+
∂w
∂x

)
+

∂γ

∂x
= 0 , at z = 0 , tangential stresses . (60)

We define Γ(x, t) as the concentration field of an insoluble surfactant trapped at the
free surface, whose value is Γ0 when the surface is at rest. By conservation of the surfactant,
we have:

∂Γ
∂t

+ Γ0
∂u
∂x

= 0 . (61)



Fluids 2022, 7, 137 14 of 39

We introduce the elasticity of the surfactant film, E = −Γ0
∂γ

∂Γ
. A constant value of E

supposes a linear decrease in the surface tension with the surfactant concentration. Then,
Equation (60) becomes:

ρ ν
∂

∂t

(
∂u
∂z

+
∂w
∂x

)
− E

∂2u
∂x2 = 0 at z = 0 (62)

The horizontal velocity u is the sum of the potential and rotational velocity. In absence
of surface waves up = 0, and by reporting Equation (58) into Equation (62), we obtain the
dispersion relation for longitudinal waves or Marangoni waves [57,58].

k2
M =

1 + i
E

√
ρ2 ν ω3

2
. (63)

The wavenumber kM is a complex number verifying Im(kM) = tan(π/8)Re(kM) ≈
0.41Re(kM), which implies that the Marangoni waves are strongly damped. In presence
of surface waves, the potential part of the velocity field forces the Marangoni waves,
which dissipates efficiently the energy of surface waves. Therefore, we suppose that
Up > Ur and, consequently, wp � wr. The condition d � 1/k implies that the potential
velocity is well approximated by the inviscid solution, and that the surface waves verify
the classic dispersion relation ω2 = g k + (γ/ρ) k3.

Then, the forcing of the Marangoni waves, according to Equation (62), reads:

∂2ur

∂x2 −
ρ ν

E
∂2ur

∂z ∂t
= −

∂2up

∂x2 +
2ρ ν

E
∂2up

∂z ∂t
, at z = 0 . (64)

The forcing surface wave implies at z = 0, up = Up ei(ω t−kg x), where kg is given by
the linear inviscid dispersion relation of surface waves at ω. We obtain, then:

Ur =

(
1− k2

m
k2

g

)−1 (
1− 2i ρ νω

E kg

)
Up . (65)

The second factor can be often approximated to one for a sufficient value of film
elasticity E, such as the wave-phase velocity vφ = ω/k� E/(ρ ν), which is true typically
for E > 10× 10−3 N m−1. We obtain, then, the resonance curve proposed by Ermakov [60],
which introduces a dimensionless elasticity:∣∣∣∣Ur

Up

∣∣∣∣2 =
2 e2

M
1− 2 eM + 2 e2

M
, with eM =

E k2
g√

2ρ2 ν ω3
. (66)

The maximal reponse of Marangoni waves is obtained for eM = 1, and when the
wavenumber of the surface waves kg(ω) at a given frequency matches the corresponding
wavenumber for Marangoni waves km(ω).

To compute the corresponding dissipation, we adopt the method introduced by Lan-
dau and Lifshitz [49] and by Miles [56]. The energy damping rate (twice the wave amplitude
damping rate) is equal to the ratio, by surface unit, of the average power dissipated by
viscosity by the rotational flow, divided by the mechanical energy of the potential flow.
This estimation is valid because the rotational velocity field is localized in a small boundary
layer close to the free surface of thickness d� λ and, thus, the velocity field is very close
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to the potential flow almost everywhere. The damping coefficient, due to the surface
contamination, according to Ermakov, then reads:

δErm =
−Pvisc
2 Em

, (67)

with Em = 2 ρ
∫
〈u2

p 〉t dz , (68)

and Pvisc = −
ρ ν

2

∫ 〈
2
(

∂u
∂z

+
∂w
∂x

)2
+

(
2

∂u
∂x

)2
+

(
2

∂w
∂z

)2
〉

t

dz . (69)

The expression of Pvisc can be considerably simplified by neglecting wr and all the
terms containing the products of the derivatives of the potential and rotational components.
Then, we have:

Pvisc ≈ −ρ ν
∫ 〈(

∂ur

∂z

)2
+ 8k2 u2

p

〉
t

dz . (70)

Finally, we obtain the result of Ermakov [60]:

δErm ≈ 2ν k2 +

√
ν ω kg

2
√

2

∣∣∣∣Ur

Up

∣∣∣∣2 = 2ν k2 +

√
ν ω kg

2
√

2

2 e2
M

1− 2 eM + 2 e2
M

(
1− 2i ρ νω

E kg

)
, (71)

with eM =
E k2

g√
2ρ2 ν ω3

.

The damping rate is the sum of δ = 2ν k2 for a clean free surface (without tangential
stresses) and of a supplemental term due to the contamination by surfactants, which scales

as
√

ν ω

2
kg

2
and corresponds to the damping of the wave in presence of a solid surface.

A free surface saturated in surfactant indeed behaves as an inextensible film, and by setting
the new boundary condition as u(x, z = 0, t) = 0, the damping rate for an inextensible
surface can be derived using the same method as that in Section 3.1, which gives [24,51]:

δinex =

√
ν ω

2
kg

2
(72)

For gravity-capillary waves, δinex is at least one order of magnitude larger than δ.

The behavior of
∣∣∣∣Ur

Up

∣∣∣∣2 as a function of the frequency of the surface wave is plotted

in Figure 4. At high frequency, for a quite-small film elasticity (E > 1 mN/m), we note
that Ur has the same order of magnitude as Up. At the resonance between surface waves
and Marangoni waves, this square ratio reaches the value 2. When f approaches zero,
Ur goes also to zero. We remark that the position of the resonant peak is shifted to
smaller frequencies when the elasticity is increased. At high frequency and high elasticity,
we have |Ur| ≈ |Up|. This case describes a nearly inextensible film where the horizontal
velocity u is imposed to be null. This model predicts also a non-monotonous behavior
with the film elasticity [60]. Qualitatively, as the elasticity increases with the surfactant
initial concentration Γ0, in the capillary range, a fully contaminated free surface can, thus,
dissipate less than a mildly contaminated one.
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Figure 4. Square of the ratio of the rotational velocity on the potential velocity due to the elasticity
of a surfactant contaminated free surface, using Equation (66) according to the model proposed by
Ermakov [60], as a function of the frequency of the surface wave for a few values of the film elasticity
E. The maximum value of 2 of this ratio is reached when the Marangoni waves are resonantly excited
by the surface waves.

The simplified approach of Ermakov depicts the physics at play well. However, due to
the strong approximations made, this result is only approximate. To improve the estimation,
we provide also the results of more elaborated models of dissipation for a contamined
interface. The results are gathered in Figure 5. Alpers and Hühnerfuss [58,59] propose an
expression of the damping rate δAH (see Equations (8) to (11) in [59]), where the elasticity
is a complex number of angle −θ. By fitting the experimental damping rates for various
kinds of surfactants, they find an elasticity E varying from 11 mN/m to 46 mN/m and a
phase angle of the elastic modulus θ = 180◦. Miles derives also a damping rate δSS for a
surface film [56] (see Equation A5 in [32]), which can incorporate the shear and dilational
viscosities of the film and can be applied to the case of a soluble surfactant. This last effect
reduces the dissipation by decreasing the surfactant concentration. The rheology of a water
free surface contaminated with surfactants is not so well documented, but the interfacial
viscosities should have negligible effects on surface gravity–capillary waves in water [62].
Finally, the recent work of Rajan and Henderson provides a very complete derivation in
the case of an insoluble surfactant of known elasticity [32]. Using their expression for
large Reynolds numbers (defined as ω/(ν k2)), the slightly corrected dispersion relation
and the damping rate δRH are expressed (Equations 75(a,b,c) in [32]). If the density of
the air is neglected, δRH is equivalent to δSS for an insoluble surfactant and for negligible
interfacial viscosity. In Figure 5, we consider an example corresponding to a typical
capillary wave experiment. A rectangular tank of width W = 160 mm is filled up with
water to a height of H = 50 mm. We observe first that, at low frequencies, the wave
damping is essentially due to the dissipation on the lateral walls and on the bottom. Then,
for f & 5 Hz (E = 10 mN/m) or f & 3 Hz (E = 50 mN/m), the free-surface damping
due to the free-surface contamination dominates. The maximal damping corresponds to
twice the one for an inextensible model 2 δinex, which is predicted by the Ermakov and
Rajan/Henderson models. This maximum is also reached for lower frequencies, when the
elasticity is smaller. Then, in the domain of capillary waves, we note that, for moderate
elasticity (E = 10 mN/m), the predicted damping is close to 2 δinex, and that for stronger
elasticity (E = 50 mN/m), the damping is close to δinex. This observation is consistent
with the non-monotonous behavior of

∣∣Ur/Up
∣∣2 with E in the Ermakov model. Finally,

we remark that, in this range of parameters, the predictions of Hühnerfuss, of Miles, and of
Rajan/Henderson are nearly indiscernible.
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Figure 5. Damping rates of surface waves for a surfactant-contaminated free surface. The values
are computed for water with a surface tension γ = 60 mN/m, a density ρ = 998 kg·m−3, and a
kinematic viscosity ν = 10−6. The fluid height is H = 50 mm, and we consider a rectangular tank
of width W = 160 mm. The film elasticity is taken to be (a) E = 10 mN/m or (b) E = 50 mN/m .
δWB is the damping rate due to the walls and the bottom. δWB is added to all the following damping
rates to have the estimation of the total dissipation. δ is the damping rate for a clean free surface.
δinex is the inextensible film model. δAH , is the model according to Alpers and Hühnerfuss, with a
phase angle of the elastic modulus θ = 176◦ [58,59]. δErm (Equation (71)) is the model according
to Ermakov [60]. δSS is the surfactant–surface model for an insoluble surfactant and the negligible
shear and dilational viscosities of the surfactant film [32,56]. δRH is the model according to Rajan
and Henderson for large Reynolds number and neglecting the air density (see Equation (75) in [32]).
For f > 7 Hz, the expected damping rate is well approximated by 2 δinex when E = 10 mN/m (a),
and by δinex when E = 50 mN/m (b).

The application of these results to the experiments nevertheless presents some dif-
ficulties. When a specific surfactant is added in a controlled way to the water, the wave
attenuation is well described by the model of Hühnerfuss [59,62]. In a mixture of water
plus commercial paint, the film elasticity is found to be E = 33 mN/m [54]. For various
natural seawater samples, the film elasticity E varies between 17 and 30 mN/m, whereas
the static surface tension remains close to 70 mN/m [62]. In experiments in which water
filtration and surface cleaning have been performed, the free surface becomes contaminated
due to contact with the atmosphere in a few hours [51,55]. The chemical nature of the
surfactant and the corresponding surfacic concentrations are not known. However, for a
contaminated water free surface in contact with the atmosphere, the measurement of the
decay rates show, for gravity–capillary waves and capillary waves, a satisfying agreement
with the inextensible film model [51,52,63], which corresponds to a surface elasticty E larger
than 40 Nm/m. Therefore, to describe the experiments in laboratory settings with water,

we propose to approximate the surface damping rate to be δinex =

√
ν ω

2
kg

2
. The knowl-

edge of the surface elasticity and of the interfacial viscosity are, then, not necessary. We note
that all these derivations of the viscous damping rates correspond to a linear dissipation,
which supposes small-enough amplitudes. Dias et al. [31] demonstrate that the viscous
damping for a clean surface δ = 2 ν k2 can be added to the nonlinear Schrödinger equation
describing the modulations of gravity waves. However, Henderson and Segur [53] state
that the inextensible film model is intrinsically linear. The condition of vanishing tangential
velocity is indeed incompatible with the kinematic boundary condition (Equation (5)).
Finally, in an experiment with Faraday standing waves, Henderson [64] found that the
measurement of damping rates is unaffected by the presence of surfactants for waves of
large amplitudes.

3.3. Meniscus Dissipation

Finally, an additional source of dissipation of a surface in a closed basin is caused by
the dissipation at the triple contact line between air/liquid/solid along the solid walls.
The fluid dynamics, due to the free-surface oscillation at the vicinity of the meniscus, is very
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complex for a pinned or sliding contact line, and is most often neglected. We present here
one of the simplest results, due to Miles [56], for a simple case for a sliding contact line at
a velocity smaller than the typical velocity of the flow valid for small-wave amplitudes.
The capillary hysteresis implies an effective frictional force per unit length of meniscus:

F =
1
2

γ | cos θR − cos θA| = K γ , (73)

with θA and θR being the contact angle of advance and recession, and K being a constant
which depends on the wetting properties of the tank walls (K = 0 for perfect wetting and
K ≈ 0.6 for water on a plexiglass substrate). The induced wave damping rate δL can be
obtained by computing the power F times the vertical wave velocity w, integrated along
the contact line divided by two-times the kinetic energy of the wave (computed with the
linear potential flow solution). For a surface wave of amplitude η0 propagating along a
rectangular basin of length L and width W, ones obtains, for the largest eigenmode of
wavelength λ = 2 L:

δL =
32 K γ

ρ W L η0 ω

(
1 +

π W
2L

)
tanh(k H) . (74)

This damping rate decreases with the wave amplitude η0 and the channel width W,
which justifies neglecting it for sufficiently large container sizes and wave heights. We note
that the attenuation of the waves due to the dissipation at the contact line constitutes an
active research subject [65], particularly in the case of sloshing dynamics [66,67], to take also
into account the viscous dissipation inside in the meniscus. Moreover, a recent work [68]
demonstrates that the pinning of the contact line creates, in narrow channels, a shift of the
dispersion relation, because the pinned contact lines induces a additional restoring force on
the wave propagation.

4. Orders of Magnitude of the Damping of Gravity–Capillary Waves and
Consequences for Time Scale Separation

We provide some orders of magnitude of the damping rates for a typical gravity–capillary
wave experiment. We consider water as liquid with a surface tension γ = 60 mN/m, a density
ρ = 998 kg m−3, and a kinematic viscosity ν = 10−6 m2 s−1. This value of γ = 60 mN/m
corresponds typically to experiments in presence of surface contamination, when the mea-
sured dispersion relation is used to fit γ. The orders of magnitudes are slightly dependent
on the exact values of these parameters. We first consider a gravity wave of frequency
f = 5 Hz generated in a rectangular plexiglass tank of width W = 160 mm and filled to a
height H = 50 mm with water, which gives 1/δ = 55 s, 1/δWB = 40.3 s, 1/δinex = 5.29 s,
and 1/δL = 0.284 s (for an amplitude η0 = 1 mm and K = 0.6). The total damping rate is
given by δT = δWB + δinex + δL because the clean surface and the inextensible film model
correspond to two different and incompatible conditions for the velocity field at the free
surface, the cancellation of tangential stresses for the first, and the nullity of the tangential
velocity. We obtain 1/δT = 0.27 s; the dissipation due to the contact line’s effect is, thus,
dominant for these experiments. However, the model of Miles for describing the dissipa-
tion for a sliding contact line remains approximate. Then, we consider a capillary wave of
frequency f = 15 Hz propagating in the same tank. In that case, there is no estimation of
the dissipation at the contact line for waves whose wavelength are very small in front of the
tank size. Moreover, a recent experiment demonstrates that the reflection coefficient of such a
wave depends strongly on the wetting conditions at the wall [69]. An increased dissipation
at the reflection due to the motion of the meniscus should occur. This effect has not been
investigated in the literature and would deserve supplementary experiments. Then, we have
1/δ = 2.73 s, 1/δWB = 23.3 s, and 1/δinex = 0.681 s, which gives a total damping time of
1/δT = 1/(δWB + δinex) = 0.662 s. The condition of weak damping of the surface waves
writes ω = 2π f � δT. In that case, ω = 94.3 s−1 and δT = 1.51 s−1. The separation of scale
is, thus, valid for the linear propagation of the surface waves. This condition remains true even
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at very high frequencies for fluids whose viscosity is similar or less than water. The dissipation
has, thus, a secondary influence in the propagation of the surface waves. A wave decreases
typically on a damping length or attenuation length latt = vg/(δWB + δinex), but keeps a
structure close to the one derived for an inviscid fluid. This length is plotted as a function of
the frequency of the wave in Figure 6a. This length decreases with frequency and is about
10 cm for f = 20 Hz and 3 cm for f = 100 Hz. Consequently, in this domain belonging to
capillary waves, the waves propagate on a distance of few centimeters from the wave-maker,
except if they are produced homogeneously, for example, by using the Faraday instability [70].
In fact, for frequencies above 10 Hz, the waves propagate on a distance equivalent to 10 wave-
lengths or less on all the capillary ranges. Therefore, realizing the homogeneous field of
capillary waves is difficult experimentally. Even in the intermediate regime between gravity
and capillary waves, 7 < f < 15 Hz, the dissipation is considerable. This strong damping rate
explains why, in nature, the capillary waves are restricted to wave-trains of a few wavelengths,
i.e., ripples.

We consider now the nonlinear effects in a broad approach. If we consider the case
of three-wave interactions, a typical nonlinear time can be derived from Equation (36).
This time corresponds to the typical time of evolution of the wave envelope due to the three-
wave interaction. We define, thus, 1/τNL = 1

4 η0 k ω, with η0 being the typical amplitude
of the wave. This estimation is valid for waves of close frequencies. The exact value
depends on the precise angular frequencies ωs composing the triad, and on the initial
amplitudes As, but the discussion would remain the same. In Figure 7, we compare the
inverse of this nonlinear time 1/τNL to ω and the total damping rate. In a first step, we can
estimate 1/τNL = 1

4 s ω, where s = η0 k is the wave steepness. We display the cases for
s = 0.1 and s = 0.25, which do not correspond already to a weakly nonlinear situation.
For the first, the curve intersects the damping rate curve for f ≈ 60 Hz, which means
that three-wave interactions cannot occur at high frequencies. The wave is damped in
the same amount of time as the one needed to be significantly modified by the nonlinear
interaction. For s = 0.25, the curve remains above the damping rate curve, but there
is not a real scale separation between δT , 1/τNL and ω. For example, at f = 15 Hz,
1/τNL = 5.9 s−1, which is four-times δT and 1/16 of ω. In a second step, we estimate the
nonlinear time 1/τNL = 1

4 η0 k ω differently by choosing η0 = 1 mm, which seems more
relevant at low frequencies but less in the capillary wave regime, where the corresponding
steepness would be very large. In that case, in the range [0, 10]Hz, the occurrence of a three-
wave nonlinear interaction with a moderate steepness and a satisfying scale separation
becomes possible. Therefore, for capillary surface waves and gravity waves close to the
crossover, the viscous dissipation cannot be neglected in the study of the nonlinear wave
interactions. These orders of magnitude have been derived for a contaminated free surface,
for which the viscous dissipation is strongly increased. Finally, we argue that in natural
situations at the surface of seas, lakes, and rivers, the free surface is always contaminated.
The capillary ripples which are seen in everyday life are, thus, always strongly influenced
by the enhanced surface dissipation due to the presence of surfactants.
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Figure 6. (a) Attenuation length latt = vg/(δWB + δinex) as a function of the frequency f of the wave.
vg is the group velocity, δWB is the the damping rate due to wall and bottom friction (Equation (56)),
and δinex is the damping rate according to the inextensible film model in presence of contamination
(Equation (72)). (b) Ratio of the attenuation length with the wavelength latt/λ as a function of the
frequency f . Capillary waves are typically damped on a length of about 10 wavelengths.
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Figure 7. Comparison of different inverse characteristic times in the propagation of surface waves.
Blue ω is the angular frequency of the wave. Black δT = δWB + δinex is the total damping rate or
the inverse of the dissipation time. Magenta 1/τNL is for a steepness s = 0.1. Red 1/τNL is for a
steepness s = 0.25. Green 1/τNL is for a wave amplitude η0 = 1 mm (the curve is not displayed if the
steepness exceeds 1). We observe that a significant level of nonlinearity is required for the nonlinear
interactions to overcome the viscous dissipation. Consequently, the scale separation between 1/τNL

and ω is reduced.

5. Consequences of Wave Dissipation on Finite Size Effects

We have shown previously that gravity–capillary waves of frequencies above 10 Hz
are subjected to a significant damping due to viscous dissipation, when the free surface is
contaminated with surfactants (nearly always in laboratory experiments with water and in
the field). Using a simplified model, we show the effect of the wave decay on the spatial
distribution of the waves in linear regime. In particular, we demonstrate that the viscous
wave dissipation limits or even prevents the wave quantization phenomenon, which is
expected when the wave field is confined in a finite-sized container. This study has been
published previously in one of our previous articles [71], and is reproduced here with a
correction which does not change the conclusions. We consider a one-dimensional domain
along Ox between x = 0 and x = L, limited by rigid walls. An initial monochromatic surface
wave of wavenumber k and angular frequency ω is continuously injected in x = 0, with an
amplitude A0. The motion of the wall creating the wave is supposed as sufficiently small
to be neglected. Due to linear viscous dissipation, the wave decays spatially with a rate
β = 1/latt. The wavelength is supposed to be small in front of the typical dissipation length
1/β and the system length. The initial free-surface deformation writes, using complex
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formalism, η0(x, t) = A0 e−β x ei(ωt−kx). When the wave reaches the position x = L,
to vanish the horizontal velocity at any time, it can be shown that a reflected wave labelled
1 is created, propagating backward with the same amplitude as the incident wave. The wave
1 is then reflected in x = 0 to create the forward wave 2, and so on and so forth. The total
free-surface deformation can be expressed in a stationary regime by the sum:

η(x, t) = A0 e−β x ei(ωt−kx) +A1 e−β (L−x) ei(ωt+kx) +A2 e−β x ei(ωt−kx) +A3 e−β (L−x) ei(ωt+kx) . . . (75)

with the following relations between the wave amplitudes:

A0 e−β L e−ikL = A1 eikL , (76)

A1 e−β L = A2 , (77)

A2 e−β L e−ikL = A3 eikL , (78)

. . .

Then, the amplitudes of forward and backward waves are written, respectively, as:

A2p = A0(e−2βL e−2ikL)p , A2p+1 = A1(e−2βL e−2ikL)p . (79)

Consequently, η can be seen as the sum of two geometric sequences with the same
ratio e−2βL e−2ikL. By taking the infinite limit in the sum, such as in a N-wave interference
problem, we obtain:

η(x, t) =
A0

1− e−2βL e−2ikL

(
e−β x ei(ωt−kx) + eβ x e−β(L−x) e−2ikL ei(ωt+kx)

)
. (80)

The space and time average amplitude is obtained by taking the square root of the
product of η with its complex conjugate. After some algebra, we obtain:

〈η〉 =
√

η η∗ =

(
1− exp(−2 β L)

2 β L

)1/2


A2

0
1 + e−βL

1− e−βL

1 + 4
e−βL

(1− e−βL)2 sin2(kL)


1/2

. (81)

The dependency of 〈η〉 with the wavenumber k is plotted in Figure 8a for varying
dissipation levels. The attenuation length latt = 1/β is used to facilitate the comparison
with the system size. The solution is analogous to the resonance of a cavity in which
a wave is injected. When dissipation is small or latt is large, resonance occurs for the

eigenmode of the system given by the condition k =
p π

L
, with p being a positive integer.

The peak amplitudes saturate due to the non-zero dissipation. If dissipation is increased,
the attenuation length decreases and the width of the peaks increases, as can be seen in
Figure 8b. For latt . 0.4 L, the width becomes comparable with the distance between peaks,
and they become indistinguishable. 〈η〉 is, thus, nearly flat for latt = 0.2 L in Figure 8a.
These results can be applied to the experimental situation by taking L = 0.165 m, using the
dispersion relation (Equation (19)), and expressing latt = vg/δinex given by Equation (72).
The average wave amplitude 〈η〉 is displayed as a function of the frequency of the injected
wave in Figure 8c. Resonance, due to the finite size of the tank, becomes insignificant
for f > 10 Hz, and is, thus, in the capillary regime. This simple model shows that the
quantization of the wavenumbers in a finite-sized domain is a limit result for vanishing
viscous dissipation in presence of forcing. The eigenmodes are indeed stationary wave
solutions in a free regime (without forcing by a wave-maker), and are obtained by applying
a Helmholtz equation to the domain. With forcing and small dissipation, these modes are
created physically by an interference process due to the multiple reflections of the waves
on the domain boundaries. In presence of significant dissipation, the container modes
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are less defined, or even disappear completely, when the waves are damped too much
during their propagation to feel the boundaries. Experimentally, energy dissipation at the
reflection in a capillary wave regime, due to the motion of the contact line, increases the
total amount of dissipation even more, and the wave-mode quantization becomes even
less observable. Moreover, we note that, in a recent laboratory study of the confinement
of gravity laboratory waves in the range 1 < f < 8 Hz, the discretization is reported in
the transverse direction only for a sufficient lateral confinement [72]. Only the nonlinear
broadening of the modes is taken into account. An estimation of the mode widening due to
viscous dissipation may be useful to explain the absence of discretization for a too-large
distance between the walls.
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Figure 8. (a) 〈η〉/A0 as a function of kL/π for different levels of wave dissipation, quantified by
the attenuation length latt = 0.2 L (blue dashed line), latt = 2 L (cyan dotted line), latt = 20 L
(green dashed-dotted line), and latt = 200 L (red plain line). Here, latt is varied independently
of k to simplify the discussion. For a small-enough dissipation wavenumber quantization for k,
a multiple of π/L is found. (b) Half width at half maximum of the resonant peak as a function of
latt. (c) 〈η〉/A0 as function of the wave frequency using the following parameters: container size
L = 165 mm, the gravity–capillary wave dispersion relation, and increasing dissipation rate with
frequency, according to the inextensible film model δinex. Wave-mode quantization disappears above
f > 10 Hz.

6. Consequences of Dissipation on Three-Wave Interactions between Surface Waves
6.1. Experimental Study of Three-Wave Interactions of Waves

In two previous articles [42,63], we studied experimentally the three-wave interac-
tion mechanism for non-collinear injected waves and frequencies in the range [10, 50] Hz,
i.e., for waves whose main restoring force is the capillarity, but for whom the gravity is not
completely negligible. The configuration corresponds to Figure 9. Using a space-time mea-
surement, the diffusing light photography method [73], we evidenced in Haudin et al. [63]
that in resonant conditions, the crossing of two mother wave trains (1 and 2) of frequencies
f1 and f2 creates a daughter wave (3) consistent with the three-wave resonant interaction
theory [8,14,43]. We verified experimentally the resonant conditions:

f1 + f2 = f3 and k1 + k2 = k3 . (82)

However, the resonant conditions associated with the linear dispersion relation im-
poses a specific angle between the mother waves once the frequencies f1 and f2 are chosen.
In these conditions, we have shown that the amplitude of the daughter wave results from
the balance of nonlinear growth and viscous dissipation [63]. From the amplitude equations
of the triad component [15], we obtain for the daughter wave 3:

vg3 ∂a3/∂ξ = −δ3a3 + a1a2 γ3 sin φ , (83)

with vg3 being the group velocity of wave 3, ξ being the spatial coordinate along the wave
3, ai being the wave amplitude of the component of the triad (dimension of a length),
φ = φ1 + φ2 − φ3 being the phase between the waves, and γ3 being the interaction coeffi-
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cient or the nonlinear growth rate, which can be computed analytically [43]. This equation
can be integrated with the hypothesis of constant mother wave amplitudes and the bound-
ary equation a3(ξ0) = 0:

a3(ξ) =
γ3 sin φ

δ3
a1a2

[
1− exp

(
− δ3

vg3
(ξ − ξ0)

)]
(84)

At short distances or for weak dissipation, a3 grows linearly with ξ, but saturates

for sufficient distances to a3 sat(ξ) =
γ3 sin φ

δ3
a1a2, resulting from the competition between

nonlinear growth and dissipation. The factor K(ξ) expresses the spatial dependency of the
wave 3:

K(ξM) = 1− exp
(
− δ3

vg3
ξM

)
(85)

This analysis has been validated by dedicated local measurements, such as those
depicted in Figure 10. We obtained, for the triad (15, 18, 33) Hz, an experimental es-
timation of the nonlinear interaction coefficient γ3exp = 1.46 × 104 m−1 s−1, which is
20 % more than the theoretical value γ3 = 1.24× 104 m−1 s−1. For the triad (16, 23, 39)
Hz, we find γ3,exp = 1.22× 104 m−1 s−1, which is 13% less than the theoretical value
γ3,th = 1.41× 104 m−1 s−1. The orders of magnitude are satisfying given the hypotheses
made, showing that the dissipation is required to explain the amplitude of the capillary
waves produced by wave interactions.

Figure 9. (a) Schematic view of the interaction zone between the two mother waves 1 and 2. O is the
origin of this zone and M locates a point in this area along the direction Oξ , given by kp = k1 + k2.
The two mother waves cross with an angle α1 2. A wave 3 is created in the interaction zone by the
quadratic nonlinear interactions between the waves 1 and 2. (b) Picture of the experimental setup
to characterize three-wave interactions of capillary–gravity waves. The red spot corresponds to the
measurement point using the laser vibrometer. A small amount of titanium dioxide has been added
to distilled water so that the free surface scatters the laser light.
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Figure 10. Rescaled amplitude of the daughter wave a3 as a function of the product of the mother
wave amplitudes a1 a2. The frequencies of the triad are f1 = 15 Hz, f2 = 18 Hz, and f3 = 33 Hz,
and the angle between the mother waves is α12r = 54 deg. The rescaling involves φ = φ2 − φ2 − φ3 ≈
π/2—the measured phase locking between the triad components, δ3—the damping rate of the wave
3 given by the inextensible film model (Equation (72)), and a propagation factor K(ξ), depending on
the measurement point (Equation (85)). The slope of the line provides the experimental value γ3 of
the growth rate of the wave 3. The amplitudes and the phases are measured with a laser vibrometer.
(Reprinted with permission from Ref. [63] Copyright 2022 American Physical Society).

6.2. Forced Three-Wave Interactions of Gravity–Capillary Waves

Then, in a second article [42], we studied the three-wave interaction mechanism
of gravity–capillary waves, in the case where the angle between the mother wave is
not the resonant angle α12r. Surprisingly, we found that daughter wave 3, verifying the
resonant conditions, is always detected, but the wavenumber k3 is slightly shifted from the
linear dispersion relation. Examining the nonlinear perturbation of the free surface at the
lowest order [41], we proposed a model explaining our observations as forced three-wave
interactions. According to the amplitude equations, we found that the quadratic nonlinear
response always allows a three-wave interaction for all angles α12 between the mother
waves, with a maximal response for α12 = α12r. In the resonant case, the wave 3 grows with
the origin (begining from the interaction zone), and at long distances, it diverges in absence
of dissipation such as the resonance of a forced oscillator. In contrast, when α12 6= α12r,
the amplitude of the wave 3 is spatially modulated, similarly to the case of non-resonant
interactions (see Section 2.7), as is shown in Figure 11. The angular band-pass response
defined as the full width at half maximum decreases with the propagation distance ξ and
increases with the dissipation rate of the wave 3.

These predictions have been confronted with dedicated experiments, as shown in
Figure 12. The measurements are in reasonable agreement with the model and validate it
qualitatively. The deviations occur likely because the model supposes, again, a constant
mother wave amplitude to be solvable analytically.
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Figure 11. Prediction of the model of a forced three-wave interaction according to Cazaubiel et al. [42].
(a) Normalized amplitude |η3(ξ)/|η1 η2| as a function of ξ, for various values of the angle α1 2 between
the two mother waves. (b) Normalized amplitude |η3(ξm)|/|η1 η2| evaluated in ξm = 0.12 m as a
function of α1 2 for various values of the dissipation rate (δ3 = 4.25 s−1 is the expected dissipation at
f3 = 33 Hz in the experiments). The curve for negative values of α1 2 is symmetric to the displayed
one, due to the parity of the interaction coefficients with α1 2. (c) Amplitude of the daughter wave
|η3(ξm)| (normalized by |η1 η2|) as a function of α1 2 for various values of the propagation distance
ξm for a dissipation rate δ3 = 4.25 s−1. (Reprinted with permission from Ref. [42] Copyright 2022
American Physical Society).
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Figure 12. From Cazaubiel et al. [42]. (a) For the triad f1 = 15, f2 = 18 and f3 = 33 Hz; spatial
evolution of the daughter wave amplitude a3 rescaled by the product of the average amplitude of
the mother waves 〈a1〉d1

〈a2〉d2 as a function of ξ, the distance to the beginning of the interaction
zone for α1 2 = 40 ◦. The amplitude of the mother waves have been averaged on the study domain.
The theoretical solution in the dashed line is given by the amplitude equation for the daughter wave.
(b) Local value of the daughter wave amplitude a3, rescaled by the product of the mother wave
amplitude a1a2 for ξ = 80 mm a3(ξ = 80 mm), depicted as a function of α1 2. Blue +—rescaling by
the average amplitude of the mother waves inside the interaction zone. Red ×—rescaling by the
local amplitude of the mother waves a1(ξ = 80 mm) a2(ξ = 80 mm). The typical variation between
the points is about 20%. The prediction of the model for ξ = 80 mm is plotted in dashed black line.
(Reprinted with permission from Ref. [42] Copyright 2022 American Physical Society).

6.3. Energy Flux for a Non-Resonant Three-Wave Interaction

Here, we provide a theoretical estimation of the energy flux created by a single three-
wave interaction in a non-resonant case. In most of the studies, non-resonant interactions
are ignored. However, in presence of dissipation, they can contribute on average to the
global energy flux from large to small scales for capillary–gravity waves, due to the finite
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lifetime of the waves. Here, we consider a simplified case of a triad, where a daughter wave
is forced by two homogeneous and constant mother waves. We supposed a homogeneous
wave field for all the components of the triad, although we know that this hypothesis is not
experimentally realistic for surface waves. For a non-resonant triad, an amplitude equation
can be written for the wave envelopes Ai under this form:

dA3

dt
+ δ3 A3 = i γ3 A1 A2 ei δω t , (86)

where δ3 is the linear dissipation coefficient of the wave 3, γ3 is the interaction coefficient,
and δω is the mismatch to the exact resonance in frequency. The resolution of this differential
equation gives, using the initial condition A3(t = 0) = 0:

A3(t) =
γ3 A1 A2

δω − i δ3

(
ei δω t− e−δ3 t

)
. (87)

Then, we compute the daughter wave intensity as I3 = 1
2 A3 A∗3 :

I3(t) =
(γ3 A1 A2)

2

2 (δ2
ω + δ2

3)

[
1 + e−2δ3 t−2 e−δ3 t cos(δω t)

]
. (88)

The wave energy per surface and density unit reads E3 =
1
2

ω3 vφ,3 I3 [43]. In absence
of dissipation, the associated energy flux transmitted by the mother waves to the daughter

wave is defined as ε3 =
dE3

dt
. Here, as shown previously in Section 6.1, the dissipation can

saturate, in a stationary regime, the energy flux; we must then include the damping of the

energy in the expression of the flux ε3 =
dE3

dt
+ 2 δ3 E3.

After some algebra, we find:

ε3(t) =
ω2

3
2 k3

(γ3 A1 A2)
2

δ2
ω + δ2

3

[
δ3 + e−δ3 t (δω sin(δω t)− δ3 cos(δω t))

]
. (89)

The time evolution of ε3, rescaled by (γ3 A1 A2)
2, is displayed in Figure 13 for a few val-

ues of δω . The parameters of the daughter wave correspond to a capillary wave of frequency
f3 = 33 Hz, wavenumber k3 = 834 m−1, and dissipation rate δ3 = 4.25 s−1. The energy flux
grows with time to saturate to a finite value whose amplitude decreases with the distance
to the exact resonance δω . A few oscillations are visible for the largest values of δω . They are
characteristic of non-resonant interactions, but for this level of dissipation, they are signif-

icantly damped. In the limit δ3 = 0, we note that ε3(t) =
ω2

3
2 k3

(γ3 A1 A2)
2

δ2
ω

[δω sin(δω t)].

The average flux is, thus, 0, except in the limit of the exact resonance, when δω → 0,

where ε3(t) ∼
(γ3 A1 A2)

2

2
t. The energy flux for a stationary forcing grows linearly with

time because the energy of the daughter wave increases in t2 with time.
Coming back to the dissipative case, Equation (89) shows that the flux converges

towards a finite value over a long period of time:

ε3 ∞ =
ω2

3
2 k3 δ3

(γ3 A1 A2)
2

1 + (δω/δ3)2 (90)

We plot, in Figure 13b, ε3 ∞/(γ3 A1 A2)
2 as a function of δω for a few values of δ3.

We find, again, a classic resonance phenomenon: the energy transfer is maximum for δω = 0
and the bandwidth of the resonance is proportional to the dissipation δ3, which justifies
the use of the resonance terms for wave interactions. According to this simple model,
the contributions of the non-resonant interactions to the energy flux is non-negligible,
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i.e., ε3 is larger than 1/10 of the value obtained at the resonance δω = 0 if δω . 3 δ3.
Therefore, for real systems with dissipation, the non-resonant interactions must be taken
into account if the mismatch to the resonance in angular frequency is of the order of the
damping rate due to dissipation. The distinction between non-resonant and quasi-resonant
interactions is, then, in some ways arbitrary.
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Figure 13. (a) ε3/(γ3 A1 A2)
2 as a function of t δ3 for a few values of δω using Equation (89). The pa-

rameters of the daughter wave correspond to a capillary wave of frequency f3 = 33 Hz, wavenumber
k3 = 834 m−1, and dissipation rate δ3 = 4.25 s−1. (b) ε3 ∞/(γ3 A1 A2)

2 as a function of δω for a few
values of δ3, according to Equation (90).

To conclude this section, whereas the study of resonant interactions among waves
started around 1960, we have shown that, in experiments where the dissipation is non-
negligible, the physical description is incomplete. Experimentally, we evidence the gen-
eration of capillary waves by the three-wave resonant mechanism, with an interaction
coefficient which is reasonably close to the one given by the weakly nonlinear inviscid
theory. However, the significant dissipation implies important changes. First, the daughter
waves are saturated by the viscosity instead of by the nonlinear coupling with other waves.
Secondly, the amplitude of the mother waves decays by viscous damping, making the
application of the models more questionable. Then, the bandwidth response of the free
surface to excitations is increased by the dissipation and by the short distance of observa-
tion. The free surface being less selective, we can experimentally observe waves created by
the forced three-wave mechanism not obeying the dispersion relation, or waves generated
by a non-resonant interaction mechanism. This statement has important consequences
for the statistical study of interacting waves, the wave turbulence discussed in the next
section. To improve the physical description of the problem of nonlinear interacting waves
in presence of dissipation, the development of dedicated numerical simulations will be
a good complement. Likely more mathematically involved, substantial progress on this
problem would consist of building a weakly nonlinear theory of interacting waves, taking
into account the dissipation. For surface waves, a starting point could be to decompose
the velocity field into an irrotational part given by the velocity potential and a solenoidal
part (divergence free) derived from the curl of a vector field, which is called the Helmholtz
decomposition and is used to compute the wave damping rates [24]. Using this method,
Dias et al. have shown that in cases of weak damping, the nonlinear Schrödinger equation
describing the envelope dynamics of surface gravity waves is simply modified by adding a
simple classic damping term [31].
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7. Consequences of Dissipation on the Capillary Wave Turbulence

Wave turbulence consists in the statistical study of a large set of dispersive waves ran-
domly distributed and in nonlinear interactions, like in the disordered sea states depicted
in Figure 14.

Figure 14. (Left) A picture of a typical sea state, with moderate wind. The surface appears disordered
due to the propagation of numerous interacting waves of various scales. The wave turbulence theory
proposes a quantitative description of this state, with the hypothesis of weakly nonlinear waves,
negligible wind forcing, dissipation acting only at small scales, etc. However, we note the presence of
sharp crested waves and of a few whitecaps (foam) at the top of some waves. (Right) A small-scale
picture of surface waves. Capillary waves are superposed with the larger gravity waves and provide
a small-scale roughness.

In the theoretical approach, the wave field is decomposed into modes in the Fourier
space, which interact and exchange energy with each other through nonlinear wave interac-
tions. If these interactions are sufficiently weak to be treated as perturbations, the statistical
description of the wave field in the Fourier space becomes possible. The wave turbulence
theory or the weak turbulence theory started in the 1960s, when power law spectra were
obtained by Vladimir Zakharov [74] for water waves [75,76] or magnetohydrodynamic
waves in plasmas [77], expressing the self-similar transfer of a conserved quantity through
the scales. Using a Hamiltonian approach and making some hypotheses of the randomness
of the wave field, in particular the random-phase approximation (this hypothesis appears
robust in experiments and simulations because the nonlinear dynamics often randomizes
the wave field), a kinetic equation expresses the dynamical evolution of the number of
quasi-particles nk occupying the level of the wave vector k due to the nonlinear wave
interactions [13]. Assuming a dispersion relation under the form of a power law, Zakharov
was able, using a conformal transformation, to find analytically two stationary solutions of
the kinetic equation under the form of power law spectra. A first one, the Rayleigh–Jeans
spectrum, corresponds to the thermodynamic equilibrium, without global energy transfer
on average. The second solution is out of the thermodynamic equilibrium, describing the
turbulent regime where a conserved quantity, often an energy flux, is transferred from an
injection scale towards a dissipation scale; this is the Kolmogorov–Zakharov spectrum.
Such spectra have been derived for three-wave interactions or four-wave interactions
in nearly all physical situations where nonlinear waves propagate, the medium being
isotropic or anisotropic. Independently in the same period, David J. Benney, Philip G.
Saffman, and Alan C. Newell [78,79] contributed to the statistical closure of the hierarchy
of the kinetic equations, and Klaus Hasselmann proposed a statistical approach of oceanic
gravity waves interacting by four-wave interactions but without deriving the constant
energy flux spectra [80]. For a complete treatment and further information, we refer the
reader to consult the reference books [12,13] and rewiews [81,82].
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The observation of wave turbulence requires, thus, the condition of weak nonlinearity,
which supposes a small, dimensionless, nonlinear parameter (the steepness for water
waves). This condition is judiciously expressed in the temporal space by expressing that
the typical time of a nonlinear interaction τNL must be large compared to the linear time
τL = 1/ω, i.e., a wave must be able to interact during several periods to conserve its linear
structure, before its energy is transferred to other wave modes. In presence of dissipation,
the wave damping time τdiss must, in addition, be large enough to permit a sufficient
number of interactions in order to randomize the wave field and reach the statistical
regime. A necessary condition of existence of the wave turbulence reads, then, as a time-
scale separation condition: τL � τNL � τdiss. We discussed previously, in Section 4,
this condition in the case of gravity–capillary waves subjected to three-wave interactions.

The turbulence of water surface waves constitutes indeed the most obvious case of the
application of the wave turbulence theory. It has deserved several careful experimental
investigations since the end of 20th century (see the review works of S. Nazarenko and
S. Lukaschuk [82] and of E. Falcon and N. Mordant [83] for a recent overview of the
experimental literature). The wave turbulence theory predicts analytic expressions of
spectra corresponding, for the non-equilibrium solutions, to a transfer of a conserved
energy flux ε, from an injection scale to a dissipative smaller scale for the direct cascade.
Spectra are expressed as power laws of k in space and of ω in time with known exponents.
In the case of pure gravity waves, for which four-wave resonant interactions are the main
nonlinear wave interaction process, the power spectra of the wave elevation η(x, t) read,
in space and time [76]:

Sη(k) = C(g k)
KZ ε1/3 g−1/2 k−5/2 , (91)

Sη(ω) = C(g ω)
KZ ε1/3 g ω−4 . (92)

In contrast, for pure capillary waves, where nonlinear wave interactions occur at the
first order through three-wave resonant interactions, the theoretical spectra are expressed
as [75]:

Sη(k) = C(c k)
KZ ε1/2 (γ/ρ)−3/4 k−15/4 , (93)

Sη(ω) = C(c ω)
KZ ε1/2 (γ/ρ)1/6 ω−17/6 . (94)

A complete derivation for pure capillary waves can be found in the recent review of S.
Galtier [84]. As the dispersion relation must be written as a power law in the theoretical
derivation, there is no prediction for gravity–capillary waves in the vicinity of the crossover
kc = 1/lc. Note that the spectra can be deduced from the dimensional analysis and the
dispersion relation, knowing that the scaling of ε is set by the order of the resonant inter-
action (an N waves process implies an energy flux scaling under the form: ε1/(N−1)) [85],
but without the values of the dimensionless Kolmogorov–Zakharov constants CKZ. At the
cost of some algebra work, wave turbulence theory provides, indeed, the values of the
constants for pure gravity [86] and pure capillary [40,87] waves. Contrary to gravity waves,
which admit an inverse cascade of wave action [13], an out-equilibrium spectrum corre-
sponding to an inverse cascade is not possible for capillary waves. The equilibrium solution
of wave turbulence can explain the spectrum filling for a forcing at small scales [88]. The va-
lidity of the wave turbulence theory for the direct cascade of pure capillary waves has been
extensively tested numerically, using simulations of the Zakharov Hamiltonian formulation
of water waves [40,89], a direct numerical simulation in the context of potential flow (Euler
equation) [87,90,91], and direct numerical simulations of the Navier–Stokes equation with
a liquid–gas interface [92].

Experimentally, in the capillary wave regime, several independent studies reported
observations of the spectra exponents given by the wave turbulence theory [73,93–97].
Most of the previous laboratory works have tried to isolate capillary wave turbulence
from the gravity wave regime by using a parametric forcing [73,93,94,97–99], by operating
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under microgravity [96], or by studying waves at the interface between two fluids of the
same density [100]. However, capillary waves occurring in natural situations, at the free
surface of open spaces of water, are mainly generated from gravity waves, themselves
produced by wind action [10]. Three-wave interactions for frequencies close to the gravity–
capillary crossover are indeed prone to produce capillaries from gravity waves [5,101].
Previous studies using random gravity waves to generate a turbulent cascade of capillary
waves [95,102–105] showed a good agreement of the spectral exponents with the predictions
of wave turbulence theory, although the crossover between gravity and capillary waves is
not described by wave turbulence theory. However, we showed, in Section 4, that for the
turbulence of capillary waves, the condition of time-scale separation is hardly met due to
the significant level of dissipation occurring in most laboratory experiments with water
and in natural conditions. Our simple estimation shows that a wave steepness s larger than
0.1 is necessary to overcome the dissipation in the capillary regime. Consequently, in these
conditions, the capillary wave turbulence does not occur in weakly nonlinear regimes and
the time-scale separation remains limited.

7.1. Capillary Wave Turbulence Forced by Gravity Waves

Using the diffusing light photography method, we performed an extensive space-
time characterization of the capillary wave turbulence forced by capillary waves [71,104].
In that case, the forcing generates random gravity waves in the frequency range [4, 6] Hz,
which creates capillary waves by nonlinear interactions, mainly by the generation of para-
sitic wave trains (Figure 15). After reconstruction of the free-surface dynamics, the spatial
power spectra and the time power spectra are computed (Figure 16). For sufficient forcing
amplitude, we report power law spectra in the capillary wave range, whose exponents
(Figure 17) are in very good agreement with the predictions of the wave turbulence theory
(Equation (94)). The power law spectra extend from the gravity–capillary crossover scale
λc ≈ 15.5 mm towards a dissipative scale λd; below that, the viscous dissipation overcomes
the nonlinear interactions. λd decreases with the forcing amplitude to reach λd ≈ 2.1 mm at
highest forcing. As a consequence of dissipation, the turbulent cascade of capillary waves
is, thus, limited to barely one decade. Moreover, the power law spectra are only observed
when the typical wave steepness σs (measured directly as the standard deviation of the
surface deformation gradient ||∇η||) exceeds a sufficient level of about 0.15. The highest
steepness s = 0.34 is set to remain below the breaking of the forcing gravity waves in order
to keep a monovalued free surface. Therefore, in agreement with the previous discussion,
the observed capillary wave turbulence regimes do not satisfy the hypothesis of weak
nonlinearity due to the significant viscous dissipation of capillary waves. The importance
of viscous dissipation has been also underlined with local measurements in another experi-
mental work studying the decaying regime of capillary wave turbulence forced by gravity
waves [103]. Although the time power spectra display the expected power law in f−17/6,
the amplitude of wave modes decreases exponentially with time and not as power laws.
These decays are explained by the viscous decay of the largest wave modes according to
the inextensible film model (Equation (72)), which shows that the dissipation occurs at all
scales and that the energy flux is not really conserved through the scales, in agreement with
local [106] and space-time [71] measurements. This statement contradicts the hypotheses of
the wave turbulence theory, which supposes negligible dissipation in the inertial range to
attribute the power law spectra to the conservation of the energy flux ε through the scales.
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Figure 15. (a) Experimental setup. Surface waves are produced by the horizontal motion of a
rectangular paddle, and the free surface is measured in space and time using diffusing light photography
(DLP). (b) Snapshot of the spatial gradient of wave elevation ||∇h(x, y)|| for at t = 1.51 s. The wave-
maker is parallel to the y-axis and located at x = −12 mm. Measurement parameters: σh = 3.6 mm
(standard deviation of the free-surface deformation) and σs = 0.34 (standard deviation of the free-
surface steepness ||∇η||) . Colorscale is dimensionless. A train of capillary waves is visible on
the forward front of the large carrier wave. (Reprinted with permission from [71] Copyright 2022
Cambridge University Press).
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Figure 16. (a) Spatial power spectra Sη(k) (power spectrum density—PSD) for different forcing
amplitudes. From bottom to top: σh =1.3, 2.1, 2.7, 3.1, 3.4, and 3.6 mm, and σs = 0.15, 0.19, 0.24, 0.27,
0.29, and 0.34. Solid black line is the capillary prediction k−15/4. λc = 2π

√
γ/(ρ g) ≈ 15.5 mm is the

crossover scale between gravity and capillary waves. λd ≈ 2.1 mm is, approximately for the highest
amplitude, the dissipative scale; below it, viscous dissipation dominates nonlinear interactions.
(b) Temporal power spectra Sη(ω) for the same measurements. Solid black line is the capillary
prediction f−17/6. fc = 14.2 Hz and fd ≈ 204 Hz are the equivalent of λc and λd in the frequency
space. Two estimates of the frequency spectrum are shown, the first by integration over the wave-
numbers of Sη(ω, k) (continuous curves) and the second by converting the spatial spectrum in the
frequency space (dot curve) using the linear dispersion relation (19). (Reprinted with permission
from [71] Copyright 2022 Cambridge University Press).
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Figure 17. (a) Sη(k)-exponents αs vs. σh (fits from 0.094 ≤ λ−1 ≤ 0.30 mm−1). Dashed line shows
the theoretical value −15/4. (b) Sη( f )-exponents αt vs. σh (fits from 20 ≤ f ≤ 100 Hz). Dashed line
shows the theoretical value −17/6. (c) Typical wave steepness σs versus the typical wave amplitude
σh. The dashed line depicts the usual estimation of steepness by σh k, with k being the wavenumber
obtained with the linear dispersion relation for f = 5 Hz (central forcing frequency). (Reprinted with
permission from [71] Copyright 2022 Cambridge University Press).

Therefore, using the space-time characterization of the wave field [71,104], we verified
that these regimes of capillary wave turbulence beyond the hypothesis of weak turbu-
lence correspond really to a wave turbulence phenomenon. The wave phases are indeed
uncorrelated, justifying the statistical treatment of the wave field using power spectra.
The maxima of space-time power spectra are gathered along a curve forming the experi-
mental dispersion relation, close to the linear dispersion of the gravity–capillary waves,
but with a notable nonlinear shift. The nonlinear time is experimentally estimated from the
width of the dispersion relation and a limited time scale separation is found (τNL ≈ τdiss/8
and τNL ≈ 5/ω). By performing a bicoherence analysis, strong occurrence of three-wave
interactions is detected, showing that the spectrum is built by three-wave interactions,
but for a large part far from the resonance. Non-resonant interactions are indeed possible
given the small size of the experiment and the significant width of the dispersion relation
due to dissipation and non-linearity. We show also that the power law spectra are built on
average by intermittent bursts of wave energy, corresponding to the generation of parasitic
capillary wave trains. Parasitic capillary wave-generation corresponds indeed to a direct
transfer of energy from a steep and long gravity–capillary wave towards a capillary wave,
which has the same phase velocity as the longer wave. This non-local and one-dimensional
mechanism is assumed to occur at quite-high non-linearity for steepnesses s larger than
0.1 [23,48,107] and is, thus, not considered as a weakly nonlinear mechanism. However,
few studies show that they could be considered in first approximations as a combination
of three-wave non-resonant interactions and, in a lesser extent, four-wave non-resonant
interactions [108,109]. Then, the exponents of the power spectra result likely from the
dimensional analysis prediction of turbulent wave spectra [85], in presence of capillary
waves following the linear dispersion relation and three-wave interactions. The scaling on
the energy flux is indeed determined by the order of the wave interactions. This “strong”
regime of capillary wave turbulence differs in principle from the weakly nonlinear scenario
of the theory, when the time scale separation is large and the interactions are local in the
scales, i.e., involving close wavenumbers. We note that, using purified and filtered water to
keep a dissipation level close to the case of uncontaminated water and a lower steepness
level (below 0.1), the capillary cascade with the exponent −17/6 is not generated [44]. Simi-
lar experiments [102] show that the turbulent capillary wave spectrum is observed only for
the high forcing (regime I), when the steepness is of the order of 0.3. For the works using
mercury as a fluid of lower kinematic viscosity and a local capacity wave probe [95,110],
due to the smaller dissipation, the capillary wave cascade is observed for steepness of
order 0.1. Moreover, in these conditions, the signal displays bursts of capillary wave trains
on steep gravity waves [111], which resemble the generation of parasitic capillary waves.
We note also that in other systems, such as gravity surface waves [55,105,112] or bending
waves in metallic plates [113,114], the exponent of wave spectra decreases when the dissi-
pation level is increased or the forcing amplitude is decreased. Here, the independence of
the spectral exponent with the forcing for the “strong” regime of capillary wave turbulence
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may be due to the high level of nonlinearity and the non-locality of interactions, but a
definitive explanation remains to be provided.

7.2. Turbulence of Pure Capillary Waves in Microgravity

By performing experiments in weightlessness, without gravity, wave turbulence for
pure capillary waves can be achieved. Numerical simulations [89,90,92] demonstrated the
validity of the predictions of the wave turbulence theory only for pure capillary waves
without gravity. The theory supposes power law spectra to fulfill the condition of scale
invariance in turbulent regimes, and this hypothesis cannot be met in presence of two
restoring forces acting at different scale ranges. The effect of the gravity–capillary crossover
is, in fact, not completely understood for the turbulence of surface waves. Moreover,
in microgravity, capillary waves can propagate on a larger range of scales because the largest
wavelength is now set by the container size and is no more given by the balance between
gravity and capillarity, i.e., λc = 2π

√
γ/(ρ g) ≈ 15.5 mm on Earth’s surface. Therefore,

we expect a larger extension of the cascade of capillary waves. A first experimental
work [96] has been performed using parabolic flights, achieving microgravity phases of
22 s. Using a cylindrical Plexiglas container partially filled with ethanol, the liquid forms
a layer wetting the internal wall of the container in weightlessness and the fluctuations
at the air/liquid interface are recorded by means of a capacitive probe. In that case,
a power law spectrum with an exponent equal to −3 and close to the predicted exponent
−17/6 is reported on two decades. In order to characterize capillary wave turbulence
over longer durations, an experiment has been recently performed with a similar protocol
in the International Space Station [115]. The container is now a polycarbonate sphere of
internal radius 100 mm and filled with water at a ratio of 30% (Figure 18). The forcing is
achieved by means of a rotating arm prescribing small oscillations, which can be sinusoidal
or random. The fluctuations of the air/liquid interface are recorded using two capacitive
probes. The wetting of polycarbonate by water is not as good as the wetting of plexiglass by
ethanol; therefore, for strong agitation of the sphere, we observe air bubbles and even some
de-wetting events. Nevertheless, after averaging over 400 s, the recorded power spectra
show, especially for the second sensor, a decay at high frequency that is compatible with
the power law in f−17/6 over one decade (Figure 19). Again the high-frequency part of the
spectra can be interpreted as a turbulent cascade of capillary waves. However, once the
steepness s is indirectly evaluated from the time spectrum and the linear dispersion relation,
we realize that these turbulent regimes occur for high values of the steepness between 0.3
and 0.5. These regimes are strongly nonlinear but remain below the breaking threshold
of pure capillary waves, which is 4.59 [34]. Similar to the experiments described in the
previous part, the capillary wave turbulence is not found in a weakly nonlinear regime,
and the simplest explanation of the experimental spectra relies likely on the dimensional
analysis. Due to the thin water layer of few millimeter, the wave dissipation caused by
the moving contact lines and the possible contamination of the water appears significant
indeed. Further experiments performed in microgravity with more sensitive sensors and
better wetting properties will be useful to better characterize the strong capillary wave
turbulence evidenced here.
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Figure 18. (a) Picture of the experimental spherical tank. The cylinder visible on the top of the picture
is the filling orifice and the fastening point. The two circular electronic boards measure the capacity
for each fluid height probe. (b) Technical drawing of the experiment without the acquisition system
and the cameras (Airbus Defence and Space ©). (c) Horizontal cross-section through the center of the tank.
(d) Schematic view of the experiment, R = 100 mm, L = 175.4 mm, h0 = 5.6 mm. (e) Snapshots of the
tank from camera 1, for a strong sinusoidal forcing. Presence of air bubbles is noted. (Reprinted with
permission from Ref. [115] Copyright 2022 European Physical Society).
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Figure 19. (a) Power spectrum of wave elevation Sη1 ( f ) (blue dotted line) and Sη2 ( f ) (red continuous
line) for a sinusoidal forcing θ0 = 0.04 and F = 2 Hz. The power laws f−17/6 and f−1 are also
indicated, respectively, as a black continuous line and as a black dashed line. (b) For the sensor 2 only,
a fitted exponent of the power spectrum Sη ∼ f−α as a function of the steepness S. ∗—sinusoidal
forcing, ×—sensor 2 random forcing. The horizontal dashed line indicates the value predicted
by the capillary wave turbulence theory αtheo = 17/6. ∗—sinusoidal forcing, ×—random forcing.
(Reprinted with permission from Ref. [115] Copyright 2022 European Physical Society).

7.3. Discussion

The turbulence of capillary waves is often considered as an example of the success of
the wave turbulence theory [81]. Our experiments demonstrate that this is not really the
case due to the viscous dissipation. A significant level of nonlinearity is indeed needed
to overcome the dissipation and to generate a turbulent cascade (see Section 4). The ex-
periments in the International Space Station [115] demonstrate that, even in microgravity,
the regimes of turbulence of capillary waves are also in a strong nonlinear regime.

In this section, we have considered some experiments studying the turbulence of
capillary waves. We have demonstrated that the power law for the time spectrum in f−17/6,
predicted by the weakly nonlinear wave turbulence theory, is obtained experimentally for
steepnesses larger than 0.1 in water—thus, for a significant level of nonlinearity. In these
regimes, we observe well the propagation of waves, as the fluctuations of the free surface
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follows a dispersion relation (even with a nonlinear shift). Moreover, the wave statistic is
sufficiently random to be in the validity domain of the random-phase approximation [71].
Therefore, these regimes can be described as a wave turbulence phenomenon resulting from
the nonlinear interactions of numerous waves, but not in the conditions of the application
of the weakly nonlinear theory. The nonlinearity level nevertheless remains below the one
associated with the strongly nonlinear regime called the critical balance [13,85], where the
energy flux is sufficiently large so that the linear time is equal to the nonlinear time. In this
regime, waves cannot propagate anymore because their period is equal to the time needed
for them to disappear by nonlinear wave interactions. Here, as the nonlinear waves interact
mainly through the three-wave interaction mechanism and follow the dispersion relation,
the dimensional analysis explains why the predictions of the weakly nonlinear theory are
found in a non-weakly nonlinear regime.

As we have shown, due to the important viscous dissipation of capillary waves,
a significant nonlinearity level is required to obatin a self-similar regime. As a consequence,
the time scale separation between dissipative, nonlinear, and linear time is limited, always
less than a decade. The number of successive interactions is consequently limited to a few
orders of τdiss/τNL. This is why the use of random forcing is necessary to achieve random
statistics for the wave field. With a sinusoidal forcing, the succession of interactions is too
small to randomize the wave field. Capillary wave turbulence experiments in microgravity
constitutes one exception, because the waves of larger wavelengths than those on Earth
dissipate less. We have also shown, for a turbulent wave system with a limited time scale
separation and forced at large scale, that the energy transfer occurs by strong intermittent
events, implying nearly all the spatial scales of the wave field in a fast time scale.

In our experimental study of the three-wave interaction mechanisms in Sections 6.1 and 6.2,
we have also demonstrated that the dissipation has important consequences on the interac-
tions between waves. In the three-wave interaction mechanism, the daughter wave can be
saturated by the dissipation, whereas in the picture of the wave turbulence, the amplitude
of the daughter wave should be limited by its participation to other three-wave interac-
tions initiating a cascade of interactions. Moreover, the finite lifetime of waves caused by
the dissipation induces a widening of the dispersion relation. Non-resonant interactions
(not following one of the resonant conditions) and forced interactions (not following the
dispersion relation) then become possible. With the same reasoning, when the time scale
separation is limited, i.e., τNL/τlin . 10, in addition to resonant interactions, non-resonant
and forced interactions should be taken into account in the wave turbulence phenomenon.
In addition to the nonlinear broadening of the dispersion relation, preferential forced in-
teractions which do not obey the dispersion relation may modify the central frequency.
This effect may justify nonlinear shifts of the dispersion relation reported for capillary
waves in some experimental works [44,71,104]. This observation nevertheless remains
incompletely explained, and should warrant further investigations.

In the case of strong wave turbulence (but always with waves), another limit of the
weakly nonlinear wave turbulence theory is also reached, due to the emergence of transient
coherent structures. By definition, these structures break the hypothesis of uncorrelated
phases between the components of the wave field. In the case of surface waves, they are
often associated with steep gravity waves, which emit parasitic capillary waves or are close
to breaking. Due to their non-sinusoidal shape, these waves contains numerous harmonics
(bound or not) of a fundamental wavenumber. The role of these coherent structures remains
also an open question in the study of the wave turbulence of surface waves [83].

8. Conclusions

In nature and in laboratory experiments, gravity–capillary water waves for frequencies
larger than 5 Hz are often subjected simultaneously to significant nonlinear effects and
important viscous dissipations. Although of prime importance to understand the small-
scale dynamics of oceanic surfaces, this situation is not well addressed in the literature.
In order to reach at least a qualitative understanding, in this review, we derive the theory of
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water waves from the fundamental equations and discuss the main physical mechanisms at
the origin of wave dissipation and nonlinear effects. Due to the nearly unavoidable surface
contamination for experiments with water, the capillary waves are strongly damped by
viscosity and can propagate over about ten wavelengths. Consequently, nonlinear effects,
whose amplitudes are quantified by the wave steepness, must be sufficiently strong to
overcome the dissipation and be observable. Then, focusing on the three-wave interaction
mechanism, we show that the viscous dissipation can saturate the interaction and allow
non-resonant and forced interactions. These mechanisms are, however, most of the time
neglected in the statistical description of water waves at small scales. Finally, we evaluate
the consequences of the viscous dissipation on the turbulent regimes of capillary waves.
Based on recent studies, we show that in experiments with water, where the capillary waves
are generated from gravity waves, the power law spectra, in agreement with the predictions
of the wave turbulence theory, do not meet the hypotheses of the theory. Specifically,
the dissipation is not negligible in the capillary wave range and the nonlinearity level
quantified by the steepness is not small. These "strong" wave turbulence regimes are
not described by the weak nonlinear theory. Yet, some of the main results are explained
by the dimensional analysis derived from this theory. Indeed, spatio-temporal spectra
composing dispersion relations reveal wave propagation. Moreover, we have shown that
the three-wave interaction mechanism is indeed at work in our experiments, with a greater
contribution of the so-called non-resonant or forced interactions. The role of coherent
structures, constituted in particular by the parasitic capillary waves, seems important in
the dynamics of the free surface. Theoretical developments beyond the weakly nonlinear
hypothesis would be useful, but appear to be hard to achieve. In contrast, numerical
simulations of gravity–capillary waves at a liquid–gas interface incorporating a realistic
dissipation seems reachable in the coming years, and could help to better characterize the
small-scale dynamics of water waves and, maybe, explain the small-scale spectrum of a
random sea.
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