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Abstract: Improvements to the interfacial curvature of interFoam based on (i) the smoothing of the
liquid fraction field and (ii) the creation of a signed distance function (φ-based) are implemented.
While previous work in this area has focused on evaluating spurious currents and similar configura-
tions, the tests implemented in this work are more applicable to sprays and hydrodynamic breakup
problems. For the φ-based method, a dual approach is developed based on a geometric reconstruction
of the interface at interfacial cells and the solution of the Hamilton-Jacobi equation away from these
cells. The more promising results are from this method, where the lack of convergence of Laplace
pressure predictions existing in the standard version of interFoam is fixed, resulting in second-order
convergence. Similar but less drastic improvements are observed for other exercises consisting of
the oscillation of a droplet, a 2-phase Orr–Sommerfeld problem, the Rayleigh–Plateau instability,
and the retraction of a liquid column. It is only when the dynamics are either entirely governed
by surface tension or are heavily influenced by it that we see the need to substitute the standard
interFoam curvature approach with a more accurate scheme. For more realistic problems, which
naturally include more complicated dynamics, the difference between the standard approach and the
φ-based approach is minimal.

Keywords: interFoam; interfacial curvature; volume-of-fluid; OpenFoam

1. Introduction

Over the last decade, Volume-of-Fluid (VoF) methods and their variants [1] have
gained popularity in the simulation of two-phase flows due in part to their mass con-
servative nature. Among these methods, the algebraic VOF methodology encapsulated
in interFoam has been available for a large number of years as part of the open source
distribution of OpenFOAM and has attracted significant attention (A 10 March 2022 search
in the Google Scholar database revealed 3030 sources that included the word “interFoam”
anywhere in the article). In this method, the effects of numerical diffusion are assessed
based on a compressive interface capturing methodology that was improved by Ubbink
and Issa [2] and Rusche [3] with contributions from Henry Weller. More recently, new
and often more accurate VoF methodologies have been implemented in OpenFOAM, for
example, the isoAdvector geometric VoF with reconstructed distance function [4,5], the
addition of the geometric level set [6], the improvement to volume fraction (α) advection in
complex mesh topologies [7], the implementation of a coupled level set VoF (CLSVOF) [8],
and the introduction of a capillary pressure jump modeling [9], among other contributions.

Despite the availability of other VoF methodologies within OpenFOAM, or even
other open source frameworks [10], interFoam continues to be a popular choice. It can
be speculated that part of the reason for its continued use is the familiarity of the solver
among its many users as well as the development of submodels within its infrastructure,
which can pose a significant time investment for their implementation in other solvers.
Regardless of the reason for its continued use, interFoam has its weaknesses, with the most
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prominent being arguably the calculation of interfacial curvature, κ. This has been known
for some time [11] and has spawned various flavors of numerical fixes.

It is well established [1] that the major difficulty with a curvature calculation within
a VoF methodology is the high degree of error associated with the calculation of second-
order derivatives of the naturally sharp volume fraction field. With a higher degree
of grid refinement, the volume fraction field becomes progressively sharper, which can
lead to a lack of numerical convergence for curvature predictions. Within the two-phase
flow community, a common procedure for addressing this error is the use of a level set
function, φ(x, t), which is much smoother than α and can subsequently provide more
accurate curvature predictions. This combination of φ with α has been in existence for
quite some time [12] and has also been adopted within OpenFOAM, for instance in the
work of Ferrari et al. [7], Bilger et al. [9], Albadawi et al. [13], Menon et al. [14], Kassar
et al. [15], Elsayed et al. [16], Vachaparambil and Einarsrud [17]. More explicitly in Ferrari
et al. [7], Albadawi et al. [13], Menon et al. [14], the level set is initially constructed from
the α field, namely by an equation of the form φo = (2α− 1)ζ, where ζ is related to the
local grid spacing, ∆x. Subsequently, this initial φo is reinitialized through the solution of
a Hamilton–Jacobi equation, resulting in a signed distance function, which is then used
to compute curvature. In other work [9,17], the α field is smoothed out before calculating
curvature. Other alternatives include the construction of a uniform voxel mesh followed by
isosurface triangulation [16] or the representation of the interface by a cloud of points [15],
both of which are used to generate more accurate predictions of κ.

The present work aims to examine the result of improvements to curvature estimation
within interFoam. In contrast to previously published works, the evaluation exercises
considered are more relevant to sprays and hydrodynamic breakup dynamics than bubbles
or similar configurations. Particularly, the addition of the Rayleigh breakup problem and a
2-phase shear instability solved analytically through the Orr–Sommerfeld temporal analysis
is aimed at these types of breakup scenarios.

Our approach is similar to the works mentioned previously in constructing a φ field
from the α field and computing curvature from φ. However, there is a distinguishing
characteristic in the present work in that φ was created from a dual treatment that treats
interfacial cells (cells containing the α = 0.5 isosurface) differently from the remaining
cells. The motivation for this dual treatment lies in the erroneous displacement of the
interface that results if the Hamilton-Jacobi reinitialization solution is applied in a domain
that includes interfacial cells (cells that contain a segment of the interface). This problem
has been documented previously [18,19] and it results from the propagation of information
from the wrong side of the interface for some interfacial nodes. For the sake of providing
an additional comparison, the common smoothing of the α field [9,17] is also implemented.

The contents are organized as follows. In Section 2, a description is provided for
the three curvature prediction methodologies. The evaluation exercises are presented in
Section 3 in order of increasing complexity. Since we are interested in liquid spray and
droplet applications, the choice of exercises reflects this interest. A summary of our findings
along with concluding remarks are presented in Section 4.

2. Curvature Predictions

The curvature implementations and flow predictions reported in the present work
employ the algebraic solver interFoam (version 2.1.1). More recent versions of OpenFOAM
under both ESI and foundation releases utilize essentially the same conventional curvature
calculation found in OpenFOAM 2.1.1. A description of the liquid fraction transport,
momentum, and pressure equation treatment can be found in [11]. Since the focus of the
paper is on interfacial curvature, the primary relevant parameter is the surface tension force
appearing in the momentum equation. Its implementation is performed via the Continuum
Surface Force (CSF) method [20], namely∫

Ω

∫
Γ

σκ(xs)δ(x− xs)nΓ dΓ(xs)dx =
∫

Γ∩Ω
σκ(xs)nΓdΓ(xs) =

∫
Ω

σκ∇αdx. (1)
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Here, the terms on the left-hand side (LHS) and center correspond to the analytical ex-
pression of the surface tension force exerted over an arbitrary space Ω ⊆ <d (d = 2, 3).
The interface is denoted by Γ (tacitly assumed to be temporally evolving), the curvature is
denoted by κ(xs), the surface tension coefficient is denoted by σ (treated as constant), the
unit interface normal is denoted by nΓ(xs) (oriented from the gas to the liquid dictated by
the direction of∇α), and the 3D Dirac Delta function is denoted by δ(x− xs). Its numerical
treatment via the CSF is given by the term on the right-hand side (RHS) in Equation (1),
where the local curvature is defined as

κ(xs) ≡ −∇ · [nΓ(xs)]. (2)

Since the present development is made within the framework of OpenFoam, its existing
finite volume discretization is utilized. In particular, for an arbitrary scalar field γ(x, t) and
vector field v(x, t), the following gradient and divergence approximations are employed:

(∇γ)i =
1
|Ωi| ∑

f∈∂Ωi

γ f ,iS f ,i, (3)

(∇ · v)i =
1
|Ωi| ∑

f∈∂Ωi

(vi, f · S f ,i). (4)

In these equations, Ωi corresponds to the space occupied by some computational cell i
and |Ωi| is its respective volume. The corresponding surface area of cell i is given by ∂Ωi.
Quantities pertaining to cell centers are denoted with subscript i, and quantities pertaining to
face quantities are denoted with subscript f . The product of the surface area of the cell
face f (associated with cell i) and the corresponding outward unit vector is given by S f ,i.
Equations (3) and (4) come directly from the Gauss Divergence Theorem and its gradient
analog along with the application of the mean value theorem for definite integrals.

2.1. Standard Calculation (α-Based)

The standard method or α-based method is the native method present in interFoam.
Even though the current version being employed is 2.1.1, other versions, including more
recent ones such as ESI Openfoam-v2006 and OpenFoam Foundation version 6, continue to
employ the same formulation. In the α-based method, the curvature is computed as follows:

1. Cell-centered liquid fractions are linearly interpolated to the faces, i.e., αi → α f ,i.
2. The computation of (∇α)i is performed using Equation (3), with the scalar function

α(x, t).
3. Normal vectors are calculated via

(nΓ,α)i =
(∇α)i

|(∇α)i|+ δ
, (5)

where δ = 10−8 is a small scalar and its inclusion is to avoid division by zero. Calcula-
tion of (∇α)i employs Equation (3).

4. Cell-centered values for (nΓ,α)i are linearly interpolated to cell faces, i.e., (nΓ,α)i →
(nΓ,α)i, f

5. Having face values for the interface normal, the curvature is calculated using
Equation (4), namely

κi = −
1

Ωi
∑

f∈Ωi

(nΓ,α)i, f · S f ,i. (6)
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The aforementioned framework is part of OpenFoam and works for general polyhedra,
i.e., it is not limited to structured grids.

2.2. Diffused α-Based Calculation (α̃-Based)

It is understood [21] that due to the sharp nature of α, taking second-order derivatives
to compute curvature leads to gross errors. One obvious alternative for reducing the
magnitude of the error is to smooth out the α field. As noted in the Introduction, some
authors [9,17] smooth the field by filtering α or the curvature within OpenFOAM. In the
review article by Popinet [1], he cites these methods as obsolete since newer methodologies
offer better results. In this work, this smoothing methodology is used principally to provide
another comparison data point against the standard method and the φ-based method
discussed below. However, rather than explicitly smoothing α or filtering the curvature, in
the present work, the smoothing is applied by solving an unsteady diffusion equation for
the liquid fraction over a specified number of time steps. The process is as follows:

1. Initialize α̃ with the α field at some arbitrary time level n, i.e.,

α̃(xi, τ = 0) = α(xi, tn), (7)

where τ is pseudo time.
2. Advance α̃ through the solution of

∂α̃

∂τ
= D∇2α̃, (8)

where D is the diffusion coefficient. Since the aim is to smooth the initial liquid
fraction field over a length scale ` = ∆x, the associated total computation time is
τf = ∆x2/D. With such a short computation time, the choice is to employ an explicit
methodology. The stability criterion in 2D is ∆x2/(4D) and in 3D is ∆x2/(6D); hence,
at most, O(10) time steps are required. Numerically, the solution is advanced via

α̃i(τn+1) = α̃i(τn) +
∆τ

Ωi
∑

f∈Ωi

(∇α̃i, f (τn) · S f ,i). (9)

3. Normal vectors at the end of the previous calculation are computed via

(nΓ,α̃)i =
(∇α̃)i

|(∇α̃)i|+ δ
, (10)

4. Cell-centered values for (nΓ,α̃)i are linearly interpolated to cell faces, i.e., (nΓ,α̃)i →
(nΓ,α̃)i, f

5. Curvature is calculated based on Equation (4) as

(κα̃)i = −
1

Ωi
∑

f∈Ωi

(nΓ,α̃)i, f · S f ,i (11)

2.3. Distance-Based Calculation (φ-Based)

Motivated by the tradition of coupling level set with VoF to improve curvature esti-
mate, in the present work, we similarly create this signed distance function, φ. As previously
discussed in the Introduction, the solution of the reinitialization equation at interfacial
cells causes the interface to be erroneously displaced within these cells. Hence, the present
approach is implemented in two steps, namely (i) interface reconstructions at interfacial
cells [22] and (ii) the solution of Hamilton–Jacobi equation excluding interfacial cells.
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2.3.1. Interface Reconstruction

1. For cells with ε < αi < (1− ε), the αi values are linearly interpolated to cell vertices
as illustrated in Figure 1, where ε = 0.01.

Figure 1. Illustration of the interface reconstruction step in the φ-based curvature calculation. Cell
vertices are shown as black spheres and the polygon centroid is indicated by a star. Red spheres
denote the location that corresponds to the interception of a cell edge with the local α = 0.5 isosurface.
These locations are denoted as interface edge points.

2. Using the cell-vertex values of α, the location along each cell edge that corresponds
to α = 0.5 is identified. These locations are denoted as interface edge points and are
labeled as xe,j, as shown in Figure 1. The subscript e indicates that they correspond
to cell edges, and the subscript j is the index of the points. If a cell has three or more
interface edge points, the cell is identified as an interfacial cell. The polygon intersecting
these points represents the local interface reconstruction within the interfacial cell.

3. The polygon area vector AΓ,i is computed for each interfacial cell:

(a) At each interfacial cell, one edge points is chosen as the origin. For instance, in
Figure 1, xe,1 is the origin. The remaining points xe,k (k = 2, Ne) are sorted in
cyclical order, where Ne is the total number of interface edge point [22].

(b) Computation of the area vector of the polygon by adding the area vectors for
the triangles composing the polygon [23],

AΓ,i =
1
2

Ne−1

∑
j=1

((
xe,j − xe,1

)
×
(
xe,j+1 − xe,1

))
. (12)

To ensure that the area vector points from the liquid to the gas in all cells,

if ∇α ·AΓ,i > 0, then AΓ,i is set to −AΓ,i. (13)

4. The polygon centroid, xΓ,c, is calculated from

xΓ,c =
1

Ne

Ne

∑
j=1

xe,j. (14)

5. The perpendicular distance, d⊥, from the polygon centroid to the center of the interfa-
cial cell is computed as

d⊥ = r · AΓ,i

|AΓ,i|
, (15)

where r = xΓ,c − xcell cent and xcell cent is the location of the cell center. For instance, d⊥
is less than zero for xcell cent. in the gas phase. Hence, the signed distance function φ is
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less than zero in the gas and greater than zero in the liquid. Thus,∇φ/|∇φ| is into
the liquid consistent direction of nΓ,α and nΓ,α̃.

2.3.2. Hamilton–Jacobi Reinitialization

The solution of the reinitialization problem via the Hamilton–Jacobi equation is a
well-established method for reinitializing a level set function to a distance function [24]. It
consists of solving

∂φ

∂τ
= S(φ0(x))(1− |∇φ|), (16)

where φ0(x) = φ(x, τ = 0) and S(. . .) denotes a sign-function, i.e., S(x) = 1 for x > 0,
S(x) = 0 for x = 0, and S(x) = −1 for x < 0. An equivalent form of Equation (16), which
offers some insights into the behavior of this equation is

∂φ

∂τ
+ S(φ0)

∇φ

|∇φ| · ∇φ = S(φ0). (17)

In this Lagrangian form, the propagation speed of φ is clearly shown as S(φ0)
∇φ
|∇φ| ,

and its evolution occurs in pseudo time. The process implemented in the current work is
as follows:

1. Initialization of φ obtained from

φ(xi, τ = 0) =

{
d⊥, for interfacial cells
[α(xi, tn)− 0.5]∆x, for the rest of the cells.

(18)

This results in φ(xi, τ = 0) = ∆x/2 in liquid cells and φ(xi, τ = 0) = −∆x/2 in
gas cells.

2. Explicit solution of the Hamilton–Jacobi equation (Equation (16)) via finite volume

φ(xi, τ + ∆τ)− φ(xi, τ)

∆τ
=

[
S(φ0(xi))−

S(φ0(xi))

|Ωi|

∫
Ωi

|∇φn
i |dV

]
Iint(xi), (19)

where

Iint(xi) =

{
0, for interfacial cells
1, for the rest of the cells.

(20)

Since∇φn
i has only one degree of freedom inside a given cell,

∫
Ωi

|∇φn
i |dV =

∣∣∣∣∫Ωi

∇φn
i dV

∣∣∣∣. (21)

Approximating the integral above, we have∫
Ωi

∇φn
i dV = ∑

f
(φn

f S f ) = ∑
f
[φn

f ,up + r · ∇φn
up]S f , (22)

where φn
f ,up is the upwind value of φn and r = xi− xi, f . To obtain these upwind values,

the propagation velocity and surface normal vectors are used, i.e., S(φ0)
∇φ
|∇φ| · S f for

each f belonging to cell i. Furthermore,∇φn
up is approximated by a central differenc-

ing scheme evaluated at the cell center, where the values of φn
f ,up are employed at cell

faces. Putting things together, we then have
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φ(xi, τ + ∆τ) = φ(xi, τ) + S(φ0(xi))∆τ

[
1− 1
|Ωi|

∣∣∣∣∣∑f
[φn

f ,up + r · ∇φn
up]S f

∣∣∣∣∣
]
Iint(xi). (23)

Thus, interfacial cells are, by construction, left unchanged at their initial value of
φ(xi) = d⊥. The pseudo-time step in the solution of Equation (23), ∆τ, is proportional
to the grid resolution, and ∆τ = 0.2∆x is presently used. The solution of Equation (23)
is extended to a few cells around the interface to provide more than sufficient support
for the numerical stencil employed in the calculation of κ, i.e., there is no need for the
calculation to extend throughout the domain. In the computations presented here,
eight cells on either side of the interface are employed.

3. Computation of normal vector via

nφ,i =
∇φ(xi)

|∇φ(xi)|+ δ
(24)

is performed over all cells and again δ = 10−8. The computation of∇φ(xi) employs
Equation (3).

4. Computation of κ. The cell-centered normal vectors are interpolated to cell faces
nφ,i → (nφ,i) f , and using Equation (4)), the curvature is calculated as

(κφ)i = −
1

Ωi
∑

f∈Ωi

(nφ,i) f · S f ,i. (25)

3. Results

The performance of the three curvature estimation methods is examined among five
evaluation exercises as shown in Table 1. Since the main focus of the work concerns
curvature improvement, which is directly related to surface tension, the choice of problems
is, for the most part, heavily influenced by this effect. The only exception is the temporal
interfacial instability analysis at a Weber number of 100 presented in Section 3.3.

Table 1. Evaluation exercises considered in the present work.

Section 3.1 Laplace Pressure Problem
Section 3.2 3D Oscillating Droplet
Section 3.3 Shear Layer: Growth of Interfacial Instability
Section 3.4 Rayleigh–Plateau Instability
Section 3.5 Retraction of Liquid Column

3.1. Laplace Pressure Problem

The Laplace pressure test is undertaken to isolate the accuracy of surface tension predic-
tions. This case is governed by the Young–Laplace equation, namely ∆P = PL − PG = σκ,
where the pressure on the liquid and gas side are, respectively, given by PL and PG. Here
and in the remainder of the document, the liquid and gas phases are denoted by subscripts,
L, and G, respectively.

In the present case, the exercise consists of a liquid 2D droplet in zero gravity hav-
ing a radius R = 0.25 m, and κ = 4 m−1, densities ρL = ρG = 104 kg/m3, viscosity
µL = µG = 1 kg/(ms), and surface tension σ = 1 kg/s2 yielding a Laplace number

La =
σρLR

µL
= 2500. (26)

The domain consists of a [4R× 4R] square with the droplet positioned at its geometric
center. The radius of the droplet is R = 0.25. For boundary conditions, a zero gradient is
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imposed for α, a zero Dirichlet condition for pressure, and partial derivatives of all velocity
components with respect to the coordinate normal for each boundary are zero. This is
termed a zero gradient condition for velocity. Due to surface tension, a jump in pressure is
immediately recorded, which initiates a transient. Since the calculation is performed well
within the numerically stable regime and physically corresponds to a steady solution, the
transient decays and an equilibrium condition is achieved. The examination of pressure
jump is performed during this steady period, and consequently, the computations are
executed to t = 125 s consistent with previous studies in the literature [11,25]

The pressure profile along the centerline is extracted and plotted in Figure 2 corre-
sponding to the three methods for computing κ. In each plot, the analytical solution is
provided along with predictions corresponding to four different levels of numerical res-
olution. For the standard α-based method shown in Figure 2a, it can be seen that, upon
refinement, the pressure inside the liquid converges to a value lower than the analytical
value, in agreement with an earlier publication [11]. This is a direct result of the poor
curvature predictions, as expected. The pressure values improve for the other two methods,
as seen in Figure 2b,c. For the α̃ curvature method shown in Figure 2b, the results are
noticeably better, leading to what appears to be an agreement with the exact values. For
the φ-based computation, the results show that predictions with a resolution finer than
D/∆x = 20 are essentially indistinguishable from analytical values.

(a) Standard α-based computation (b) α̃-based computation

(c) φ-based computation

Figure 2. Pressure distribution along the centerline of a 2D droplet (R = 0.25) is presented at four
different grid resolutions corresponding to the three curvature schemes.

To quantify the degree of convergence, the Laplace pressure is computed for all three
methods as a function of grid resolution D/∆x. This pressure is computed according to

∆P = Pin − Pout, (27)

where Pin and Pout are, respectively, the internal and external pressure to the droplet and
are computed as follows
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Pout =
1

NVout
∑

Ωi,j∈Vout.

P(xi,j), (28)

Pin =
1

NVin
∑

Ωi,j∈Vin

P(xi,j), (29)

where Vout is the region given by r > 3D/4 and Vin is the region given by r < D/4.
The number of computational cells in each region is given by NVout and NVin . The reason
for this choice of regions is to ensure that, with coarse level calculations, the interior and
exterior domains are properly accounted for. The associated numerical error is

ε∆P = |∆P− ∆Pexact|. (30)

This error is calculated as a function of grid resolution in Figure 3. Two reference lines
corresponding to first- and second-order convergences are included as well. Beginning with
the standard method, the predictions initially diverge and reach a plateau at an appreciable
high level of error. No convergence is observed. For the α̃, the magnitude of the error
is smaller; however, the method also lacks convergence. Lastly, for the φ-based method,
second-order convergence is achieved, and the method is superior to the previous two
schemes for computing curvature.

Figure 3. Laplace pressure error for the 2D droplet corresponding to the three curvature schemes. The
φ-based method is the only one that produces convergent results to approximately the second order.

3.2. 3D Oscillating Droplet

This exercise consists of introducing a small perturbation on an otherwise quiescent
spherical droplet under zero gravity, where the resulting motion is driven by surface
tension. Thus, the present exercise aims to isolate the effects of curvature predictions in a
dynamic environment. If the unperturbed radius is given by R0, the initial surface of the
droplet is given by

R(θ, t = 0) = R0[1 + ηP2(cos θ)] = R0

(
1 +

η

2

[
3(cos θ)2 − 1

])
, (31)
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where θ is the polar angle given by θ = cos−1(z/
√

x2 + y2 + z2) and R(θ, t) is the distance
of the interface from the center of the droplet at some (θ, t). An illustration of this problem
is shown in Figure 4.

Figure 4. Illustration of the droplet oscillation problem.

In the present exercise, R0 = 1 m and the magnitude of the perturbation is η = 0.04 m.
The departure from pure spherical form is described by the Legendre polynomial of second
order, P2(cos θ). The droplet is positioned at the geometric center of a [4R0 × 4R0 × 4R0]
domain. For boundary conditions, a zero gradient is assigned for α and pressure, and
a no-slip velocity condition is imposed at all the boundaries. The densities employed
are ρL = 1 kg/m3 and ρG = 0.01 kg/m3; the viscosities are µL = 0.01 kg/(m s) and
µg = 0.0001 kg/(m s), and the surface tension is σ = 1 kg/s2. This setup is the same as the
one used by Patel et al. [26] and the resulting Laplace number (2RρLσ/µ2

L), La =10,000,
which is characterized by the dominant effect of the product of inertia and surface tension
forces over the square of viscous forces.

In the work of Lamb [27] (pg. 563) , an analytical expression for the motion of
the interface is provided. A more modern version of this expression can be found in
Patel et al. [26], namely

R(θ = 0, t) = R0 + η exp

(
−t

5µL

ρLR2
0

)
cos

(
t

√
24σ

R3
0[3ρL + 2ρG]

)
. (32)

Predictions from the three curvature schemes are compared against this analytical
solution, as shown in Figure 5. The first observation is that predictions at different levels
of resolution do not agree initially, i.e., at t = 0. This is particularly the case for the
coarser case, i.e., D/∆x =16, and is due to the degree of numerical error in identifying the
interface (α = 0.5 contour). At higher levels of resolution, the agreement at t = 0 improves
substantially. A second observation is that the solution from the standard α-based method
contains erroneous harmonics that do not disappear even at the finest level of resolution.
The agreement with the exact solution is far from encouraging. Employing the α̃-based
method, there is some measure of improvement, but still, the numerical predictions contain
anomalous oscillations. In the φ-based method, anomalous behavior is slightly observed
in the coarse case, but with higher levels of resolution, the predictions quickly match the
analytical solution and no erroneous harmonics populate the predictions.
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(a) Standard α-based computation (b) α̃-based computation

(c) φ-based computation

Figure 5. Predictions of the displacement of the interface at the top of the 3D droplet, R(θ = 0, t),
employing the three methodologies at different levels of numerical resolution.

To quantify the level of performance, the following error metric is employed

εR =
1

Nti

ti=tend

∑
ti=t0

|R(θ = 0)num(ti)− R(θ = 0)exact(ti)|
R(θ = 0)exact(ti)

, (33)

where ti is the discrete-time level and Nti is the total number of time steps. The numerical
prediction for each method is denoted by R(θ = 0)num(ti). As such, this error represents
a time-averaged of the instantaneous deviation from the analytical solution. The results
are shown in Figure 6 as a function of grid resolution, and a first-order reference line (c∆x)
is provided. The observation made previously is confirmed, where it is apparent that
the φ-based method has a lower error magnitude compared with the other two methods.
The convergence rate for all three methods is initially better than first-order accuracy but
slows down at higher resolution levels. Interestingly, the standard α-based case shows
convergence even though, visually, the result does not appear to be encouraging.

With the inclusion of dynamics, all three methods display numerical convergence,
with the φ-based method having a consistent lowest magnitude of the error. However, the
convergence rate for the φ-based method is no longer second order but has declined to
approximately first order, most likely due to the associated errors involved in calculating
momentum and displacement of the interface. It is interesting to see, however, that this
added motion had a negative effect on the convergence rate of the most accurate method
presented in this work but a positive effect in the less accurate methods. In fact, for this case,
these methods have improved from having no convergence in the static case to convergence
in the present dynamic exercise.
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Figure 6. Numerical error corresponding to the three curvature estimation methods as a function of
grid resolution for the problem of a 3D oscillating droplet.

3.3. Shear Layer: Growth of Interfacial Instability

The two-phase shear layer is a fundamental fluid mechanics problem that is particu-
larly relevant to atomization and spray formation and is often omitted in numerical tests
for curvature predictions. This problem is illustrated in Figure 7, and it consists of a gas and
liquid stream that is characterized by a velocity difference leading to the establishment of a
shear layer. Authoritative descriptions of the dynamics characterized by Kelvin–Helmholtz
instability can be found in the text by Criminale et al. [28] (pg. 39–42).

Figure 7. Illustration of the shear layer setup with base flow motion in the gas and liquid phase
regions in opposite directions and with an imposed perturbation on the gas–liquid interface.

In the present work, a 2D temporal instability Orr–Sommerfeld calculation is em-
ployed, where a perturbation of wavenumber k = 2π/λ (λ is the wavelength) is imposed
with periodic boundary conditions on the left and right sides of the domain, as shown in
Figure 7. On the top and bottom boundaries, a zero gradient is imposed for α and pressure
and a slip condition is imposed for velocity. This slip velocity condition consists of zero
gradient for velocity components, which are tangential to the bottom and top boundaries,
i.e., x-direction, along with a zero normal velocity component.

In brief, the velocity field is decomposed as

u(x, y, t) = [u(x, y, t), v(x, y, t)] = U(y) + u′(x, y, t), (34)
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where U(y) = [U(y), 0] is the base flow profile and u′(x, y, t) = [u′(x, y, t), v′(x, y, t)] is the
perturbation velocity. The base profile used in this exercise is

UL = U∗Ler f
(

y
δL

)
y < 0, (35)

UG = U∗Ger f
(

y
δG

)
y > 0, (36)

with values of U∗L =0.99 m/s and U∗G =1 m/s. These values can be obtained from the shear
stress balance of the base flow field at the interface, which gives µLU∗L/δL = µGU∗G/δG.
The perturbation flow velocity is described in terms of a stream function, ψ(x, y, t), as

u′(x, y, t) = ∇× ψez, (37)

where the stream function takes the normal mode form of

ψ(x, y, t) = R{ϕ(y) exp(ik[x− ct])}. (38)

In this expression, R extracts the real part of its argument, the eigenvector ϕ = ϕR +
iϕi ∈ C, the input wavenumber k = kR ∈ R (kI = 0), and the complex wave speed c = cR +
icI ∈ C. The imaginary part of the wave speed, cI , is responsible for the growth or decay
of a given mode. The normal mode expression for the stream function is substituted into
the Orr–Sommerfeld equation in combination with the gas–liquid interfacial constraints,
namely continuity of normal and horizontal velocity and balance of tangential and normal
stresses. Details are provided in [29]. The resulting linear system is a generalized eigenvalue
problem that is solved for ((ϕ(y), c)), where ϕ(y) is the y-profile of the stream function and
c is the complex eigenvalue.

The predictions from the Orr-Sommerfeld system are compared in this exercise to those
obtained from the VoF employing the aforementioned methods for estimating curvature.
The domain is 2D of length L = 2λ and height H = 6 m. The fluid densities are given by
ρL = 1 kg/m3 and ρG = 0.1 kg/m3, the viscosities are given by µL = 5.05× 10−5 kg/(m s)
and µG = 5× 10−5 kg/(m s), the surface tension coefficients are given by σ = 0.01 kg/s2

and σ = 0.1 kg/s2, and g = 0 m/s2. The associated Weber number for this exercise is
defined as

We =
ρLU∗2G δG

σ
, (39)

hence, the above two values for the surface tension coefficient correspond to two cases
considered, i.e., We = 100 and We = 10.

In the calculations, the grid refinement is set to ∆x = 0.011 m to ensure that the small
initial perturbation is sufficiently resolved. A convenient way to track the growth of the
perturbation is to compute its kinetic energy. For the type of periodic domains considered
here, this method bypasses the need to compute the perturbation growth by meticulously
trying to fit the interface at various times during the growth process. The perturbation
kinetic energy, KEpert(t), is computed as

KEpert(t) =
∫

Ω

ρ

2
[
u′(x, t) · u′(x, t)

]
dV, (40)

where Ω = ΩL ∪ΩG, ΩL = [0, 2λ]× [−H, 0−] (liquid domain), ΩG = [0, 2λ]× [0+, H] (gas
domain) (see Figure 7), and ρ = ρL + (1− α)ρG. It can be shown [29] that KEpert(t) = (BL +
BG) exp(2ωt), where BL and BG are constants. Thus, KEpert(t)/KEpert(0) = exp(2ωt) and
the value of the growth rate, ω, can be readily obtained from plots of this kinetic energy ratio.
From Equation (38), the growth rate is related to c via ω = −kci. The comparisons between
VoF predictions and linear stability results are shown in Figure 8 and in Tables 2 and 3.
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In the tables, the error is calculated as 100×
∣∣∣ωnum −ωanalytical

∣∣∣/ωmax,analytical , where the
normalization factor is ωmax,analytical , i.e., the maximum growth rate. This normalization
factor is employed to ensure that the same factor applies to all errors calculated. For
instance, a normalization factor equal to ωanalytical would result in an exaggerated reporting
of the error at high wave numbers even for cases where the error is relatively minor due to
the growth rate approaching zero in this part of the wave number domain.

(a) We = 100 (b) We = 10

Figure 8. Comparison of the growth rate of the shear-layer instability against analytical solutions.

Table 2. Percentage error (100 ×
∣∣∣ωnum −ωanalytical

∣∣∣/ωmax,analytical) in perturbation growth rate
predictions for We = 100.

k = π/6 k = π/4 k = π/3 k = 2π/3 k = π

α-based 1.3 1.4 4.2 4.0 2.3
α̃-based 1.2 1.0 3.0 2.4 1.1
φ-based 0.9 0.7 3.0 2.5 0.9

Table 3. Percentage error (100 ×
∣∣∣ωnum −ωanalytical

∣∣∣/ωmax,analytical) in perturbation growth rate
predictions for We = 10.

k = π/6 k = π/4 k = π/3 k = π/2 k = 2π/3

α-based 4.2 3.0 4.0 12.4 11.8
α̃-based 5.0 3.5 3.4 10.5 8.2
φ-based 8.2 1.0 0.5 5.7 3.2

Overall good agreement is observed between the simulation results and the theoretical
prediction with the three methods. Due to the stabilizing action of surface tension, the cases
for We = 10 exhibit a slower growth rate than those at We = 100. At higher We, all errors
are within 5% but increase to a maximum of 12.4% at We = 10. This is not surprising since
the influence of surface tension and, thus, the effect of curvature error increase with lower
values of We. Additionally, the magnitude of the error decreases when transitioning from
the standard α-based method to the φ-based method. However, this improvement is not as
dramatic as in the previous exercises. The predictions are reasonably good even with the
standard method, particularly at We =100.

3.4. Rayleigh–Plateau Instability

Another exercise that is relevant to hydrodynamic breakup consists of a Rayleigh–
Plateau instability [30]. This is a surface tension-driven flow jet breakup under zero gravity,
which is similar to ligament breakup during spray formation [31]. The initial stage is
characterized by a liquid column with a varicose sinusoidal perturbation imposed on its
surface, as shown in Figure 9a. This perturbation grows and eventually fragments the
liquid column, as seen in Figure 9b,c. The breakup leads to the formation of two structures,



Fluids 2022, 7, 128 15 of 20

a large main droplet or parent droplet at the periodic boundary of the domain and a smaller
satellite droplet in the central part of the domain. The periodic nature of the simulation
domain in the vertical direction implies that the main droplet is continuous across the top
and the bottom faces of the domain.

(a) Initial setup (b) Growth of perturbation (c) After breakup

Figure 9. The evolution of the Rayleigh breakup of a liquid column leading to the final configuration
consisting of a main droplet and a single satellite droplet. The top and bottom faces constitute
periodic boundaries.

Lafrance [32] provides a detailed theoretical analysis and experimental data of the
breakup of the laminar liquid jet accounting for non-linear effects. We compare the present
results against these theoretical predictions. All simulations are performed in a 3D domain
with dimensions [λ× λ× λ], where λ is the wavelength of the disturbance imposed. Peri-
odic conditions are applied on the top and bottom boundaries. For all the other boundaries,
zero gradient condition is imposed for α and velocity, and zero Dirichlet for pressure.
The simulations are based on a water jet of R0 = 17.5× 10−6 m with ρL = 1000 kg/m3,
µL = 10−3 kg/(m s), ρG = 1 kg/m3, µG = 0 kg/(m s), and σ =0.073 kg/s2. The spatial
resolution is given by D/∆x = 25.5 in the region surrounding the liquid jet. Away from
the jet a coarser grid is employed. The initial perturbation, which is described by the radial
distance of the interface from the axis of the jet, is given by

R(z, t = 0) = R0 + A cos
(

k
z

R0

)
, (41)

where A = 0.15R0 and k is the dimensionless perturbation wavenumber, given by k = 2πR0/λ.
Simulations with k = 0.5, 0.6 and 0.75 are performed.

The radii of the resulting droplets are presented in Figure 10 along with the theoretical
predictions [32]. The top and bottom curves in this plot represent, respectively, the main
droplet size and satellite droplet size. The theoretical predictions are shown using dotted
lines, and the simulation results are shown with different markers. Quantification of the
error is provided by

εr(k) =

∣∣∣r(k)− rtheory(k)
∣∣∣

rtheory(k)
× 100, (42)

where r(k) is the numerically predicted main or satellite radii and rtheory(k) is the theoretical
counterpart. This error data are presented in Tables 4 and 5.

The main droplet size predictions corresponding to the three methods are close enough
to each other that the markers in Figure 10 practically overlap. For the satellite droplet
predictions, the differences are more noticeable. This is expected since the volume of the
main droplet is so much larger than the satellite droplet that numerical errors affect satellite
size predictions more strongly. Among the three methods, the φ-based computations
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lead to the best predictions consistent with previous tests; however, the results for all
three methods are not drastically different. Additionally, the errors have about the same
magnitude at the different wavenumbers examined. It was observed that, for some cases,
the α̃-based method is prone to a slight departure from asymmetry, which leads to the
formation of more than one satellite droplet. This raises some questions regarding the
suitability of this method in breakup problems.

0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 10. Comparison between main and satellite droplet radii between simulations and theoretical
predictions from [32]. Theoretical predictions are in dashed lines, and the top and bottom curves are,
respectively, the main and satellite droplet calculations.

Table 4. Percentage error, εr(k), in main droplet size predictions.

k = 0.5 k = 0.6 k = 0.75

α-based 2.6 2.8 0.9
α̃-based 3.1 2.4 0.9
φ-based 1.3 2.1 1.0

Table 5. Percentage error, εr(k), in satellite droplet size predictions.

k = 0.5 k = 0.6 k = 0.75

α-based 29.2 29.0 21.5
α̃-based 33.0 21.6 27.5
φ-based 10.8 15.4 17.0

3.5. Retraction of Liquid Column

The last exercise consists of a surface tension drive retraction of a liquid column
under zero gravity conditions presented by Umemura [33]. In this last test, there are
no analytical solutions and, thus, the evaluation is restricted to a comparison among
the three prediction methods. The conditions employ a liquid (SF6) with a density of
ρL = 1460 kg/m3, a viscosity of µL = 1.1 × 10−3 kg/(m s), and a surface tension of
1.605× 10−3 kg/s2. The gas is pressurized nitrogen with a density and viscosity given,
respectively, by ρG = 79.1 kg/m3 and µG = 1.76× 10−5 kg/(m s). The domain has dimen-
sions [0.8424 mm × 0.8424 mm × 5.1168 mm] with the axis of the liquid column aligned
with the z-axis and positioned at the center of the left face. This left face is a wall, with
zero gradient conditions for pressure and α, and a no-slip velocity condition. At all other
boundaries, a zero gradient is applied for α and velocity, and a zero Dirichlet condition is
applied for pressure. The cylindrical column has an initial radius R = 0.12748 mm and
length 5.1168 mm.

The simulations are performed on a uniform mesh with a resolution of ∆x = 7.8 µm
yielding a jet diameter to grid size ratio of D/∆x =32. At this level of resolution, the
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results for column length time history are numerically converged. Its time evolution, as
shown in Figure 11, is non-dimensionalized by the capillary time scale, which is given by√
(ρLR3)/σ [34] (pg. 3;)thus, t∗ = t

√
σ

ρLR3 , where R is the radius of the cylinder. In this

non-dimensionalization, the wave number k = 1/R has been used along with the fact that
ρG � ρL, and thus, ρG can be ignored.

The perfectly cylindrical liquid column at t∗ = 0 starts retracting, and a bulb and a
neck are formed at the tip, as shown on the figures at t∗ = 7.8. With the persistent action of
surface tension, the bulb continues to grow, as depicted at t∗ = 18.9. At this middle time,
subtle differences appear between prediction from the standard method and the other two
methods. At the final time of t∗ = 30, the predictions between the φ-based and α̃-based are
essentially the same and are slightly different from the standard method.

(a) t∗ = 0.0 (b) t∗ = 7.8

(c) t∗ = 18.9 (d) t∗ = 30.0

Figure 11. The evolution of the retracting liquid column corresponding to the three curvature
estimation schemes.

The quantitative difference among the three curvature estimation methods is provided
by comparing the time history of the liquid column lengths, as shown in Figure 12. Initially,
the length of the liquid column remains unaltered as only the periphery is affected by
the dynamics, but the central part remains largely unchanged. The flat predictions of
column length reflect this during the initial period, which lasts until approximately t∗ = 3.2.
Beyond this initial period, the retraction of the liquid column is essentially a linear function
of time, implying that the retraction speed is constant. The lengths from the diffused-α
based method and the φ-based method are almost identical and are slightly faster than the
α-based computation. While subtle differences emerge in the shapes of the bulbs and the
lengths of the liquid columns predicted by the three methods, the differences in the overall
dynamics appear minor. An improved curvature scheme does not impact the results in a
significant way.
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Figure 12. The time evolution of the column length predicted by the different curvature
estimation schemes.

3.6. Evaluation of Computational Costs

The calculations in the previous sections have shown that the φ-based method is
noticeably superior to the standard α-based calculation, particularly when the effect of
surface tension is isolated from all other factors. This section documents the computational
cost of exercising this φ-based method, where our findings are presented in Table 6 as a
percentage of the total cost for all operations. Specifically, the φ-based calculation consists
of an interface reconstruction and a Hamilton–Jacobi re-initialization, as outlined in Sec-
tion 2.3. In contrast, the standard α-based method has no such interface reconstruction or
re-initialization costs.

Table 6. Distribution of computational costs as a percentage of total costs. Quantities presented are
average values corresponding to 3500 time steps.

α Equation Velocity
Equation Pressure Equation φ-Based

Calculation Overhead

Laplace pressure problem 29.8% 0.89% 54.31% 11.67% 3.33%
3D oscillating drop 9.62% 4.21% 57.53% 27.5% 1.14%
Shear layer problem 2.61% 0.94% 89.86% 6.45% 0.14%

Rayleigh-Plateau instability 10.42% 5.53% 46.28% 32.73% 5.04%
Retraction of liquid column 9.71% 5.86% 46.93% 36.71% 0.79%

For the sake of completeness, the cost of all other operations are also included in Table 6.
This consists of the α transport operation, which consists of the solution of the VoF equation.
It also includes the momentum equation, which is the predictor part of the calculation, and
the Pressure–Poisson equation, which usually dominates all computational costs. Overhead
costs are also included. The results show that the Pressure Poisson calculation remains, not
surprisingly, the dominant contributor to the computational expense. However, the φ-based
operations are not necessarily negligible and, in some instances, are relatively close to the
Pressure calculation. This means that, in the worst-case scenarios, the calculations involving
the current φ-based method can be up to 50% more expensive than the standard α-based
methodology. However, it should be kept in mind that no effort has been made in expediting
these additional φ-based calculations at this stage. It remains part of future work.
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4. Conclusions

Improvements to the interfacial curvature calculations have been implemented and
tested against the standard α-based methodology employed in interFoam. The new imple-
mentations consist of a diffused treatment for the liquid fraction (α̃-based) and a signed-
distance function procedure (φ-based). Five evaluation exercises have been performed,
emphasizing hydrodynamic breakup problems, and are thus relevant to spray formation
and other atomization processes.

In summary, our findings show that, among the three methods, the φ-based method
is consistently superior in all cases, with the most notable result being the second-order
convergence of the Laplace pressure across a 2D droplet. As evident in the literature, the
lack of convergence for the standard α-based method has been known for quite some time,
and the α̃ shows a lower level of error but still fails to converge. An interesting finding
is that the predictions converge even for the standard method once the problem involves
motion, such as the oscillating droplet case. Additionally, the predictions for the shear
layer (Section 3.3), the Rayleigh jet breakup (Section 3.4), and the retraction of a liquid
column (Section 3.5) show that the standard method does not differ significantly from
the more accurate φ-based method, even though its performance is worse. The difference
between α-based and φ-based methods is accentuated when surface tension effects become
the dominant influencing factor, for instance, for the 3D oscillating droplet.

An interesting conclusion from the present work is that, once other factors enter into
the dynamics, such as viscous forces, inertia, or pressure, the performance of the standard
α-based treatment becomes quite reasonable. For instance, the agreement with theory in
the droplet oscillating case (Section 3.2), the shear layer (Section 3.3), and the Rayleigh jet
(Section 3.4) are for the most part acceptable. It is only when the evaluation exercise focuses
entirely on the curvature prediction, for instance, the Laplace pressure problem (Section 3.1)
or the spurious current estimations presented in the literature [1,26,35] that we see the
standard method falling quite short of the exact result. However, most practical cases
concerning liquid breakup do not involve such carefully orchestrated scenarios, and in
these more general cases, the standard method does a reasonable job. A takeaway from the
current work is that adding more complicated and accurate curvature prediction methods
to interFoam does not necessarily guarantee meaningful improvements in realistic flow
simulations unless those simulations are to a great degree governed by surface tension, e.g.,
nano-droplet dynamics.
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