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Abstract: In the Deepwater Horizon oil spill, optical plume velocimetry (OPV), a flow measurement
technique for use in seafloor hydrothermal systems, was found to have the least uncertainty in
estimating the rate at which oil was escaping from the well in the deep sea. However, OPV still had a
high uncertainty of 21%, partly due to the limited accuracy of the temporal cross-correlation algo-
rithm used. In this work, the accuracy of several in-situ optical velocimetries, namely wavelet-based
optical velocimetry (WOV), OPV, and two classical correlation-based algorithms, namely fast Fourier
transform (FFT) and normalized cross-correlation (NCC), for a plume flow with Reynolds numbers
varying from 1847 to 11,656 was investigated. WOV, FFT, and NCC resulted in flow rates closer to the
expected turbulent plume flow rate as compared to OPV. Moreover, a noisy velocity field was found
using OPV. The accuracy of wavelet-based algorithm outperformed all cross-correlation based algo-
rithms. The flow rate was measured with an error of 8.5% using WOV, whereas errors of 18.2%, 19.7%,
to 21.1% were obtained when applying FFT, OPV, and NCC, respectively. There was a statistically
significant difference between wavelet-based and correlation-based algorithms, but no statistically
significant difference between the estimation of the three cross-correlation based velocimetries. WOV
outperformed the other velocimetries and estimated flow rates with an error of 8.5%, whereas the
OPV, FFT, and NCC were estimated with errors of 19.7%, 18.2%, and 50.8%, respectively.

Keywords: flow measurement; oil spill; optical technique; cross-correlation

1. Introduction

Optical velocimetry estimates velocity field from image sequence data. Existing
techniques can be classified as active, which uses lasers to illuminate the flow space, or
passive, which uses external light for illumination. A well-known active technique is
particle image velocimetry (PIV) [1]. PIV has many applications in fluid dynamics. PIV
measures flow with very high accuracy, more than 99%, for laboratory scale measurements.
The good accuracy of PIV in lab-scale applications is in part due to the use of pulsed
laser with seed particles, which facilitates particle tracking. However, when PIV was
applied to in-situ flow measurement of an oil spill, where no seed particles are present, it
underestimated flow rate by a factor of two, with high uncertainty [2]. Techniques such as
hot wire velocimetry (HWV) [3,4] and laser doppler velocimetry (LDV) [5] are laboratory-
based techniques requiring specialized equipment and calibration and are therefore not
appropriate for in-situ applications. In this regard, passive technique such as optical plume
velocimetry (OPV) is more appropriate for in-situ applications such as oil spill flow rate
estimation from a well blowout.

Regardless of whether an active or passive technique is used, algorithms are required
for velocity field estimation from input images. Several algorithms were proposed for
the estimation of velocity field from an image sequence. These algorithms can be clas-
sified into differential based [6,7], cross-correlation based [8], frequency based [9], and
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wavelet-based [10] algorithms. Cross correlation-based methods are widely applied in flow
measurement. However, classical algorithms consider only signal amplitude or frequency
information, which may not appropriate to deal with turbulent signals. This is because
the time resolution of the signal in frequency domain is mostly lost, whereas frequency
information is lost in time domain.

To consider both signal amplitude and its frequency in flow estimation, the use of
wavelet transform was proposed [11,12]. Tal et al. [13] estimated the time-delay between
two non-stationary signals for fluid velocity estimation. Jakubowski et al. [14] and Ching
et al. [15] proposed techniques based on wavelet theory for pre-processing and filtering
signals prior to velocity determination. Moreover, wavelets has been applied for several
applications such as investigation of coherent structure of turbulent flow [16,17], turbulent
flow simulation [18], and velocity field estimation [19]. Wavelet theory can deal with
non-stationary signals and is therefore an appropriate technique for turbulent flow such as
an oil spill jet, at both fine and large scales.

Several researchers have proposed velocimetry for velocity field estimation from an
image sequence or video, by combining wavelets with differential based algorithms [20,21].
Good results were obtained for velocity field estimation compared to classical differential-
based algorithms, as differential based algorithms alone can be applied only for fine-
scale turbulent flow and cannot deal with the large-scale flow such as that of an oil spill.
Additionally, by using wavelets, the computational time can be reduced.

Existing wavelet-based velocimetries combine wavelet transform with differential
algorithms. These velocimetries have two main problems, including the use of discrete
wavelets, which reduce the size of input signals, leading to poor velocity field estimation.
Second, the differential algorithm estimates the velocity field based on a fine scale, leading
to poor estimation, as oil jets move with high velocity, generating coherent structures that
cannot be captured by a differential-based algorithm. Here, the use of discrete wavelet
transforms leads to artefact errors, which affect the velocity field. Recently, we developed a
novel technique called wavelet-based optical velocimetry (WOV) [6], which is based on
wavelet transform and velocity field based on signal amplitude and frequency.

In this work, a comparative analysis of several optical velocimetries to estimate the
flow rate of a turbulent plume flow was performed. The next section describes the overall
methodology including the experiments tests and velocimetries. Results, discussion, and
conclusions follow.

2. Method

To evaluate the optical velocimetries, a turbulent plume flow was experimentally simu-
lated for five flow rates. This section describes the procedure for the experiment, including
a description of the experimental apparatus and the video data collection. Additionally,
the pre-processing of the input video and the post-processing steps are described in detail.
Finally, the performance of the proposed techniques, namely WOV, OPV, FFT, and NCC,
are discussed.

2.1. Experimental Apparatus

Figure 1 illustrates the experimental setup used for turbulent plume flow simulation.
The set-up includes three tanks: the main tank, a supply tank, and an overhead tank. The
main tank is 0.9 m × 0.9 m × 2 m and is made of acrylic material to allow for recording of
the flow outside the tank using a video camera. The large size of the tank prevents a wall
effect, in which the flow touches the tank wall. Water with graphite and a 5% salt is used to
generate the plume. Salt is added to generate buoyancy to the plume. The overhead tank
provides a constant flow rate in the nozzle, as the water level remains constant. A flow
control valve is used to control the flow rate. A submersible pump placed in the lower tank
replenishes the graphite mixture of the overhead tank. The graphite mixture flows as the
control valve is open through an 8-mm diameter nozzle connected from the overhead tank,
simulating a plume. A momentum diffuser is used to keep the plume at the bottom of the



Fluids 2022, 7, 126 3 of 13

main tank. Two underwater 5W LED lights are placed in the main tank to illuminate the
flow. A black background is used to improve the visibility of the flow, and a 10 × 10 mm
checker-board pattern is used for calibration purposes.

A Canon EOS-550 camera (Canon, Tokyo, Japan) is used to collect plume flow data
for five different flow rates. The camera distance from the nozzle, focal length, focusing
level, and field of view were adjusted accordingly. A 120-s video was recorded for each
experimental run, at 50 fps frame rate with a resolution of 1280 × 720 pixels at a standard
focal length of 50 mm.

Flow rates were measured to compare the accuracy of velocimetries. By opening the
control valve, various plume flow rates were simulated experimentally, and five cases were
considered [22]. The control valve was calibrated by recording the time taken for five litres
of mixer to flow into the main tank. The five nozzle velocities are 0.18, 0.32, 0.45, 0.62, and
1.16 m/s, with Reynolds numbers ranging from 1847 to 11,656.
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Figure 1. Experimental setup used for plume simulation including schematic (above) and actual
setup (below).

2.2. Pre-Processing of Flow Video

The recorded video was pre-processed to enhance the quality of the output image
sequence. The pre-processing steps applied to the video include conversion of the video
to an image sequence, conversion of colour images to grayscale, and cropping of the flow
region. Image subtraction was applied to all images to remove the background. Next, the
contrast of the input images was enhanced using adaptive histogram equalization. Figure 2
shows a sample of the original frame extracted from a video of the flow for the first flow rate,
the image after background subtraction, and the enhanced image. The processed image
appears smoother than the original image, in which background subtraction removed
shadows around the flow, mostly around the plume boundary.

Post-processing was subsequently applied to the image velocity field prior to flow
rate estimation. A median filter was applied to remove outliers of the final velocity field.
A median filter [5] was applied to the output velocity, and all outliers were replaced by
the median of velocities at a defined window with size of 5 × 5 pixels. Additionally,
convolution was performed using a window with size of 5 × 5 pixels to smooth the final
velocity field. By averaging the velocities at the near-nozzle region, the plume velocity
was obtained.
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Figure 2. A sample of the (a) original image, (b) image after background subtraction, and (c) enhanced
image using adaptive histogram equalization.

2.3. Optical Velocimetries

Four optical velocimetries—WOV, OPV, FFT, and NCC—were applied for image
velocity field and flow rate estimation. In all cases, the local velocity was found from a set
of image sequences by finding the correlation between two signals extracted from flow
space. For two points separated by distance d, with a time-lag t, the velocity at the point, u
using Equation (1) is:

u =
d
t

(1)

A separation distance of 5 pixels [22] was chosen to extract the signals and estimate
the image velocity field. The flow rate was then estimated from the image velocity field
by segmenting the image velocity using the Otsu thresholding method [23] by defining
a threshold value between the flow and the image background, with pixels below the
threshold value removed. This method was applied by Crone et al. [22] as well, for
segmenting the image velocity field. The flow rate was then estimated from the velocity
field for the four algorithms. Several averaging approaches can be used to estimate the
flow rate from the image velocity field, including averaging of the overall velocity field,
averaging a certain region from the velocity field, or by defining a threshold to reject some
velocity vectors and averaging the remaining vectors. Selection of an averaging approach
is an important factor for correlating the estimated flow rate to the actual flow rate. In this
work, the flow rate was obtained by averaging the velocity field at a distance equal to the
nozzle diameter, i.e., x/d = 1, where x is axial distance and d is nozzle diameter, as the flow
rate near the nozzle region is closer to the actual flow rate. A linear relationship with zero
crossing is expected for the estimated flow rate and the actual flow rate [22].

2.3.1. Wavelet-Based Optical Velocimetry

Four steps are required to estimate flow rate when applying WOV. The first is the
extraction of two signals from flow space over time, with a pre-defined separation distance
between those signals. Second, by using continuous wavelet transform, the input signal
is transformed to the wavelet domain, which generates wavelet coefficients. In this step,
wavelet parameters such as wavelet function, wavelet scales, and vanishing moment are
important considerations. The similarity between the wavelet coefficients of the two signals
is subsequently determined. By using fast Fourier transform, the peak position of the
time-lag between signals, from which velocity can be estimated, can be found. By repeating
these steps, the overall velocity field can be obtained by shifting to other points in the image
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space. Finally, the flow rate can be obtained by averaging the velocity field. More details
on WOV technique can be found in [6], which describes the methodology of image velocity
field estimation by WOV.

2.3.2. Optical Plume Velocimetry

Optical Plume Velocimetry (OPV) uses a temporal cross-correlation (TCC) algorithm
for image velocity field estimation. TCC is based on the similarity measure between signals
or images. TCC was applied by Crone et al. [22] for his OPV technique to determine flow
rate from images. The corresponding correlation coefficient RTCC, given by Equation (2) is:

RTCC(d) =
N−1

∑
k=1

aid,j,k.ai,j,k+l (2)

The summation of the multiplication of the two signals will result in correlation
coefficients for a given time lag. The value of time lag, lTCC, can be determined by detecting
the maximum correlation coefficients RTCC, using Equation (3):

lTCC = argtmax[RTCC(τ)] (3)

2.3.3. Normalized Cross Correlation

The third velocimetry is based on normalizing the turbulent signals prior to cross
correlation. This algorithm is called normalized cross-correlation (NCC), which is useful for
better correlation and peak detection. A similar algorithm has been applied for estimating
the velocity field using the PIV technique [24]. However, in the work of Thomas [24], the
cross correlation was implemented in a 2D space, whereas in this work, the NCC algorithm
was utilized to find the correlation between each signal for 1D signals. If the input signal is
w(a,b), then each scale can be normalized by using Equation (4):

wn(a, b) =
w(a, b)− w(a, b)
‖w(a, b)− w(a, b)‖2

(4)

where wn(a, b) are the normalized coefficients at scale a, and w(a, b) is the mean of correla-
tion coef-ficients.

2.3.4. FFT Cross-Correlation

The second function considered for time-lag estimation is the FFT cross-correlation,
which measures the similarity between two signals in the frequency domain. The FFT
algorithm was used to estimate the correlation coefficients between two signals. If the two
signals are delayed by a time lag, this lag can be estimated using the FFT to determine
the time lag between two signals in three steps: finding the Fourier transform of the two
signals, multiplying them together, and finding the inverse FFT of the multiplication to
give the required correlation coefficients. The FFT function is given by Equation (5):

RFFT = FFT(S2). ∗ IFFT(S1) (5)

where S1, S2 are the original and delayed signals, respectively.
To find FFT of a signal of f(n) that has a length of n, the following equation is used:

F(x) = ∑N−1
n=0 f (n)e−j2π( n

N x) (6)

and the inverse FFT is given by:

f (n) = ∑N−1
n=0 F(x)e−j2π( n

N x) (7)

where F(x) is the frequency domain signal.
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Once correlation coefficients are estimated, the required time lag lFFT can be obtained
by detecting the maximum of these coefficients, as given by Equation (8):

lFFT = argtmax[RFFT(τ)] (8)

3. Results and Discussion

The robustness of the WOV, OPV, FFT, and NCC optical velocimetries were subse-
quently evaluated. These velocimetries were applied to estimate the velocity field of plume
flow from image sequences for the five nozzle velocities. Figure 3 shows a sample of the
velocity field obtained based on the different algorithms. The colour of the estimated
velocity field was adjusted between zero to the actual nozzle velocity. From the flow
visualization, almost similar velocity fields were obtained when using WOV, OPV, and
FFT algorithms. The NCC algorithm underestimated the velocity field and a noisy velocity
field resulted. The empty velocity region by NCC was due to infinite velocity magnitudes
by the algorithm, which was filled by zeros. A quantitative evaluation shows that both
velocity fields obtained by WOV and OPV were more acceptable compared to the FFT and
NCC algorithms (see Figure 3). Maximum velocity was obtained in the near-field region,
with the velocity gradually decaying away from the nozzle, as predicted from the theory
of turbulent jet. The velocity fields obtained using the WOV, OPV, and FFT algorithms
are consistent with the predictions of jet theory, in which high velocity is observed in
the near-nozzle region, with comparable velocity distribution. However, a quantitative
evaluation is required to differentiate between the accuracy of these algorithms.

Fluids 2022, 7, x FOR PEER REVIEW 8 of 14 
 

 

Figure 3. Comparison of image velocity field estimated using (a) WOV, (b) OPV, (c) NCC, and (d) 
FFT based velocimetries. 

The estimated velocity field was analysed by extracting the centreline velocity and 
the radial velocity at three locations in the fully developed region of the simulated jet. 
Turbulent jet flow theory suggests self-similarity of the radial velocity of different loca-
tions in the fully developed region, with a Gaussian distribution. 

Figure 4 shows the decays of centreline velocity extracted from the velocity field, ob-
tained by the wavelet-based technique. The growth rates of centreline velocity were 3.3, 
3.4, 4.5, 4.7, and 4.8 for the different nozzle flow rates. The wavelet-based technique was 
able to differentiate different nozzle flow rates, as the nozzle flow rate and jet growth rate 
increased. However, the growth rates were lower than the predicted growth rate. Lipari 
et al. [25] found that the range of growth rates for free turbulent jet flow to be between 5.7 
to 6.7 for higher nozzle flow rate, compared to the range of flow rate considered in this 
study. The growth rate range is acceptable, as the maximum flow rate has a Reynold num-
ber of 11,656, whereas those reported in the literature were for higher flow rates. 

Figure 3. Comparison of image velocity field estimated using (a) WOV, (b) OPV, (c) NCC, and (d) FFT
based velocimetries.



Fluids 2022, 7, 126 8 of 13

The estimated velocity field was analysed by extracting the centreline velocity and
the radial velocity at three locations in the fully developed region of the simulated jet.
Turbulent jet flow theory suggests self-similarity of the radial velocity of different locations
in the fully developed region, with a Gaussian distribution.

Figure 4 shows the decays of centreline velocity extracted from the velocity field,
obtained by the wavelet-based technique. The growth rates of centreline velocity were 3.3,
3.4, 4.5, 4.7, and 4.8 for the different nozzle flow rates. The wavelet-based technique was
able to differentiate different nozzle flow rates, as the nozzle flow rate and jet growth rate
increased. However, the growth rates were lower than the predicted growth rate. Lipari
et al. [25] found that the range of growth rates for free turbulent jet flow to be between
5.7 to 6.7 for higher nozzle flow rate, compared to the range of flow rate considered in
this study. The growth rate range is acceptable, as the maximum flow rate has a Reynold
number of 11,656, whereas those reported in the literature were for higher flow rates.
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Radial velocities at three locations were extracted from the velocity field estimated by
the wavelet-based technique. The normalization of these radial velocities with its maximum
usually results in Gaussian profiles. Figure 5 shows the normalized radial velocity at three
locations selected at the fully developed region, i.e., x/d > 6 including x/d = 15, 20, and 25.
The normalization of the velocity distribution at different locations by the centreline velocity
should exhibit self-similarity, in which a Gaussian distribution is predicted. All the radial
velocities extracted from the velocity field obtained by the wavelet-based technique are in a
good agreement with the predicted Gaussian profiles. The velocity distributions have similar
trends with small differences, as compared to the Gaussian profiles. Moreover, the peak
positions of theoretical radial velocity were seen at the centre, whereas for the estimated
profiles it deviated either to the left or right. This is acceptable as there are some uncertainties
in velocity field estimation associated with the experiments and input image sequence.
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One way to evaluate the accuracy of these algorithms is by testing the linearity re-
sponse in nozzle velocity estimation and by calculating the error between estimated and
the experimental nozzle velocity. For WOV, OPV, FFT, and NCC, the nozzle velocity was
estimated as the average of velocities at the near-nozzle region, i.e., under the dash-lines
in Figure 3. Figure 6 shows the linear relationship between the estimated nozzle velocity,
Up and the experimental nozzle velocity, Wp. A linear relationship between the estimated
and experimental nozzle velocity was obtained for all algorithms. Both OPV and FFT have
almost similar trends and are closer to the experimental trend compared to the result of
NCC. For the NCC, the estimated velocities were far from the experimental magnitudes,
with the nozzle velocity estimated using WOV algorithm closer to the experimental trend.
Comparison of linearity response for the estimated nozzle velocity showed that the WOV
estimated with non-zero crossing of −0.16, whereas the non-zero crossing for the OPV, FFT,
and NCC algorithms were −0.14, −0.13, and −0.31, respectively.
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Figure 6. Estimated nozzle velocity compared to the measured velocity for (a) OPV. (b) FFT. (c) nor-
malized FFT. and (d) WOV velocimetries.

Figure 7 shows a comparison of the mean absolute percentage error calculated between
the estimated nozzle velocity and the actual velocity for the different optical velocimetries.
The WOV technique was found to outperform the other techniques with the estimated
the nozzle velocity having an error of 8.5%, whereas the OPV, FFT, and NCC algorithms
estimated the nozzle velocity with errors of 19.7%, 18.2%, and 50.8%, respectively. WOV
outperformed the classical optical velocimetries and is 56.9% more accurate compared to
OPV. WOV enables better correlation between turbulent signals and accurate detection of
the time lag between flow signals, from which the velocity is estimated. This is due to the
property of wavelet transform in decomposing turbulent signals into multi-scale, which
is well suited for turbulent motion. Moreover, WOV has the advantage of considering
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time-frequency information, whereas the other velocimetries estimates the velocity either
in the time domain or the frequency domain.
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Table 1 shows the accuracy of OPV, FFT, NCC, and WOV, in which the experimental
flow rate, Up is compared with the estimated flow rate, Wp. The flow rates for case 1 and
case 2 were measured with high uncertainties, where the error ranged from 30.7% to 50%
because of the correlation distance. Selection of correlation distance was based on the
need for a large time lag between the two signals, with a larger time lag providing higher
measurement accuracy [1]. However, a larger time lag reduces the correlation between the
signals. Too small a correlation distance leads to small time-lag values, which makes it
difficult to determine its correct value, affecting the accuracy of the algorithm for velocity
field estimation. The flow rates for case 2, case 3, and case 4 were measured with acceptable
uncertainties, where the error ranged from 3.5% to 15.6%. The better measurement in
these cases is because of the correlation distance. The overall accuracy of the three cross-
correlation functions was evaluated by taking the mean average percentage error, MAPE,
as a reference. WOV outperformed other velocimetries and estimated with an error of
8.5%. However, there was no significant difference between the accuracy of FFT and OPV,
whereas the worst results were obtained when using NCC.

Table 1. Comparison between the optical velocimetries (OPV, FFT, NCC, WOV).

No. Up (m/s)

Optical Velocimetry

OPV FFT NCC WOV

Wp (m/s) RE (%) Wp (m/s) RE (%) Wp (m/s) RE (%) Wp (m/s) RE (%)

1 0.18 0.09 50 0.11 38.9 0.12 33.3 0.19 3.5

2 0.32 0.3311 3.5 0.3311 3.5 0.291 9.1 0.31 2.2

3 0.45 0.4195 6.8 0.4195 6.8 0.381 15.3 0.51 14.3

4 0.62 0.59 4.8 0.55 11.3 0.523 15.6 0.61 1.3

5 1.16 0.78 33.3 0.8105 30.7 0.795 32.1 0.92 21.6

- - MAPE 19.7 MAPE 18.2 MAPE 50.8 MAPE 8.5
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4. Conclusions

Several optical velocimetries were applied for flow rate estimation. A plume was
simulated experimentally by collecting video recordings for five different flow rates with
Reynolds numbers ranging from 1847 to 11,656. WOV showed a better estimation than
other velocimetries. It outperformed OPV, where the flow rate was measured with an error
of 8.5% using WOV and 19.7% for OPV. WOV has the advantage of signal scaling prior to
the correlation step, which leads to improved accuracy.
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