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Abstract: Clebsch variables provide a canonical representation of ideal flows that is, in practice,
difficult to handle: while the velocity field is a function of the Clebsch variables and their gradients,
constructing the Clebsch variables from the velocity field is not trivial. We introduce an extended
set of Clebsch variables that circumvents this problem. We apply this method to a compressible,
chemically inhomogeneous, and rotating ideal fluid in a gravity field. A second difficulty, the secular
growth of canonical variables even for stationary states of stratified fluids, makes expansions of the
Hamiltonian in Clebsch variables problematic. We give a canonical transformation that associates a
stationary state of the canonical variables with the stationary state of the fluid; the new set of variables
permits canonical approximations of the dynamics. We apply this to a compressible stratified ideal
fluid with the aim to facilitate forthcoming studies of wave turbulence of internal waves.

Keywords: hamiltonian fluid mechanics; Clebsch variables; internal waves

1. Introduction

Like a variety of Hamiltonian systems, inviscid flows may be represented by non-
canonical variables (including the velocity governed by the Euler equation), or by canonical
variables, namely Clebsch variables and their generalizations [1–5]. Clebsch variables
express the velocity or momentum field of a fluid as a sum of gradient fields each of which
is multiplied by a scalar field. Each scalar factor field and the potential of the associated
gradient field are conjugate variables. A simple illustration is a potential flow u = ∇φ
of a gas of noninteracting particles: φ and the mass density ρ are a pair of Clebsch vari-
ables for the momentum density p = ρ∇φ, H[φ, ρ] =

∫
ρ|∇φ|2/2d3r is a kinetic energy

Hamiltonian. The first canonical equation ρ̇ = δH/δφ = −∇ · (ρ∇φ) is the continuity
equation, the second canonical equation φ̇ = −δH/δρ = −(∇φ)2/2 yields the Euler equa-
tion u̇ + (u · ∇)u = 0 without pressure or external forces. Equivalent equations of motion
follow from the variations [6]

δ
∫ ∫

L(u, ρ) + φ[ρ̇ +∇(ρu)]d3rdt = 0

with the kinetic energy Lagrangian density L(u, ρ) = ρu2/2. φ is a Lagrange multiplier
that ensures the conservation of mass, i.e., the continuity equation for ρ follows from the
φ-variation. The u-variation yields the gradient flow u = ∇φ and the ρ-variation yields
again φ̇ = −u2/2.

Describing a less specific flow requires additional terms in the Hamiltonian (e.g., the
potential energy of gravity) and additional Clebsch variables. Representing an arbitrary
momentum field requires three pairs of Clebsch variables [5], e.g., p = ν∇φ + λ∇σ + α∇β
(Figure 1). The three gradients ∇φ, ∇σ, ∇β locally form a trihedron that is adjusted to the
local momentum field by the three scalar fields ν, λ, α. The Euler equations may describe
the same flow with fewer variables, e.g., four variables u and ρ. This reduction of the
number of variables in the Euler equations compared to the canonical Clebsch variables is
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a consequence of the relabeling symmetry [6–10], i.e., the invariance of the Hamiltonian
under displacements of the fluid that leave its chemical and thermodynamical properties
unchanged. The conserved quantities (Casimirs) associated with these symmetries are
generators of identical canonical transformations of the canonical variables, their Poisson-
brackets with any functional (including the Hamiltonian) are zero. While the velocity
field and the density in the noncanonical description are unchanged under a relabeling
transformation, a complete set of canonical variables distinguishes fluid particles even
if they have the same properties (“particles” refers to small fluid volumes, and not to
molecules). The noncanonical description is handier by exploiting the relabeling symmetry,
while canonical descriptions can maintain the symplectic structure through approximations
of the Hamiltonian and specializations of the initial conditions; this may be advantageous
for applications in wave turbulence theory [11–18]. Fluids that have additional conserved
quantities (e.g., a space-dependent solute density and the entropy per mass), in general, do
not possess this relabeling symmetry; consequently the Euler equations need to be extended
by an advection equation for each of these quantities so that canonical and noncanonical
descriptions require the same number of variables.
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Figure 1. (a) Small fluid parcel with surfaces of constant φ, β, and σ. (b) The gradients ∇φ, ∇σ, and
∇β are adjusted by scalars ν, λ, and α to yield the local momentum density p = ν∇φ + λ∇σ + α∇β.

Canonical descriptions of interacting waves have been successfully applied to internal
wave dynamics described with Clebsch variables [15,19] and with isopycnal variables in
analogy to the Hamiltonian description of surface waves [16,20]. Spherical Clebsch maps
for incompressible flows allow to transform a complex two-component wave function into
knotted velocity fields [21–24]. This allows the direct identification and visualization of
vortex tubes [24].

This paper discusses a variety of Clebsch maps for a rotating compressible ideal fluid
with a space-dependent solute concentration in a gravity field in Section 2. A practical
problem in handling Clebsch variables is their representation as functions of the velocity
field. We suggest several methods to determine Clebsch variables from the initial conditions.
We show that introducing one or two auxiliary pairs of Clebsch variables allows the explicit
construction of all Clebsch variables.

A difficulty in perturbation expansions is the secular growth of canonical variables,
e.g., for a stratified flow in a gravity field [25]. Even elementary problems like finding
canonical equations that are equivalent to linearized Euler equations turn out to be nontriv-
ial. One complication is that maintaining the canonical structure requires refraining from
any non-canonical transformations or approximations. In Section 3 we discuss this for a
simplified flow, namely a stratified non-rotating ideal fluid in a gravity field. We introduce
a canonical transformation that eliminates the secular growth of the Clebsch variables
for the stationary state of the fluid. Linear and nonlinear canonical approximations are
obtained on the basis of this transformation.
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2. Canonical Equations for Compressible Nonhomogeneous Fluids

In this section we discuss two alternative sets of Clebsch variables for compressible
nonhomogeneous fluids. Taking the compressibility of the fluid into account has the
advantage that the thermodynamical conjugate of the pressure (namely the volume) can be
represented by a canonical variable (in our case the normalized inverse volume). We first
note that the state equation for the pressure in water can be approximated as a function of
the ratio of the actual mass density ρ and the mass density σ of the same fluid parcel at a
reference pressure. For example, refs. [26–28] discuss a variety of approximate equations of
state for the pressure such as P(ρ, σ) = (Pr + K/γ)(ρ/σ)γ − K/γ with γ ≈ 7, K is the bulk
modulus and σ is the mass density at atmospheric pressure Pr. ρ/σ equals the normalized
inverse volume Vr/V of a fluid parcel that has a reference volume Vr at Pr. While ρ and σ
depend on the entropy and the concentration of any solutes, the state equation for P(Vr/V)
depends on these variables only weakly [26,28] within a range that is relevant e.g., in
internal waves. This suggests to use Vr/V as a dynamical variable. The pressure can
then be derived from an internal energy density e(Vr/V). We introduce this approach in
Section 2.1 and use it in particular in Section 3.

A dependence of the state equation on the entropy per mass s and solute mass per-
centage c may be taken into account either by starting from an internal energy density
e(Vr/V, s, c) or alternatively from e(ρ, s, c). In the latter case the pressure differential
dp = ρd(∂e/∂ρ)− (∂e/∂s)ds− (∂e/∂c)dc depends on these three variables, and these vari-
ables may be used as dynamical Clebsch variables. We discuss this approach in Section 2.2.

2.1. Clebsch Variables for a State Equation P(Vr/V)

We introduce a set of three Clebsch variables [3] for an inviscid, compressible, and
diffusionless rotating fluid with an inhomogeneous solute concentration in a homogeneous
gravity field and discuss their relation to Ertel’s potential vorticity [29]. We assume that
the fluid compressibility is a function of the pressure only with no explicit dependence on
the salinity or entropy. Let V be the actual volume of a small fluid parcel at the pressure
P, and Vr be the volume of the parcel at a fixed reference pressure Pr. The mass density
ρ = m/V is governed by continuity equation ρ̇ = −∇ · (ρu). The mass density at the
reference pressure Pr is again denoted as σ = m/Vr. This quantity is in general a function
of any solute mass percentages and the entropy per mass, and it is materially conserved,
i.e., Dσ/Dt = 0. The Euler equations for this system are

Du
Dt = −gez − ρ−1∇P + 2u×Ω

ρ̇ +∇ · (ρu) = 0
σ̇ + u · ∇σ = 0

(1)

To exploit the state equation of the form P(Vr/V) we introduce the normalized inverse
volume of the fluid parcel ν = Vr/V = ρ/σ with ν(Pr) = 1, which is governed by the
continuity equation ν̇ = −∇ · (νu). We use ν and σ as independent variables. The pressure
gradient follows from an internal energy per volume (written as as a function of ν using
V = Vr/ν) as∇P = ν∇ ∂e

∂ν with d ∂e
∂ν = ν−1dP. Note that σ may be influenced by the entropy

per mass as well as any solutes of the fluid; it is only required that the compressibility can
be expressed as a function of ν only. The equations of motion and the Hamilton function
can be obtained from the variation of the action that is constrained by the conservation
laws [3,6–8]. The constrained action is∫ ∫

L(u, r, ν, σ)− λ(σ̇ + u · ∇σ) + φ[ν̇ +∇(νu)]− α(β̇ + u · ∇β)d3rdt, (2)

where L = T − V is the Lagrangian density with the kinetic energy density

T (u, r, ν, σ) = νσu2/2 + νσu ·A

and the potential energy density
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V(r, ν, σ) = e(ν) + νσgz.

A(r) is a vector potential for the Coriolis force. φ(r, t), λ(r, t), α(r, t) are Lagrange
multipliers of the continuity equation for ν(r, t) and the advection equations of σ(r, t)
and β(r, t). β(r, t) may be a formal fluid particle label, or (as discussed below) it may be
identified with the potential vorticity. Applying Hamilton’s principle to Equation (2), the
u-variation yields (Figure 1)

u = σ−1ν−1(λ∇σ + ν∇φ + α∇β)−A. (3)

Variations of the multipliers φ, λ, α and the variables ν, σ, β give the equations
of motion

ν̇ +∇ · (νu) = 0
φ̇ + u · ∇φ = ∂L/∂ν

λ̇ +∇ · (λu) = −∂L/∂σ
σ̇ + u · ∇σ = 0

α̇ +∇ · (αu) = 0
β̇ + u · ∇β = 0

(4)

with
∂L/∂ν = σu · (u/2 + A)− σgz− ∂e/∂ν
∂L/∂σ = νu · (u/2 + A)− νgz.

Equation (4) is equivalent to the canonical equations Ṗ = −δH/δQ and Q̇ = δH/δP
for P = (φ, σ, β) and Q = (ν, λ, α) for the Hamiltonian

H[ν, φ, λ, σ, α, β] =
∫
(νσu2/2 + νσgz + e)d3r. (5)

The velocity u in Equation (5) is expressed as the function (3) of the Clebsch variables,
while it is an independent variable in the variation of Equation (2). The canonical momen-
tum density is p = λ∇σ + ν∇φ + α∇β, the kinetic momentum density is νσu = p− νσA.

Expressing u̇ by Equation (4) yields the Euler equation

Du
Dt

= −gez − σ−1ν−1∇P + 2u×Ω (6)

after a straightforward calculation. Ω = ∇× A/2 is the angular velocity of the Corio-
lis force, e.g., the vector potential A = (−yΩ, xΩ, 0) yields Ω = Ωez. A Hamiltonian
formalism for inertial waves in rotating fluids was introduced in [15].

We observe that a stationary state of the Euler Equation (6) is not a stationary state
of the Clebsch variables Equation (4): a stratified equilibrium state u = 0, σ = σeq(z),
ν = νeq(z) of the Euler equation satisfies

σeqνeqg + νeq
d
dz

∂e
∂νeq

= 0. (7)

The variables λ and φ grow at constant rates φ̇ = −σeqgz− ∂e/∂νeq and λ̇ = νeqgz by
Equation (4) for the stationary state of the fluid. These equations together with ν̇ = σ̇ =
α̇ = β̇ = 0 are canonical equations for a Hamiltonian with no kinetic energy.

For the limit of an incompressible fluid ν = 1, ∂e/∂ν→ ∞, φ̇ diverges and (ν, φ) are
not a pair of canonical variables. In this case the potential φ in p = λ∇σ +∇φ + α∇β
needs to be determined from ∇ · u = 0 and the boundary conditions [15,19].

The conservation of potential vorticity follows directly from the conservation laws of
Clebsch variables. The Jacobian determinant of the three materially conserved quantities σ,
β, α/ν
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det W = det[∇σ,∇β,∇(α/ν)]
= σ∇σ · [∇× (u + A)]

(8)

is a locally conserved density, i.e., it is governed by the continuity equation

∂ det W
∂t

+∇ · (u det W) = 0.

With σ2ν being another locally conserved quantity, we note that the ratio of det W and
σ2ν is materially conserved; this yields Ertel’s potential vorticity conservation [29]

D
Dt

det W
σ2ν

=
D
Dt
∇σ · [∇× (u + A)]

σν
= 0. (9)

We note that α = 0 or β = 0 yields a zero potential vorticity which again shows that
two pairs of Clebsch variables are insufficient for a general velocity field. The potential
vorticity conservation is associated with the relabeling symmetry [6–10], which is, in this
case, the invariance of the Hamiltonian under displacements of the fluid on surfaces with
constant σ while keeping ν(r) unchanged. Both β and the potential vorticity are materially
conserved; this suggests to represent the potential vorticity by the variable β: setting the
initial condition of β as β = σ−1ν−1∇σ · [∇× (u + A)] ensures that β matches the potential
vorticity throughout the time evolution.

β can be used for other purposes depending on the type of fluid. It can represent
an additional materially conserved quantity of the fluid, e.g., the entropy per mass or a
solute mass percentage. In this case, the potential energy V depends on β so that α is not
governed by a continuity equation. Correspondingly, α/ν and the potential vorticity are
not materially conserved in this case. This reflects that the Hamiltonian of such a system
is in general not invariant under continuous displacements of fluid particles on surfaces
σ = const.: such displacements change the entropy distribution of the fluid unless the
surfaces σ = const. coincide with surfaces β = const.

2.2. Clebsch Variables for More General State Equations

We now give a generalization for fluids whose compressibility depends also on the
entropy per mass s(r, t) and the mass percentage (mass of a solute per mass of the fluid)
c(r, t). The internal energy per volume is e(ρ, s, c). With ρ being locally conserved and s
and c being materially conserved, the Euler equations are

Du
Dt = −gez − ρ−1∇P + 2u×Ω

ρ̇ +∇ · (ρu) = 0
ṡ + u · ∇s = 0
ċ + u · ∇c = 0.

(10)

The pressure gradient is∇P = ρ∇ ∂e
∂ρ −

∂e
∂s∇s− ∂e

∂c∇c. The constrained action becomes

∫ ∫
L(u, r, ν, σ)− λ(ṡ + u · ∇s) + φ[ρ̇ +∇(ρu)]− α(ċ + u · ∇c)d3rdt, (11)

with L = T − V ,

T (u, r, ρ) = ρu2/2 + ρu ·A

and the potential energy density

V(r, ρ, s, c) = e(ρ, s, c) + ρgz.
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φ(r, t), λ(r, t), α(r, t) are now Lagrange multipliers of the continuity equation for ρ(r, t)
and the advection equations of s(r, t) and c(r, t). The u-variation yields

u = ρ−1(λ∇s + ρ∇φ + α∇c)−A. (12)

Variations of the multipliers φ, λ, α and the variables ρ, s, c give the equations of motion

ρ̇ +∇ · (ρu) = 0
φ̇ + u · ∇φ = u · (u/2 + A)− gz− ∂e/∂ρ

λ̇ +∇ · (λu) = ∂e/∂s
ṡ + u · ∇s = 0

α̇ +∇ · (αu) = ∂e/∂c
ċ + u · ∇c = 0.

(13)

These equations together with Equation (12) again yield the Euler Equation (10) for
an internal energy e(ρ, s, c). It is straightforward to extend this to several solute mass
percentages ci, each of which will be governed by an advection equation. Each solute will
require one new pair of Clebsch variables (αi, ci) in the definition of the momentum, which
then involves more Clebsch variables than needed for representing an arbitrary velocity
field. These contributions may be neutralized with respect to the initial conditions by
setting the scalar factor fields αi equal to zero initially.

A fundamental difference between Equations (4) and (13) is that α is not locally
conserved in Equation (13), so α/ρ is not materially conserved. Fluid particles with different
values of s and c are physically distinguishable, and Ertel’s potential vorticity (Equation (9))
is not conserved. Describing fluids whose pressure depends only on ρ/σ with Equation (13)
is possible, but unnecessarily complicated. In contrast to this, the description (4) can be
reduced to only four Clebsch variables for certain initial conditions, which is not possible
for Equation (13). We will take advantage of that in Section 3.

2.3. Computing Clebsch Variables from the Initial Conditions: One Auxiliary Pair of
Clebsch Variables

While it is desirable to construct the Clebsch variables from the momentum field
p (e.g., for determining the initial conditions of the Clebsch variables), there are some
difficulties in this step. Evidently the Clebsch variables (4) are not uniquely determined by
the momentum density, for example p is invariant under canonical gauge transformations
like φ̂ = φ− εσ, λ = λ̂− εν̂, ν̂ = ν, σ̂ = σ. We now consider the optimal situation where
the vectors (∇φ, ∇σ, ∇β) are linearly independent everywhere in space. For the given
trihedron (∇φ,∇σ,∇β) the set of coefficients (ν, λ, α) can be determined directly and
uniquely in order to adjust ν∇φ + λ∇σ + α∇β = p to a given momentum field (Figure 1).
However, the coefficient ν is a physical property of the fluid that is determined by its
own initial condition, so ν is not available as an arbitrary parameter for representing a
particular momentum field. Instead, it is the leg∇φ that is arbitrary and therefore available
for adjusting to the momentum density. This leaves us with the much harder task of
finding a potential φ that represents an arbitrary vector field p as ν∇φ + λ∇σ + α∇β.
A trivial example may illustrate this difficulty: the initial conditions of the momentum
field may be given by p(x, t0) = (1, z,−y) with σ(x), dσ/dx > 0. Clebsch variables that
yield this field are e.g., φ = y, ν = z, α = −y, β = z, λ = 1/(dσ/dx). However, the
initial condition ν(x, t0) will in general be an arbitrary function, so it is necessary to solve
λ∇σ(x) + ν(x)∇φ + α∇β = (1, z, y) for λ, φ, α, β.

This problem can be circumvented with additional (and redundant) Clebsch variables:
introducing a fourth pair of variables α2, β2 and defining the momentum as

p = λ∇σ + ν∇φ +
2

∑
i=1

αi∇βi (14)
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allows us to construct all Clebsch variables explicitly. The variables αi and βi are multipliers
and fluid labels in Hamilton’s principle that are governed by the canonical equations

β̇i = δH
δαi

= −u · ∇βi
α̇i = − δH

δβi
= −∇ · (αiu).

(15)

In other words, β2 is an additional passive tracer with no influence on the dynamics
of u. Computing u̇ confirms that the projection (14) reduces the dynamics of four pairs of
Clebsch variables to the Euler equation. The initial conditions of these Clebsch variables
may be expressed explicitly in terms of the initial conditions of the momentum density. We
give two approaches for constructing the initial conditions.

A first way is to set α2(r, t0) = −1 and β2(r, t0) = ν(r, t0)φ(r, t0), which leads to the
initial momentum density p = λ∇σ − φ∇ν + α1∇β1 at (r, t0). This switches the term
ν∇φ to −φ∇ν at t0, so that φ is now an adjustable scalar coefficient of the gradient field
∇ν. If the three gradients ∇σ, ∇ν,∇β1 are linearly independent everywhere in space, the
coefficient λ(r, t0) may be computed directly as

λ =
p · (∇ν×∇β1)

∇σ · (∇ν×∇β1)
. (16)

Similar projections yield φ(r, t0) and α1(r, t0). The materially conserved variables αi/ν
and βi may be combined into new conserved quantities, for example det Wi = ∇σ · (∇βi ×
∇(αi/ν)) is locally conserved. In analogy to Equation (9), the potential vorticity is now

∇σ · [∇× (u + A)]

σν
=

det W1 + det W2

σ2ν
. (17)

Again, we may identify β1 with the potential vorticity via the initial conditions so
that the vectors (∇σ,∇ν,∇β1) at t0 have a clear physical meaning. A limitation of this
approach is that ∇σ, ∇ν, and ∇β1 can represent an arbitrary velocity field only if they are
linearly independent everywhere in space.

A second way of constructing the initial conditions is to set φ = 0 at t0. β1, β2 are
chosen in a way that ∇σ, ∇β1, ∇β2 are linearly independent everywhere. For a stratified
fluid with ∂σ/∂z < 0, the choice β1 = x, β2 = y yields ∇β1 = ex and ∇β2 = ey. An
alternative is to define ∇βi as tangent vectors on surfaces σ = const. The coefficients λ, α1,
α2 are computed in analogy to Equation (16). This requires again that ∇σ is nonzero, but it
can be applied to initial conditions where ∇σ and ∇ν are linearly dependent.

2.4. Two Auxiliary Pairs of Clebsch Variables

A versatile representation of the momentum density field using five pairs of Clebsch
variables is

p = λ∇σ + ν∇φ +
3

∑
i=1

αi∇βi. (18)

In Hamilton’s principle this merely extends the number of constraints that are gov-
erned by Equation (15), the remaining Equation (4) is changed only by the definition of
the momentum (18). Again it is straightforward to check that these equations lead to the
Euler Equation (6). Initial conditions of these Clebsch variables can be expressed explicitly
in terms of the initial conditions of the momentum field: λ(r, t0) = 0, φ(r, t0) = 0 lead
to p(r, t0) = ∑ αi(r, t0)∇βi(r, t0). The initial conditions (β1, β2, β3)(t0) = r are the initial
Cartesian coordinates of fluid parcels; ∇β1 = ex, ∇β2 = ey, ∇β3 = ez is a standard basis
at t0. The variables (α1, α2, α3) = p are the Cartesian components of the initial momenta
at t = t0. The advantage of this representation is that it can be used for any initial con-
ditions, in particular, ∇σ and ∇ν may be parallel or zero. The simplicity of the initial
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conditions is traded for additional Clebsch variables that are governed by continuity and
advection equations.

The additional variables are redundant in the sense that they are not necessary for
representing an arbitrary vector field. It has been shown in [5] that an arbitrary vector
field in three dimensions can be represented with two pairs of Clebsch variables plus
one gradient field, e.g., dividing Equation (14) by ν and dropping λ the representation
p/ν = ∇φ + ∑2

i=1(αi/ν)∇βi is possible. The Clebsch variables are not uniquely defined
in this representation. If the boundary conditions of the Clebsch variables need to be con-
trolled, an additional pair of Clebsch variables p/ν = ∇φ + ∑3

i=1(αi/ν)∇βi) is required [5].

3. Expansions of the Hamiltonian
3.1. Secular Growth of Clebsch Variables

We now discuss the relationship of linear and nonlinear approximations of the canoni-
cal dynamics and the Euler equation while maintaining the canonical structure through
all transformations. To simplify the equations we constrain the flow to zero potential
vorticity ∇σ · (∇ × u) = 0 by omitting the Clebsch variables α, β or αi, βi; the vector
potential A is dropped; the internal energy density is still specified as a function e(ν),
e(n)(ν) = dne(ν)/dνn.

By Equation (4) the Clebsch variables λ and φ grow secularly even for a stratified
equilibrium state u = 0. This raises the question of how the Equation (4) can be expanded
about the secularly growing variables. A tentative and unsuccessful approach would be to
expand the Hamiltonian or equivalently the Lagrangian and the constraints in terms of the
velocity and the deviations ν̂ = ν− νeq, σ̂ = σ− σeq of the physical variables ν and σ from
their equilibrium values: The quadratic approximation for the Lagrangian density is then
T2 − V0 − V1 − V2 with T2 = νeqσequ2/2 and

V0 + V1 + V2 = (νeq + ν̂)(σeq + σ̂)gz + e(νeq) + e(1)(νeq)ν̂ + e(2)(νeq)ν̂
2/2.

Approximating the constraints as ˙̂σ + u · ∇σeq = 0 and ˙̂ν +∇(νequ) = 0, Hamilton’s
principle yields u = (λ∇σeq + νeq∇φ)/(νeqσeq) and the linear equations

φ̇ = −(σeq + σ̂)gz− e(1)(νeq)− ν̂e(2)(νeq)
λ̇ = (νeq + ν̂)gz.

These are the canonical equations that follow from the Hamiltonian H =
∫
T2 + V0 +

V1 + V2d3r. While they are linear in ν̂, σ̂ and u, inserting them in u̇ does not yield the
linearized Euler equations.

To find relevant approximations of the canonical equations we first apply a canonical
transformation to the Clebsch variables and subsequently expand the Hamiltonian or La-
grangian. This canonical transformation (ν, φ, σ, λ)→ (ν̂, φ̂, σ̂, λ̂) associates the stationary
state u = 0 with a fixed point ν̂ = φ̂ = σ̂ = λ̂ = 0 of the new variables (see Figure 2a) and
turns the Hamiltonian into a form that is suitable for expansions.

The generating functional

F[φ, ν̂, σ, λ̂, t̂] =
∫
[(νeq + ν̂)(t̂ f − φ) + (σeq − σ)(λ̂ + t̂l)]d3r

with time-independent functions νeq(r), σeq(r), f (r), l(r), and t̂ = t − t0 generates the
transformations

ν = − δF
δφ = νeq + ν̂

φ̂ = − δF
δν̂ = φ− t̂ f

λ = − δF̃
δσ = λ̂ + t̂l

σ̂ = − δF̃
δλ̂

= σ− σeq.

(19)
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Figure 2. (a) Stationary state of a stratified fluid: the growing variables φ = t̂ f and λ = t̂l
yield a zero momentum field p = νeq t̂∇ f + t̂l∇σeq = 0. (b) Nonstationary state: the terms t̂ f
and t̂l are separated from the canonical variables as φ = t̂ f + φ̂, λ = t̂l + λ̂, the momentum is
p = ν∇(t̂ f + φ̂) + (t̂l + λ̂)∇σ.

The new Hamiltonian for the canonical variables ν̂, φ̂, λ̂, σ̂ is

Ĥ = H + ∂F/∂t̂
=

∫
(νeq + ν̂)(σeq + σ̂)(û2/2 + gz) + e(ν̂eq + ν̂) + (νeq + ν̂) f − σ̂ld3r

(20)

with the velocity (Figure 2b)

û =
(νeq + ν̂)∇(t̂ f + φ̂) + (t̂l + λ̂)∇(σeq + σ̂)

(σeq + σ̂)(νeq + ν̂)
. (21)

Noting that the force density can be expressed as −νσgez +∇e(1)(ν) = −ν∇ ∂V
∂ν +

∂V
∂σ∇σ, the choice

f (z) = − ∂V(νeq ,σeq)
∂νeq

= −σeqgz− e(1)(νeq),

l(z) =
∂V(νeq ,σeq)

∂σeq
= νeqgz

(22)

satisfies νeq∇ f (z) + l(z)∇σeq = 0 and associates the equilibrium û = 0 with a fixed point
˙̂φ = ˙̂λ = ˙̂ν = ˙̂σ = 0 of the canonical equations

˙̂ν = −∇ · ((νeq + ν̂)û)
˙̂φ = û · ((σeq + σ̂)û/2− t̂∇ f −∇φ̂)− σ̂gz− e(1)(νeq + ν̂) + e(1)(νeq)
˙̂λ = −∇ · [(λ̂ + t̂l)û]− (νeq + ν̂)û · û/2 + ν̂gz
˙̂σ = −û · ∇(σeq + σ̂).

Equation (21) maps these canonical equations again on the Euler equation Dû/Dt =
−gez − σ−1∇e(1)(ν). The constrained action for these equations is∫ ∫

T − V
−(t̂l + λ̂)[ ˙̂σ + û · ∇(σeq + σ̂)]
+(t̂ f + φ̂){ ˙̂ν +∇ · [(νeq + ν̂)û]}d3rdt
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where the multipliers φ and λ are replaced by t̂ f + φ̂ and t̂l + λ̂, the energy densities
T = (σeq + σ̂)(νeq + ν̂)u2/2 and V = e(νeq + ν̂) + (σeq + σ̂)(νeq + ν̂)gz are functions of the
independent variables ν̂, σ̂, and û.

The transformation (19) removes the secular growth of φ and λ for the stationary state
of the fluid, but introduces explicit time-dependencies in û (21), the canonical Equation (19)
and in Ĥ, where the identities ∂Ĥ/∂t̂ = dĤ/dt̂ = d(∂F/∂t̂)/dt̂ give

∂Ĥ/∂t̂ =
∫

lû · ∇(σeq + σ̂)− f∇ · ((νeq + ν̂)û)d3r.

3.2. Canonical Approximations of the Linear Dynamics

We expand the Hamiltonian Ĥ = ∂F/∂t + T̂0 + V̂0 + T̂1 + V̂1 + T̂2 + V̂2 + . . . in powers
of the variables φ̂, λ̂, ν̂, σ̂. The momentum vanishes in the lowest order

p̂0 = l(z)∇σeq + νeq∇ f (z)
= [g + σ−1

eq
d
dz e(1)(νeq)]ez

= 0.

The first order

p̂1 = λ̂∇σeq + νeq∇φ̂ + (ν̂∇ f + l∇σ̂)t̂, (23)

is explicitly time-dependent. The expansion of the kinetic energy in terms of p̂1, ν̂, σ̂ up to
second order is

T̂0 = 0
T̂1 = 0
T̂2 =

∫
p̂2

1/(2σeqνeq)d3r,
(24)

where the zeroth and first order vanish by p0 = 0. The potential energy and generating
function are

V̂0 + ∂F0/∂t̂ =
∫

e(νeq)− νeqe(1)(νeq)d3r
V̂1 + ∂F1/∂t̂ = 0

V̂2 =
∫

σ̂ν̂gz + e(2)(νeq)ν̂2/2d3r.
(25)

Ĥ2 = T̂2 + V̂2 yields explicitly time-dependent equations

˙̂φ = −t̂û1 · ∇ f − σ̂gz− e(2)(νeq)ν̂
˙̂λ = −t̂∇ · (û1l) + ν̂gz
˙̂ν = −∇ · (νeqû1)
˙̂σ = −û1 · ∇σeq

(26)

for the linear dynamics where û1 = p̂1/(νeqσeq). While the canonical transformation (19)
eliminates the growth of φ and λ for the stationary state of the fluid, the terms ∼ t̂û in ˙̂φ
and ˙̂λ grow secularly if û 6= 0. Inserting the canonical Equation (26) in ˙̂u1 yields

νeqσeq ˙̂u1 = νeq∇ ˙̂φ + ˙̂λ∇σeq + t̂ ˙̂ν∇ f + t̂l∇ ˙̂σ + ν̂∇ f + l∇σ̂. (27)

The first two terms contain growing contributions ∼ t̂ from the dynamics (26) of
φ̂ and λ̂, the next two terms contain t̂ as a factor. A straightforward calculation with
Equations (7) and (22) shows that the terms ∼ t̂ (not including the t̂ from the definition (23)
of û1) add up to zero

νeq∇(û1 · ∇ f ) +∇ · (lû1)∇σeq +∇ · (νeqû1)∇ f + l∇(û1 · ∇σeq) = 0.

The remaining terms in Equation (27) can be collected and simplified as
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−νeq∇[σ̂gze(2)(νeq)ν̂] + ν̂gz∇σeq + ν̂∇ f + l∇σ̂

= −νeqσ̂gez − νeq∇[e(2)(νeq)ν̂].

Equation (26) includes the nontrivial linearization of the canonical variables that is
correct in the sense that they yield the linearized Euler equation

˙̂u1 = −σ−1
eq {σ̂gez +∇[e(2)(νeq)ν̂]}. (28)

This corresponds to a direct linearization of the Euler equation σν Du
Dt = −gσνez −

ν∇ de
dν where the left side is replaced by σeqνequ̇1 and the right side is linearized in σ̂ and ν̂.

The variables φ̂ and λ̂ can be eliminated as

¨̂ν = ∂
∂z (

νeq
σeq

)
(

gσ̂ + ∂
∂z

(
e(2)(νeq)ν̂

))
+

νeq
σeq

(
g ∂

∂z σ̂ +∇2
(

e(2)(νeq)ν̂
))

¨̂σ = 1
σeq

∂σeq
∂z

(
∂
∂z

(
e(2)(νeq)ν̂

)
+ gσ̂

)
.

While the canonical variables grow, their projection on the velocity field has acous-
tic and internal wave solutions. For computing wave dispersion relations, we assume
that ν̂ and σ̂ vary at a length scale k−1

z ∝ O(1) that is small compared to the length
scales νeq/(∂νeq/∂z) and σeq/(∂σeq/∂z) of the z-dependence of νeq and σeq; this yields two
small parameters εν = k−1

z ν−1
eq ∂νeq/∂z and εσ = k−1

z σ−1
eq ∂σeq/∂z and the sound speed

c2 =
νeq
σeq

e(2)(νeq) = −νeqg/ ∂νeq
∂z . In the lowest order of these parameters, linear waves

(
ν̂(r, t̂)
σ̂(r, t̂)

)
= w exp(iΩt̂− ik · r) + c.c.

yield the eigenvalue problem −Ω2w = Aw with

A =

(
a11 a12
a21 a22

)
.

The entries of the matrix in the lowest order scale as

a11 = −c2k2 = O(ε−1
ν )

a12 = −i νeqgkz
σeq

= O(1)

a21 = −i c2kz
νeq

∂σeq
∂z = O(ε−1

ν εσ)

a22 = g
σeq

∂σeq
∂z = O(εσ)

so that tr2 A � |det A|. The first root of the eigenvalues Ω2
1/2 = − tr A±

√
tr2 A−4 det A

2
yields the dispersion of sound waves Ω2

1 ≈ −a11 ≈ c2k2. The second root is the disper-

sion of internal waves Ω2
2 ≈

a12a21−a11a22
a11

≈ N2 k2
x+k2

y
k2 with the Brunt–Väisälä frequency

N2 = − g
σeq

∂σeq
∂z = − g

ρeq

∂ρeq
∂z −

g2

c2 where ρeq = σeqνeq is the equilibrium density.

3.3. Nonlinear Canonical Approximations

Nonlinear canonical equations of motion can be obtained from a third-order approxi-
mation of the Lagrangian density ∑3

n=1 Ln(ν̂, σ̂, û2)

L1 = −e(1)(νeq)ν̂− (ν̂σeq + νeqσ̂)gz
L2 = σeqνeqû2

2/2− e(2)(νeq)ν̂2/2− ν̂σ̂gz
L3 = (σeqν̂ + σ̂νeq)û2

2/2− e(3)(νeq)ν̂3/6.
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The û2-variation of the constrained action in third-order∫ ∫
∑3

n=1 Ln(ν̂, σ̂, û2)
−λ[ ˙̂σ + û2 · ∇(σeq + σ̂)]
+φ{ ˙̂ν +∇ · [(νeq + ν̂)û2]}d3rdt

(29)

yields the velocity

û2 = (νeqσeq + ν̂σeq + νeqσ̂)−1[(νeq + ν̂)∇φ + λ∇(σeq + σ̂)]. (30)

The canonical equations

φ̇ + û2 · ∇φ = σeqû2
2/2− (σeq + σ̂)gz−∑2

n=0 e(n+1)(νeq)ν̂n/n!
λ̇ +∇ · (λû2) = −νeqû2

2/2 + (νeq + ν̂)gz
˙̂ν +∇ · [(νeq + ν̂)û2] = 0
˙̂σ + û2 · ∇(σeq + σ̂) = 0

follow from the variations of Equation (29), or from the Hamiltonian

H[ν̂, φ, σ̂, λ] =
∫
(σeqνeq + σeqν̂ + σ̂νeq)û2

2/2 + V1 + V2 + V3d3r.

Here the the original untransformed Clebsch variables φ and λ are used to keep the
equations simple. This system represents the Euler equation Dû2/Dt = −σ−1

eq {σ̂gez +

∇[e(2)(νeq)ν̂]} + O(3) where O(3) is the cubic order in ν̂, σ̂ and û2. This canonical ex-
pansion can describe the interaction of weakly nonlinear waves, e.g., in the context of
weak turbulence.

4. Conclusions

Several technical difficulties hamper the use of canonical Clebsch variables for describ-
ing inviscid fluids: a first one is the non-unique and in most cases nontrivial dependence
of Clebsch variables on the velocity field. We have introduced Clebsch maps with, respec-
tively, one and two pairs of auxiliary variables that allow a simple construction of the initial
conditions from the velocity field. These additional degrees of freedom are governed by
simple equations (continuity and advection equations). A second problem is the secular
growth of the Clebsch variables φ and λ in Equation (4) in the stratified flow. The growing
terms make expansions of the equations of motion difficult, it is not even trivial to identify
the canonical equations that are associated with the linearized Euler equations. We have
introduced a canonical transformation that associates a stationary state of the fluid with
a fixed point of the Clebsch variables; an expansion in these variables leads to correct
approximations of the dynamics.

On the other hand, there are various advantages of Clebsch variables: quantities of
particular interest like the vorticity can be represented by one of the canonical equations;
incomplete sets of Clebsch variables can be chosen to represent specific flows, e.g., flows
with zero helicity and potential flows; Liouville’s theorem and its many applications in
statistical mechanics can be used. This requires that the canonical structure is preserved
through all transformations. The work that we have presented can facilitate canonical
perturbative descriptions of weakly interacting waves, in particular for studying wave
turbulence of internal waves.
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