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Abstract: Red blood cells flow near the axis in a small vessel, known as axial accumulation. This
causes a region called the cell-free layer, which does not contain red blood cells near the wall. Then,
small particles such as platelets come out to the cell-free layer. This phenomenon is called platelet
margination. In this study, related to this phenomenon, direct numerical simulations were conducted
using the immersed boundary method. The effects of the shear rate, channel size, and hematocrit
value were investigated on the pressure-driven flow in a straight tube with a square cross-section.
The simulation results indicated that the margination rate, which is the ratio of the distance traveled
in the flow direction to the margination distance in the wall direction, is independent of the shear rate.
The effect of the channel size on platelet margination was found to be well scaled by introducing a
dimensionless parameter, which included the shear rate and effective area of the particle movement.
It was also found that the margination rate varied nonlinearly with the tube hematocrit. This was
due to the volume exclusion effect of red blood cells, which facilitated or hindered the motion of
particles depending on the hematocrit. The relationship between the stable position of the particles
near the corner and the width of the cell-free layer was also found. Furthermore, velocity fluctuations
normalized by wall shear rate in a cross-section collapsed to one curve in the presented simulations.
This indicates that the lateral force acting on the particles increases linearly with the shear rate.

Keywords: bio-fluid dynamics; multiphase flow; particle-laden flows; near-wall excess; platelet
margination

1. Introduction

Blood flow consists of approximately 55% plasma, 45% Red Blood Cells (RBCs), and
less than 1% platelets or white blood cells. Plasma can be treated as a Newtonian flow, but
the presence of the dispersed phase, especially red blood cells due to their high-volume
concentration and easily deformable property, give blood flow non-Newtonian characteris-
tics. One of the well-known characteristics of blood flow is the axial accumulation of RBCs
in a small vessel. Unlike smooth spherical particles, deformable particles such as RBCs are
pushed away from the wall due to hydrodynamic interaction [1], leading to a change of the
apparent viscosity depending on the size of the vessel [2,3].

Radmacher et al. [4] measured the elastic modulus of platelets using atomic force
microscopy and reported that it ranged from 1–50 kPa. In the case of spheroidal rigid
particles [5] or platelets, which are much less deformable than RBCs, the lift force acting on
platelets is much smaller in the shear flow, and the interaction between RBCs and platelets
causes the lateral migration of platelets, resulting in a nonhomogeneous distribution of
platelets. Platelets play an important role in hemostasis, and they are activated by direct
contact with damaged vessel walls [6]. Therefore, a high platelet concentration near the
vessel wall is important in that it increases the chance of platelets contacting the injured
vessel [7,8].
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Plenty of experimental and numerical studies have been reported about the near-wall
excess of the platelet concentration. Tangelder et al. [9] conducted an in vivo experiment
showing that the platelet concentration near the arteriovenous wall was higher than that
in the central area using intravital microscopy. Subsequently, in vitro experiments were
conducted to determine the dependence on rheological parameters such as the shear rate,
hematocrit (Ht), and particle size. Tilles and Eckstein [10] examined the effects of Ht and the
shear rate on platelet migration by platelet-sized particles and found that platelet migration
only occurs when the volume concentration of red blood cells is greater than 7%. It has
also been observed that platelet margination occurs when the shear rate is above 430 s−1.
Observations by the laser Doppler method [11] reported a similar trend to the previous
results. They proposed the platelet transport theory based on convection–diffusion and
calculated the platelet diffusivity from the power law function of hematocrit and the shear
rate. Seki et al. [12] found that the lateral movement of platelet margination across the
channel with Y-shaped bifurcated channels occurs in the Cell-Free Layer (CFL) region.

A number of numerical models and direct simulations have been conducted to elu-
cidate the mechanism of platelet or platelet-sized particle margination. Eckstein and
Belgacem [13] described the mathematical modeling of platelet transport as a combination
of the diffusion and convection model, and a fundamental analogy was well reproduced by
simple modeling. Almomani et al. [14] explored the interaction between RBCs and platelets
by simulating the two particles as spherical particles. The results showed that the relative
size of RBCs and platelets is one of the key factors that causes platelet margination. Crowl
and Fogelson [15] performed a two-dimensional simulation using the lattice Boltzmann
and immersed boundary method and calculated the lateral diffusion of platelets from their
trajectories. They pointed out that the rate of diffusion was large in the core of the red blood
cells and almost negligible in the area close to the wall. Mehrabadi et al. [16] simulated
the flow of RBCs and platelets using the lattice-Boltzmann-spectrin-link (LB-SL) coupling
method, drew a raw scaling for platelet margination in parallel plates, and reported that
platelet diffusion is mainly enhanced by red blood cells. Several groups [17,18] have exam-
ined and reported the effects of erythrocyte size and deformability on platelet margination.
Chang et al. [17] reported that when RBCs become less deformable due to diseases such
as type 2 diabetes mellitus, there is less collision between red blood cells and platelets,
resulting in less platelet margination. Similarly, Czara et al. [18] reported that the lesser
deformability of RBCs leads to a decrease of the CFL, which in turn leads to a decrease of
platelet margination.

Krüger [19] investigated the effect of tube diameter and capillary number on platelet
margination and showed the reversibility of platelet trapping in the CFL, changing based
on the capillary number 0.2, resulting from the change of the motion of RBCs. There is
also the aspect of the different deformability of the two types of capsules. Kumar and
Graham [20] evaluated the effect of hydrodynamic forces and the collisions induced by
the shear rate between particles of the same size, but with different deformability. Seki
and Takinouchi [21] recently reported that in experiments using a 50 × 50 µm rectangular
channel under Ht = 20% and Ht = 40%, a non-uniform distribution of platelet-sized particles
was observed. More particles were located near the corner of the channel, and this tendency
was more pronounced at Ht = 40%. Zhao et al. [22] reported that in a flow containing RBCs
in a 10 × 15 µm rectangular channel, 3 µm beads were marginated to the corner of the wall.
Coupling continuum mechanical simulation with the bio-chemical reaction of platelet has
been reported. Ii et al. [23] presented the full Eulerian coupling method between the blood
flow and hyperelastic capsule solving both the governing equation for the FSI problem and
the stochastic differential equation for cell adhesion. In this present study, such a chemical
reaction was not considered for the numerical simulation. For several years, platelet
margination in pure shear flow [16,24] has been examined comprehensively. However,
since blood vessels have a closed shape such as circular or rectangular, a detailed study
of the motion of particles with RBCs in such a shape is necessary for practical purposes.
As discussed by Seki and Takinouchi [21], understanding the migration behavior of particles
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in a square channel can be applicable, for example to cell sorting using microfluidic channels.
They reported that in a square channel, more particles were located near the corner of
the channel. In a circular tube [25], on the other hand, the particles are located along the
circular walls, which shows the essential difference of their characteristics. Due to this
difference, for example, in a flow with bifurcation, the particle distribution and margination
behavior are different between circular and square channels. Unlike circular channels, few
studies have been reported on platelet margination in a square channel.

In the present study, numerical simulations using the immersed boundary method
were performed to reproduce the 3D hydrodynamic interaction between red blood cells
and platelet-sized particles. The main objective of this study was to understand the effect
of several parameters that affect the margination of particles in a square channel flow. Since
most of the previous studies were based on pure shear flow, the present study focused
on pressure-driven straight square channel flow with various shear rates, channel sizes,
and hematocrit levels. The relationship between the hematocrit and the stable position of
particles is also discussed.

2. Numerical Methods

In this section, we describe the numerical method employed in this study. Blood
plasma was treated as a Newtonian fluid, and so can the fluid inside blood cells. The im-
mersed boundary method [26] was used to solve the fluid–membrane interaction problem.
RBCs and particles were modeled as vesicles having hyperelastic membranes.

2.1. Governing Equations for Fluid–Membrane Interaction Problems

The continuity and momentum equations of incompressible flow with the membrane
force are given by:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p +∇ ·

{
η
(
∇u +∇uT)}+ f (2)

where ρ is the constant density, η is the viscosity, p is the pressure, u is the velocity vectors,
and f is the membrane force vectors applied from the elastic stress of the cell with the
Immersed Boundary Method (IBM) [26]. The difference of the viscosity between the inside
and the outside of the cells was treated in the same way as Tryggvason’s front-tracking
method [27]. Let us denote by φ(x, t) a smoothed phase indicator function, and it assigns
the fluid domain as 0, the inside domain as 1, and ∈(0, 1) for the transition layer. Then,
the viscosity is calculated from:

η = φηi + (1− φ)η f (3)

where ηi and η f are the viscosities of the inside capsule domain and fluid. Note that we did
not consider the nonlinear convection term (u · ∇)u from (2). Since the Reynolds number
(Re) was quite low (Re < 1) in our simulation, the inertia effect was negligible.

RBC membranes are characterized by two major elastic contributions: in-plane shear
and bending resistance. In this study, we adopted the Skalak model [28] as the in-plane
stress Ts of red blood cells:

Ts =
Gs

Js

(
(tr(Bs)− 1)Bs + J2

s

(
C
(

J2
s − 1

)
− 1
)

P
)

(4)

where Gs is the shear modulus, C is the area dilation modulus, Bs is surface left Cauchy–
Green tensor, Js is the surface Jacobian, the second invariant of Bs, and P = I− nn is
the surface projection tensor. We employed the Pozrikidis model [29] for the bending
modulus Tb,
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Tb = qn, (5)

q = (∇s ·m) · P, (6)

m = Eb(κ− κ0P) (7)

where Eb is the bending modulus and κ0 is the spontaneous curvature. In this study, we
employed the infinitesimal strain assumption, namely κ = κP, where κ = ∇s · n is the
curvature. The static local equilibrium equation of the membrane is written as:

∇s · (Ts + Tb) + F = 0 (8)

The Finite-Element Method (FEM) [30] was used to solve (8) and obtain the elastic
force vector F acting on the Lagrangian points of the membrane. The membrane force f
from the exerted force on the Lagrangian points X ∈ Γ is given by:

f(x) = ∑
X∈Γ

D(3)
h (x− X)F(X) (9)

where D(3)
h (x) is the three-dimensional approximate Dirac delta function,

D(3)
h (x) =

1
h3 δh

( x
h

)
δh

(y
h

)
δh

( z
h

)
(10)

where h is the computational mesh size and δh(s) is the continuous function,

δh(s) =


1
8

(
3 + 2|s|+

√
1 + 4|s| − 4|s|2

)
, for 0 ≤ |s| < 1,

1
8

(
5− 2|s|+

√
−7 + 12|s| − 4|s|2

)
, for 1 ≤ |s| < 2,

0, for 2 ≤ |s|

(11)

The location of Lagrangian points X was updated following the IBM,

dX
dt

= ∑
x∈Ω

D(3)
h (x− X)u(x) (12)

2.2. Discretization

The Simplified-Marker-And-Cell method (SMAC method) [31] was used to couple the
velocity and pressure. In the prediction phase, the tentative velocity up was updated by:

up − un

∆t
+
∇pn

ρ
− 1

ρ
∇ ·

{
ηn
(
∇up + (∇up)T

)}
+

fn

ρ
= 0 (13)

where the superscript n represents a discrete time step and ∆t is a discrete time interval.
The pressure term was decided to satisfy the continuity equation of n + 1 step, described as:

∇ · un+1 = ∇ · (up − ∆t∇φ) = 0 (14)

where φ is the scalar potential. Equation (14) could be transformed in to a Poisson equation
of φ:

∇2φ =
1

∆t
∇ · up (15)

Therefore, the pressure was determined by pn+1 = pn + ρφ, and in the projection
phase, the velocity was updated as:

un+1 = up − ∆t∇φ (16)
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Note that the second-order central difference method was employed for the spatial
discretization in (1) and (2), and a staggered grid was used for the numerical calculation.
For a more detailed description and a numerical validation, see [32].

2.3. Simulation Conditions

Cellular flows consisting of plasma, RBCs, and platelets with hematocrit (Ht) ranging
from 0% to 40% were numerically solved in this study. The computational domain was
a square channel that was periodic in the x-direction and wall-bounded in the y- and
z-directions. The pressure-driven body force was exerted in the flow direction x. The height
H and width W of the channel domain were the same, but the specific values were different
depending on the simulation case. The length of the domain L was chosen to 7-times
longer than the lateral direction. The shape of the undeformed RBC was biconcave with
a diameter of 7.92 µm. The viscosity of the inner RBC was set to 5-times higher than
that of the plasma, and this is similar to the physiological condition. The shear modulus
and area dilation modulus of the RBC were Gs = 5.0 µN/m and C = 50, respectively.
These values are almost identical to those of Takeishi’s numerical experiments [33], which
successfully reproduced the deformation of red blood cells in shear flow. The bending
modulus Eb = 1.8× 10−19 N·m was also considered. Note that all the mechanical properties
of the RBC were obtained experimentally [34–36], except for C; the area dilation modulus
C was adopted as a reasonable value to prevent the surface area of the RBC from changing.
The particle was modeled as sphere-shaped with a diameter of 2.9 µm. To reproduce the less
deformable property of platelets, the membrane shear elasticity and area dilation modulus
of the particle were considered 10-times higher than those of the RBC. It is known that the
volume fraction of platelets is 0.1–0.2% under physiological condition [37]. In the present
simulation, the volume fraction of platelets was set to 0.5% in order to have enough samples
for statistical analysis. In the initial state, RBCs and particles were regularly arranged with
little random variation. Here, we adopted time step size ∆t = 2.5 (µs) and mesh size
∆x = D/32, where D is the diameter of the RBC. See Appendix A for the effect of the grid
size on platelet margination.

2.4. Evaluation of Particle Migration toward the Near-Wall Region

It is known that platelet or platelet-sized particles move toward the near-wall region
with the hematocrit level over 7% in blood flow [10]. In the current simulation, the ini-
tial shape of RBCs was modeled as biconcave. It took time to fully develop and move
toward the center to produce the cell-free layer. Figure 1 illustrates how we analyzed the
simulation results.

!#̅

H

HH/4

H/4

'
(

Fig. Evaluation of platelet margination

Figure 1. Schematic view of the time history of the ensemble-averaged distance ∆d(t) between the
particle and the centerline of the computational domain.



Fluids 2022, 7, 96 6 of 18

In order to minimize the influence of the initial configuration, we quantified the time
history of particle motion and evaluated the change of the ensemble-averaged distance
between the particle and the centerline of the computational domain. All particles that
passed through a square region of width H/4 and height H/4 near the center were counted
as samples for the ensemble average. Since platelets eventually migrate near the corners,
the path of platelets from the central region to the channel wall can be investigated by
calculating the trajectory of platelets passing through the center of the rectangular channel
in each lateral direction. One example of comparing the time history of the path of platelets
in each wall direction is shown in Figure 2.

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

∆
d

(µ
m

)

t (s)

∆dy

∆dz

Figure 2. Comparison of the time history of the ensemble-averaged distance ∆d between the height
and width direction for Ht = 20%, γ̇w = 972 s−1.

3. Results

Several studies have been reported on how parameters such as the shear rate and
channel size affect the platelet margination in parallel plates [16,22] or circular tubes [25].
As we mentioned in the Introduction, Zhao et al. [22] reported that 3 µm spherical beads
exhibit a high concentration at the corner of a rectangular channel of 10× 15 µm2 in cross-
section in RBC flow. In the present study, we investigated how parameters such as the
shear rate, channel width, and hematocrit value affected the temporal evolution of particle
migration in a square channel.

3.1. Direction Dependency of Particle Migration

Figure 2 shows the time history of the ensemble-averaged distance ∆d(t) between
a particle and the centerline of the straight channel for Ht = 20%, γ̇w = 972 s−1 and
L = 224 µm, H = 32 µm, along with the error bars indicating the standard deviation. ∆dy(t)
and ∆dz(t) represent the ensemble-averaged distances in the height and width direction,
respectively. For example, if particles are entering the central square region of width H/4
and height H/4 and their y-position at time t is dy(t), the ensemble-averaged distances are
described by the following equation,

∆dy(t) =
∣∣∣dy(t)− H/2

∣∣∣ (17)
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Although each case showed a large standard deviation, the time history of ensemble-
averaged distances showed a similar pattern, suggesting that the overall path for how
the particles migrate in the square duct was almost identical for each lateral direction.
Hereafter, ∆d(t) was calculated from ∆d(t) =

(
∆dy(t) + ∆dz(t)

)
/2. Since Figure 2 shows

that the average path of platelets migrating in both wall directions was almost equal, we
present the results such as the particle or RBC concentration profiles in one direction(y) to
discuss the physical phenomenon from now on.

Figure 3 shows the snapshots of the present simulation results. In order to focus
on the lateral movement of platelets and RBCs, the results of the 3D simulation were
visualized by projecting them onto the yz plane (two-dimensional) using the volume
fraction information of RBCs and platelets on a fixed grid. Therefore, the shape of the
red circle at t = 0 corresponds to RBCs and the shape of the white sphere corresponds
to platelets. The simulation conditions corresponded to RBCs and particles in a square
channel flow under the conditions of Ht = 20%, γ̇w = 972 s−1 at different times of t = 0,
0.5 s, 1.0 s, 1.5 s, 2.0 s, and 3.0 s. The red cloud near the center after t = 0.5 s corresponds
to the RBCs. The intensity of the color means the probability of the presence of RBCs or
platelets. RBCs gradually move toward the center from the initial position and generate the
cell-free layer. All the particles move to the corner with a stochastic fluctuation. Figure 4
shows the change in the particle concentration profile, and each graph corresponds to
the result of Figure 3. As we can confirm from Figure 4b–e, many particles did not move
directly to the corner, rather migrating toward the wall first, then approached the corner
while moving along the wall. After 3 s, most of the particles migrated to the corner while
moving 11 mm on average in the flow direction, equivalent to about 340-times the channel
width H. Figure 5 shows the change in RBCs’ concentration profile. The axial accumulation
of RBCs occurred within 0.1 s, a much faster time-scale than platelet margination.

(a) (b) (c)

(d) (e) (f)

Figure 3. Snapshots of the simulation results in a straight channel of 224 × 32 × 32 µm for
γ̇w = 972 s−1, Ht = 20% at (a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, and (f) 3.0 s.
The particles move gradually toward the corners of the channels.
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Figure 4. Particle Concentration Profiles (PCPs) in a straight channel of 224 × 32 × 32 µm for
γ̇w = 972 s−1, Ht = 20% at (a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, and (f) 3.0 s. Each
graph corresponds to the results in Figure 3.
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Figure 5. RBC Concentration Profiles (RCPs) in a straight channel of 224 × 32 × 32 µm for
γ̇w = 972 s−1, Ht = 20% at (a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, and (f) 3.0 s.
Each graph corresponds to the results in Figure 3.

3.2. Shear Rate Dependency

We investigated the effect of the shear rate on particle margination. The computational
domain was set to L = 224 µm, H = 32 µm, and hematocrit Ht = 20%. For a square duct,
the average wall shear rate γ̇w was calculated from the following equation,

γ̇w =
Uλ

2H
(18)

where U is the average velocity and λ is the shape factor, known as λ = 14.3 for a square
channel of Newtonian fluid [38]. The simulation conditions are listed in Table 1. Note that
the average velocity U was calculated from the simulation results. The Reynolds number
Re and capillary number Ca were calculated from Re = ρUH/η and Ca = ηγ̇waRBC/Gs
where aRBC = (V3/4π)1/3 is the equivalent diameter of the RBC. In the present simulation,
aRBC = 2.82 µm and V = 93.58 µm3 were used as the volume of the RBC.
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Table 1. Conditions for numerical simulation to compare the effect of the shear rate.

U (m/s) Ca Re γ̇w (s−1)

0.0044 0.66 0.116 972
0.0059 0.90 0.159 1329
0.0089 1.35 0.238 1990

Figure 6a shows the time history of the average distance from the centerline ∆d, and
Figure 6b represents the change of ∆d as a function of the distance traveled in the flow
direction x. As can be seen from Figure 6a, particles moved faster toward the wall direction
at a higher shear rate.

Comparing ∆d as a function of distance traveled toward the streamwise direction x,
the path taken by the particles to approach the wall from the central region was almost
the same at γ̇w = 972 s−1, 1329 s−1, and 1990 s−1. This result is in good agreement with
the reference results in parallel plates or bifurcations [12,16]. Usually, the CFL thickness
increases as the shear rate increases [39]. However, with the parameter range of the current
simulations, the CFL thickness was almost constant, and the value of ∆d was the same
when they reached a stable position near the wall, as shown in Figure 6a.

(a) (b)
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γ̇w = 972
γ̇w = 1329
γ̇w = 1990

Figure 6. Ensemble-averaged distance d from the centerline of the channel at average wall shear rates
γ̇w = 972 s−1, 1329 s−1, and 1990 s−1. (a) Time history of d. (b) Change of d as a function of distance
traveled in the flow direction x.

3.3. Channel Size Dependency

We examined the dependency of particle margination on the channel size. We varied
the size of the square channel H = 16 µm, 24 µm and 32 µm and adjusted the average
velocity U for each case, so that the wall shear rate γ̇w was equal to 1329 s−1, respectively.
As we mentioned, in (21), the diffusion of particles depends on factors such as the hemat-
ocrit level, the wall shear rate, and the particle size. Since the simulation conditions were
the same except the channel width H = 16 µm, 24 µm, and 32 µm, the time history of
d overlapped in RBC-core region from 0 s to 0.5 s. With reference to the derivation of
Mehrabadi et al. [16], we combined (18), (20), and (21) to derive the following equation.(

∆d
dr

)2

= kλ
xa2

Hdr
2 (19)

Note that t is replaced by t = x/U and dr stands for the distance from the center of
the channel to a stable position of the particle, which had different values in each case.
As shown in Figure 7b, ∆d normalized by dr was well scaled by x normalized by a2/Hdr

2.
The disagreement between the curves can be attributed to the fact that the aspect ratio of
the platelet particles to the rectangular tube was different in each case, resulting in different
hydrodynamic interactions with the wall and platelets, and also, the local distribution of
hematocrit was not totally the same.
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Figure 7. Dependency of particle margination on channel size H in H = 16 µm, 24 µm, and 32 µm.
(a) Time history of ∆d and (b) ∆d normalized by half the channel height H and x normalized by a2/Hdr

2.

3.4. Hematocrit Dependency

Numerical simulations were performed for hematocrit Ht = 0%, 5%, 10%, 20%, 30%
and 40% to explore the relationship between hematocrit and its effect on particle margina-
tion. The wall shear rate γ̇w in the plasma was 1910 s−1, and the same pressure gradient
was applied in all cases. The simulated results were affected by many complicated factors,
and it is not easy to discuss suitable dimensionless parameters. As shown in Figure 8c,d,
the stable position dr for a particle, defined as the distance between the centerline and the
center of the particle at equilibrium, varied with the hematocrit level. Another aspect is that
rate of ∆d as a function of x was not constant because the margination rate of the particles
varied with the distance from the centerline. This was because the local shear rate and
local hematocrit were different from the location in the plane. If we focus on the case of
hematocrit = 20%, the margination rate of ∆d was nearly constant up to ∆d = 12 µm, af-
ter which the margination rate slowed down. We confirmed that this region of the constant
margination rate of ∆d was consistent with the RBC-core region.

(a) (b)

(c) (d)

0

2

4

6

8

10

12

14

16

0 5 10 15 20

∆
d

(µ
m

)

x̄ (mm)

Ht=0%
Ht=5%

Ht=10%
Ht=20%
Ht=30%
Ht=40%

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

∆
d
/d

r

x̄ (mm)

Ht=10%
Ht=20%
Ht=30%
Ht=40%

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40

δ C
F
L
(µ
m
)

Ht (%)

10

11

12

13

14

15

16

1 1.5 2 2.5 3

d
r
(µ
m
)

δCFL (µm)

y = −1.05x+ 14.77

Figure 8. Hematocrit dependency of platelet margination. (a) Change of d as a function of distance
traveled toward the streamwise direction x. (b) Rate of d normalized by the stable position dr for
each case as a function of x. (c) Relationship between the hematocrit level and the width of the CFL
δCFL calculated from the distance where the local hematocrit in the equilibrium state is under 0.5%.
(d) Relationship between the width of CFL δCFL and the stable position of platelets dr.
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Despite the difficulties in the analysis described earlier, several points can be drawn.
Figure 8a shows that in the absence of RBCs (Ht = 0%), particle margination did not
occur. This result confirmed that the presence of RBCs was the main factor that caused
the non-uniform particle concentration in the domain. We confirmed from the simulation
result in the case of Ht = 5% that the particles did not reach the corners, but stayed in
a circular shape near the boundary between the RBC-core region and the CFL. In other
cases, over Ht = 10%, the particles gradually migrated toward the wall. Once they reached
the wall, the particles moved along the wall to near the corner of the channel. Figure 8b
shows the ratio of d normalized by the stable position dr for each case as a function of
x. If we focus on the region where the ratio of d/dr was constant, we can see that the
ratio of d/dr reached its peak at Ht = 10% and gradually decreased as the hematocrit
increased. Figures 9–11 show the results of platelet margination in a flow with Ht = 40%
for γ̇w = 712 s−1. Figure 8c,d indicates the relationship between hematocrit and the width
of the CFL and relationship between the width of the CFL and the stable position dr. There
are several ways to define the thickness of the CFL [16,19]. In the present study, the width
of the CFL δCFL was defined as the distance at which the local hematocrit at equilibrium
was less than 0.5% from the wall, following the definition from Mehrabadi et al. [16]. We
confirmed that the distance of the stable position of the particles decreased in proportion to
the width of the CFL. This can be understood if we consider that the margination of the
particle was attributed to the presence of RBCs and the width of the CFL was determined
by the hematocrit.

(a) (b) (c)

(d) (e) (f)

Figure 9. Snapshots of the simulation results in a straight channel of 224 × 32 × 32 µm for
γ̇w = 712 s−1, Ht = 40% at (a) t = 0, (b) t = 1.0, (c) t = 2.0, (d) t = 3.0, (e) t = 4.0, and (f) 5.0 s.
The particles move gradually toward the corners of the channels.

Figures 9f and 10f indicate that many particles could not escape from the RBC-core
region and stayed in the region in 5 s. Particles moved 12 mm on average in the flow
direction during 5 s, almost the same distance as Figure 3f, but many more particles still
remained in the RBC-core region. This can be explained by the fact that particle margination
was caused not only by the spatial gradient of the velocity fluctuations resulting from the
presence of the RBCs and their axial accumulations, but by the direct interaction between the
RBCs and the particles, which pushed the particles in the wall direction. Due to their volume
effect, RBCs that were excessively present in the RBC-core layer may act as an obstacle
and prevent the particles from moving. Vahidkhah et al. [40] reported that the motion of
platelets varies with the density of RBCs present near a platelet. For example, a platelet
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shows discontinuous and quick motion when very few RBCs are located around the platelet.
Such a movement rarely occurs when the hematocrit value is high. Figure 11 shows that
RBC concentration profiles in Ht = 40%. Similar to Ht = 20%, the axial accumulation of
RBCs took place on a much faster time scale than the particles’ margination, within 0.2 s.
We can confirm the results of the present simulations through the comparison with the
experimental data by Seki and Takinouchi [21]. As mentioned earlier, their experiments
were conducted in a rectangular tube with a cross-section of 50 × 50 µm, n average wall
shear rate of 950 s−1, a particle size of 2.9 µm, and Ht = 20% and Ht = 40%, which are almost
the same conditions as the current simulations except for the channel size. Compared to
Ht = 20%, platelet-sized particles moved closer to the corners, and more platelets were
observed near the center region at Ht = 40%, which is consistent with the results of the
current simulations.
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Figure 10. Particle Concentration Profiles (PCPs) in a straight channel of 224 × 32 × 32 µm for
γ̇w = 712 s−1, Ht = 40% at (a) t = 0, (b) t = 1.0, (c) t = 2.0, (d) t = 3.0, (e) t = 4.0, and (f) 5.0 s. Each
graph corresponds to the results in Figure 9.
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Figure 11. RBC Concentration Profiles (RCPs) in a straight channel of 224 × 32 × 32 µm for
γ̇w = 712 s−1, Ht = 40% at (a) t = 0, (b) t = 1.0, (c) t = 2.0, (d) t = 3.0, (e) t = 4.0, and (f) 5.0 s.
Each graph corresponds to the results in Figure 9.
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4. Discussion

As for the platelet margination, the platelets moved from the region with a large
velocity fluctuation to the region with a small velocity fluctuation, which indicates the
corner of the square channel. Here, we define the velocity fluctuations as the squared mean
in-plane velocity in the lateral direction. The motion of platelets in the RBC-core region can
be treated as a diffusion process. Many studies [8,41,42] compared how fast platelets move
by calculating the diffusion coefficient. Among the components of the diffusion tensor, we
calculated the diffusion coefficient Dyy from the following equation,

(∆d)2 = 2Dyyt (20)

Since particles approached the wall direction and stayed in the corner of the square
domain in the end, ∆d was not constant, so nor was (∆d)2, as we can confirm from
Figure 12a. Therefore, we determined Dyy from the region where the change of (∆d)2 was
constant. The result is plotted in Figure 12b, and the average wall shear rate γ̇w had a linear
relationship with the diffusion coefficient Dyy. This result was supported by finding that
the particle diffusivity is expressed as:

Dyy = kγ̇d2 (21)

where k is a dimensionless parameter related to hematocrit, γ̇ is the shear rate, and d is the
particle diameter. Seki et al. [12] estimated the diffusivity of 2.9 µm-diameter particles to be
40 µm2/s at a shear rate of 1000 s−1, and in the present simulation, the diffusivity of the
particle Dyy = 30.12 µm2/s at γ̇w = 1000 s−1, which is a comparable value.
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Figure 12. Calculation of the diffusion coefficient from the mean-squared displacement. (a) Time
history of (∆d)2 based on the result of Figure 6. (b) Relationship between wall shear rate γ̇w and the
diffusion coefficient Dyy determined from (20).

To explore the effect of velocity fluctuations on particle migration, velocity fluctuations
were calculated from the time-averaged and spatially averaged velocity components of
the plasma in Ht = 20% at γ̇w = 1990 s−1. The profile of the velocity fluctuations is
shown in Figure 13. We confirmed that the lateral velocity component was largest near
the boundary between the red blood cell layer and the CFL and smallest near the wall.
It can also be confirmed that each velocity component in the transverse direction was
high near the wall due to the fluctuations generated by the particle movement. In the
present simulations, the Reynolds number was much smaller than one, which corresponds
to laminar flow. However, it showed the so-call pseudo-turbulence effect caused by the
motion of the disperse phase, which was RBCs in this study. Seeing Figures 3 and 13, one
can easily find that platelets gradually moved from a region of high velocity fluctuation to
a region of low velocity fluctuation, that is the corners near the channel. This phenomenon
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is analogous to thermophoresis [43]: large molecules accumulate in a lower-temperature
region, which corresponds to the lower molecular fluctuation. This is expressed by the so-
called thermophoretic force, which depends on a temperature gradient. A similar example
is turbophoresis [44,45], which is particle migration toward a lower-velocity-fluctuation
region in turbulent flow. Therefore, platelet migration in the present simulations was
considered as turbophoresis in pseudo-turbulence flow.

Figure 14 shows the velocity fluctuations for different shear rates in the z = 16 µm
plane. The velocity distribution normalized by the wall shear rate collapsed into one curve,
indicating that the amplitude of velocity fluctuation has a linear relationship with the shear
rate. As explained in Section 3.2, the particle trajectories did not depend on the shear rate.
Since the shear rate was proportional to the streamwise flow velocity, this indicates that the
lateral force was proportional to the streamwise flow velocity. Overall, platelet margination
was mainly caused by the spatial gradient of velocity fluctuations, which was generated by
the motion of the RBCs and was proportional to the flow velocity.
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Figure 13. Velocity fluctuation calculated from time-averaged and spatially averaged velocity compo-
nents from plasma in Ht = 20% at γ̇w = 1990 s−1. (a) Velocity fluctuation from both the transverse y-
and z-direction. (b) Velocity fluctuation of the y-direction. (c) Velocity fluctuation of the z-direction.
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Figure 14. Velocity fluctuation in the z = 16 µm plane. (a) Velocity fluctuation time-averaged and
spatially averaged velocity components γ̇w = 972 s−1, 1329 s−1, and 1990 s−1. (b) Velocity fluctuation
normalized by the wall shear rate γ̇w.

5. Conclusions

In this study, we investigated numerically the effects of physical parameters such as
the shear rate, channel size, and hematocrit level on platelet-sized particles’ migration
toward the wall in a square channel. The simulation results showed that the migration
of particles becomes faster as the shear rate increases. The results also showed that the
margination rate—the ratio of the distance traveled in the flow direction to the margination
distance in the wall direction—does not depend on the shear rate. This indicates that the
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lateral force acting on the particles increases linearly with the shear rate, directly related to
the velocity in a square channel.

Particle margination is mainly caused by two effects: first, the force pushing the
particles directly toward the wall because of the interaction between the RBCs and the par-
ticles; second, the velocity fluctuations generated by the flowing motion of the deformable
red blood cells. The velocity fluctuations are the highest near the border between the
red blood celllayer (RBC-layer) and the cell-free layer (CFL) and the lowest around the
corner. Due to the velocity fluctuation differences, the particles gradually move from the
RBC-layer, with large fluctuations, to the vicinity of the corner, with small fluctuations,
and stay there. Moreover, the wall-shear-rate-normalized velocity fluctuations collapse
into one curve as well, showing that the margination rate does not depend on the shear
rate. This result implies that the particle margination is mainly dependent on the velocity
fluctuation differences.

In a square channel flow, we investigated the relationship between the width of the
square channel and the path of platelet migration. We found that the margination distance
normalized by the particle size, shear rate, and effective area of the particle movement
showed good agreement independent of the channel size.

We found that the margination distance normalized by the particle size, shear rate, and
effective area of the particle movementshowed a similar trend regardless of the channel size.

Finally, we confirmed that the margination rate of particles varies nonlinearly with the
hematocrit value. In this study, we observed that under 0–40% hematocrit, the margination
rate was the highest at 10% of hematocrit and gradually decreased beyond 10% due to the
presence of red blood cells, which inhibited the movement of the particles toward the wall.

Author Contributions: Conceptualization, data curation, formal analysis, validation, writing–original
draft preparation, D.O.; Methodology, software, writing–review, S.I.; Supervision, project administra-
tion, funding acquisition, writing–review and editing, S.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by JSPS KAKENHI Grant No. 20H00222 and the National Key
Research and Development Program of China Grant No. 2017YFE0117100.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: The authors are grateful to Masako SUGIHARA-SEKI, for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Grid Size Dependency

In this section, we explain how we determined the spatial resolution used in this
simulation. Platelet migration in the channel is mainly caused by the interaction of multiple
red blood cells and platelets. Therefore, when discussing the generality of the solution,
it is necessary to focus on whether the same result can be obtained regardless of the grid
size. We performed numerical simulations using a straight channel of 96× 16× 16 µm
for γ̇w = 1228 s−1, Ht = 20%, and platelet concentration = 0.5%, with different spatial
resolutions ∆x = D/16, D/32, and D/64. Note that D is the diameter of the red blood cell.

Figure A1 shows the snapshots of the simulation results at 1 s with different grid sizes.
As can be seen from Figure A1a, ∆x = D/16 was too coarse to fully resolve the deformation
of the Red Blood Cells (RBCs) and to reproduce the axial concentration of the RBCs. On the
other hand, Figure A1b,c indicates that the mesh size ∆x = D/32 and D/64 was sufficient
to reproduce deformation and physical phenomena such as the axial concentration of RBCs.
This suggests that the ability to capture the deformation of the capsule affects the axial
concentration of RBCs, hence the migration of platelets.

Figure A2 shows the time history of the ensemble-averaged distance ∆d(t) between
the particle and the centerline of the computational domain as described in (17). Comparing
the results of Figures A1 and A2, we can see that the trend for ∆x = D/16 was different
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because the axial concentration of the red blood cells was not reproduced well. On the
other hand, the trajectories of ∆x = D/32 and ∆x = D/64 collapsed well into one curve.
This means that ∆x = D/32 was a sufficient mesh size to resolve the average behavior of
the physical phenomena targeted in this study. Therefore, we chose a mesh size ∆x = D/32
in the current study.

(a)

(b)

(c)

Figure A1. Snapshots of the simulation results in a straight channel of 96 × 16 × 16 µm for
γ̇w = 1228 s−1, Ht = 20%, platelet concentration = 0.5% at t = 1.0 s. (a) Spatial resolution ∆x = D/16,
(b) ∆x = D/32, and (c) ∆x = D/64 when D is the diameter of the red blood cell.
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Figure A2. Dependency of particle margination on the mesh size ∆x = D/16, D/32, and D/64.
The graph shows the time history of ensemble-averaged distance ∆d(t) between the particle and the
centerline of the computational domain.
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