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Abstract: The application of physics-informed neural networks (PINNs) to computational fluid
dynamics simulations has recently attracted tremendous attention. In the simulations of PINNs, the
collocation points are required to conform to the fluid–solid interface on which no-slip boundary
condition is enforced. Here, a novel PINN that incorporates the direct-forcing immersed boundary
(IB) method is developed. In the proposed IB-PINN, the boundary conforming requirement in
arranging the collocation points is eliminated. Instead, velocity penalties at some marker points are
added to the loss function to enforce no-slip condition at the fluid–solid interface. In addition, force
penalties at some collocation points are also added to the loss function to ensure compact distribution
of the volume force. The effectiveness of IB-PINN in solving incompressible Navier–Stokes equations
is demonstrated through the simulation of laminar flow past a circular cylinder that is placed in
a channel. The solution obtained using the IB-PINN is compared with two reference solutions
obtained using a conventional mesh-based IB method and an ordinary body-fitted grid method.
The comparison indicates that the three solutions are in excellent agreement with each other. The
influences of some parameters, such as weights for different loss components, numbers of collocation
and marker points, hyperparameters in the neural network, etc., on the performance of IB-PINN
are also studied. In addition, a transfer learning experiment is conducted on solving Navier–Stokes
equations with different Reynolds numbers.

Keywords: physics-informed neural networks (PINN); direct-forcing immersed boundary method;
incompressible laminar flow; circular cylinder

1. Introduction

Over the past few years, machine learning (ML) has permeated into various research
areas of fluid mechanics [1], e.g., reduced-order modeling [2,3], wake-type clustering and
classification [4–7], development of turbulence closure model [8–10], flow optimization
and active control [11–16], to name a few. The successful application of ML to these areas
relies on the availability of large-scale data, which are obtained from CFD simulations or
experimental observations.

More recently, the physics-informed neural network (PINN) was proposed to solve
partial differential equations (PDEs) [17–19]. PINNs use automatic differentiation to com-
pute the derivatives, and the residuals of equations are incorporated into the loss function.
Unlike the conventional practice in ML, PINN can be trained without any simulation (or ob-
servation) data or with only a small amount of data. Nowadays, PINN has been successfully
applied to the simulations of incompressible [20–23] and compressible [24] flows.

PINN is not meant to be a replacement of traditional CFD solvers but instead a
complementary approach. For solving a standard forward problem (one PDE system with
fixed parameters), the state-of-art PINN cannot compete with the traditional CFD methods
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in terms of accuracy, efficiency and robustness. However, a surrogate model based on PINN
is a good choice in some non-ideal situations where traditional CFD methods cannot handle
or are very expensive to use, such as data assimilation with numerical solution, solving ill-
posed problems due to a lack of boundary conditions and solving inverse problems. Other
advantages of PINN include: (a) closed-form approximated solutions with continuous
derivatives, (b) implementation simplicity on high-level marching learning platforms.

PINN can be regarded as a mesh-free method for solving PDEs since an explicit mesh
is not needed. In PINN, the no-slip condition at the fluid–solid interface is imposed by
incorporating velocity penalties at the boundary points into the loss function. As that in
traditional mesh-based numerical methods, the boundary points are required to conform
to the surfaces of immersed objects.

The immersed boundary (IB) method is an alternative technique for handling complex
and moving boundaries in mesh-based methods. It utilizes non-boundary-conforming
meshes in numerical discretization, and the no-slip condition on the surface of the immersed
object is enforced by adding a volume force to the momentum equation. This method has
recently gained its popularity due to the simplicity of implementation.

The combination of PINN and the IB method can eliminate the boundary-conforming
requirement in point generation. This eases the point generation process in problems with
complex boundaries and avoids redistributing the points in moving-boundary problems.
These benefits motivate the development of a novel PINN in conjunction with the IB method
in this work. Such benefits were also the main motivation for incorporating IB method
into a smoothed particle hydrodynamics (SPH) flow solver [25]. The proposed IB-PINN
can be considered a complementary approach to the classical (mesh-based) IB schemes
(rather than a replacement). Here, we emphasize that the mesh-free nature of PINN can
barely be considered a potential advantage in such a combination. This is because mesh
generation in the mesh-based IB method is significantly simplified and not a challenging
task anymore.

To the best of the authors’ knowledge, PINNs, in conjunction with IB method, are
still barely explored. Balam et al. recently presented a PINN for solving two-dimensional
elliptic equations with singular forces on an embedded interface [26]. The IB method
involved in their work fell into the ’continuous-forcing’ sub-type. The forcing terms in the
equations were explicitly computed via a jump condition at the interface, together with a
smoothed delta function for spreading the singular force. Thus, no major modification to
the original framework of PINN was needed in their work.

In this paper, we consider the ‘direct-forcing’ sub-type of IB methods. Unlike the one
in [26], in this variant of IB methods, the forcing term is determined indirectly via a no-slip
constraint imposed on the embedded interface. Due to the lack of an explicit expression for
the forcing term, the loss components that account for the equation residual and non-slip
condition on the embedded interface need to be reformulated.

The paper is organized as follows. In Section 2, we present an introduction to the
direction-forcing IB method and the architecture of neural network used in this study. The
results of the simulations using the proposed IB-PINN are presented in Section 3. Finally,
the summary of the present work and suggestions on future directions are provided in
Section 4.

2. Methods
2.1. Direct-Forcing Immersed Boundary Method

We consider the incompressible Navier–Stokes equations with a volume force added
to the momentum equation. The governing equations can be written in a dimensionless
form as:

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u + f, (1)

∇ · u = 0, (2)
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f(x, t) =
∫

s
F(ξ(s, t))δ(ξ − x)ds, (3)

u(ξ(s, t)) =
∫

x
u(x)δ(x− ξ)dx = 0, (4)

where Re is the Reynolds number, u, p and f denote the velocity, pressure, volume force
(density), respectively. The spatial variable x denotes the position in the computational
domain (which includes the region occupied by the immersed object). ξ represents an
embedded fluid–solid interface. s is the coordinate along the interface for parameterizing it.
F represents the singular force that is added to the fluid–solid interface. Equation (3) is the
formula for the transfer between the surface force and the volume force. Equation (4) is the
no-slip constraint that must be satisfied at the surface of a stationary object.

For incompressible Navier–Stokes equations, the pressure p acts as a set of Lagrange
multipliers, which enforce the divergence-free condition (Equation (2)). In direct-forcing IB
methods, the surface (and volume) forces can also be regarded as a set of Lagrange multipli-
ers that enforce the no-slip condition (Equation (4)) on the embedded interface. In numerical
implementations, the forcing term and pressure can be obtained sequentially [27,28] or
simultaneously in a coupled way [29,30] via splitting the system (Equations (1)–(4)).

In conventional mesh-based discretization, u, p and f are defined at the grid points,
while F is defined at a set of marker points that represent the interface. The integral
operations in Equations (3) and (4) are replaced by summation, and the delta function is
replaced by a smoothed delta function with compact support [31].

2.2. Physics-Informed Neural Network

Instead of using conventional mesh-based methods, in this work, a deep neural
network (DNN) is used to approximate the solution of incompressible Navier–Stokes
equations. The architecture of the DNN used here is similar to those proposed in some
previous references [17,20–22] (see Figure 1). The DNN is composed of multiple hidden
layers, and it can be expressed as:

z0 = (x, t),
z` = σ`(W`z`−1 + b`), 1 ≤ ` ≤ L− 1
z` = W`z`−1 + b`, ` = L,

(5)

where z` denotes the hidden variables of the `th layer, and W` and b` denote the weight
matrix and bias vector of the `th layer, respectively. σ` is a nonlinear activation function.
Throughout this work, the hyperbolic tangent function is used as the activation function.
The Xavier initialization technique is used to initialize the network [32]. The DNN takes
the spatial-temporal variables {x, t} as the inputs. The outputs of the last layer are used to
approximate the solution {u,p,f}. Please note that the surface force F, which is an auxiliary
variable for obtaining the volume force in some mesh-based IB methods, is not used here.
The DNN is implemented using the TensorFlow machine learning platform, and the source
code can be found in https://github.com/huangyi89/IB-PINN (accessed 12 January 2022).

PINN solves a PDE system by converting it into an optimization problem in which the
loss function is minimized through iteratively updating the weights and biases. Generally
speaking, the total loss for a PDE system is composed of equation residual loss, initial
condition loss and boundary condition loss. In solving a PDE system in the framework of
direct-forcing IB methods, special care needs to be taken in constructing the loss component
associated with the non-slip boundary condition at the embedded interface. In this study,
we propose incorporating velocity penalties at some marker points that represent the
embedded interface into the total loss. Obtaining the forcing term by adding a velocity
penalty to the loss function is analogous to obtaining the pressure by adding the residual of
the continuity equation into the loss function in the PINNs proposed by Sun et al. [20] and
Jin et al. [21]. This analogy is rooted in the fact that both the forcing term and pressure are
Lagrangian multipliers for imposing constraint on the system [29,30]. In addition to the
velocity penalty term, the total loss in the proposed IB-PINN also includes a force penalty

https://github.com/huangyi89/IB-PINN
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term that is used to ensure compact distribution of volume force. To this end, the force
penalties are applied at the collocation points, which are exterior to and beyond certain
distance from the immersed interface. The compact distribution of the forcing term is a
necessary condition for accurately mimicking the dynamic effect of an immersed object
on fluid flow. In conventional mesh-based IB methods, such a condition is automatically
satisfied by using an interpolation kernel function (i.e., smoothed delta function) with
compact support [31].

Figure 1. A schematic diagram of the IB-PINN framework for solving an incompressible Navier–
Stokes equation. The left part is the architecture of the DNN used in the simulation. The middle part
illustrates the computation of derivatives by using automatic differentiation. The right part shows
the formula for computing the loss function.

As a result, the loss function used for training IB-PINN can be expressed as:

J = λJPDE + αJb + βJIB + γJ f , (6)

JPDE =
1

Nr

(
Nr

∑
i=1

∥∥∥rm

(
xi

r, t
)∥∥∥2

+
Nr

∑
i=1

∥∥∥rc

(
xi

r, t
)∥∥∥2

)
, (7)

Jb =
1

Nb1

Nb1

∑
i=1

∥∥∥u
(

xi
b, t
)
− û

(
xi

b, t
)∥∥∥2

+
1

Nb2

Nb2

∑
i=1

∥∥∥p
(

xi
b, t
)
− p̂

(
xi

b, t
)∥∥∥2

, (8)

JIB =
1

NIB

NIB

∑
i=1

∥∥∥u
(

xi
IB, t

)∥∥∥2
, (9)

J f =
1

Nr1

Nr1

∑
i=1

∥∥∥f
(

xi
r, t
)∥∥∥2

. (10)

Here J denotes the total loss function, which is the summation of four components
corresponding to the residual loss (JPDE), the outer boundary loss (Jb), the boundary loss
associated with the immersed boundary (JIB) and the force compactness loss (J f ). As a proof-
of-concept, only steady problems are considered in this work. Thus, the initial condition
loss is neglected in Equation (6). λ, α, β and γ are the weights for the aforementioned four
loss components, respectively.

The equation residual loss can be further decomposed into the loss for the momentum
Equation (rm) and the loss for the continuity Equation (rc). In computing the equation resid-
ual loss, the partial differential operations are performed using automatic differentiation
(AD). û and p̂ denote the velocity and pressure that are specified on the outer boundaries,
respectively. Nr and NIB denote the numbers of collocation points and marker points,
respectively. Nb1 and Nb2 denote the numbers of boundary points where velocity and



Fluids 2022, 7, 56 5 of 17

pressure are specified, respectively. Nr1 denotes the number of collocation points on which
force penalties are applied.

The locations of the three sets of points, namely collocation points, boundary points
and marker points, are illustrated in Figure 2. The collocations points are located inside the
computational domain (including the area occupied by the immersed object) and on the
outer boundary. The boundary points are located on the outer boundary where data for
velocity or pressure are available. In this work, the boundary points and the collocation
points coincide with each other on the outer boundary. Such a choice of boundary points
is just for the simplicity of implementation. A different set of boundary points that does
not belong to the collocation points can also be chosen [26]. The marker points are located
inside the domain for representing the fluid–solid interface (i.e., immersed boundary).
Please note that the marker points do not belong to the set of collocation points and are
only used for computing the loss. The force penalties are applied at the collocations points
that are located in the gray area (the area outside the cylinder and beyond a distance of
∆ from the immersed boundary). Please note that no force penalties are applied at the
collocation points that lie inside the immersed object.

Figure 2. A schematic diagram of the computational domain, the outer boundary and the locations
of three sets of points required in computing the loss function of IB-PINN. The force penalties are
imposed at the collocation points which are located inside the gray area. The distance from the inner
boundary of the gray area to the immersed boundary is ∆.

3. Results
3.1. Problem Description and Numerical Settings

We use the proposed IB-PINN to simulate fluid flow past a circular cylinder that is
placed in a channel [22]. Since only a steady case is considered here, the Reynolds number
based on the diameter of the cylinder is set to 40, which is below the critical value for
the onset of vortex shedding. The computational domain and boundary conditions are
illustrated in Figure 3. At the inlet, a parabolic profile of the streamwise velocity is specified,
and the crosswise velocity component is set to zero. Mathematically, the parabolic velocity
profile is defined as

u(0, y) =
4(H − y)y

H2 , (11)

where H denotes the height of the channel. At the outlet, the pressure is set to zero. The
no-slip condition is imposed on the top and bottom walls of the channel.

A total of 72,365 collocation points (with 2564 outer boundary points) and 251 marker
points are used in the simulation. The collocation points are placed at the vertices of a
uniformly distributed Cartesian mesh with a grid width of h = 0.025. Please note that this
mesh is generated for arranging the collocation points only and is not used explicitly in the
IB-PINN simulations. The marker points are uniformly distributed on the surface of the
cylinder. As a usual practice in IB methods, the spacing between two neighboring marker
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points is comparable with that between two neighboring collocation points. The distance ∆
in Figure 2, which represents the supporting width of volume force, is set to 2 h.

Figure 3. A schematic diagram of the computational domain and boundary conditions for the
problem of flow over a circular cylinder placed in a channel.

The DNN used in the simulations is composed of six hidden layers, of which the
number of layer neurons is 100. The weights for the loss components are: λ = 1.0; α = 2.0;
β = 2.0; γ = 1.0. In the training process, we follow the strategy adopted in some previous
works, such as [21,22], where certain numbers of iterations are first performed using the
Adam optimizer; after that, the L-BFGS-B optimizer is used to finetune the DNN to obtain
a more accurate solution. In this work, 104 iterations in the Adam optimizer are first
performed with a fixed learning rate of 5× 10−4 before the L-BFGS-B optimizer is used.
The training with the L-BFGS-B optimizer is terminated based on the increment tolerance
(or if the total number of iterations reaches 105). The training is performed on Tesla-V100
16G/32G GPU.

A reference solution is obtained by using a conventional mesh-based IB method.
This numerical method is based on the discrete stream-function formulation for solving
incompressible Navier–Stokes equations [28]. The spatial discretization and temporal
advancement in the flow solver are of second-order accuracy. For detailed descriptions
and validations of the mesh-based IB method, please refer to [28,33,34]. The uniform
rectangular mesh aforementioned (with h = 0.025) is used in the simulation. The smoothed
delta function used in the mesh-based IB method has a supporting width of 4 h (the half
supporting width is equal to ∆) [35].

An additional reference solution is also obtained by performing a simulation using
Ansys Fluent. This software uses an ordinary CFD method (with body-fitted mesh and
velocity-pressure formation). The resolution of the simulation is comparable with that
of the mesh-based IB method. The numerical settings of this simulation are described in
Appendix A.

3.2. Predicted Solution vs. Reference Solutions

The convergence history of the training process is shown in Figure 4. It is seen that
after the training is terminated, the total loss is reduced to a value less than 4× 10−5, while
the maximum value among the four loss components is around 2× 10−5. The low values
of the final loss indicate the convergence of training.

The contours of the streamwise and crosswise velocity components obtained using
Fluent, mesh-based IB method and IB-PINN are displayed in Figure 5. The contours for
the difference between the two IB solutions are also shown in the figure. The comparisons
indicate that the three solutions are in excellent agreement qualitatively. Actually, an
evident difference does exist in the interior of the cylinder between the solutions of the two
IB methods. However, the interior flows in IB methods are merely fictitious and irrelevant
to the prediction accuracy. Thus, in plotting the difference between the two IB solutions,
data for the interior flows are removed, and the interior regions are filled with white color.
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Figure 4. Convergence of loss function. The DNN of 6× 100 is used. The number of collocation
points is 72,365. The weights for the loss components are: λ = 1.0; α = 2.0; β = 2.0; γ = 1.0.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. A comparison between the contours of velocity components obtained using Fluent, mesh-
based IB and IB-PINN. (a) u-component (Fluent); (b) v-component (Fluent); (c) u-component (IB);
(d) v-component (IB); (e) u-component (IB-PINN); (f) v-component (IB-PINN); (g) difference between
IB-PINN and IB (u-component); (h) difference between IB-PINN and IB (v-component). In (g,h), the
interior region is filled with white color, and the data are removed.

The streamlines for the three solutions are shown in Figure 6. Again, it is seen that
the flow fields exterior to the cylinder are in excellent agreement. Evident difference in
the fictitious flows obtained by the two IB methods can be visualized in the interior of



Fluids 2022, 7, 56 8 of 17

the cylinder. This difference is mainly due to the fact the force compactness constraint is
imposed inside the cylinder in the mesh-based IB method but not in IB-PINN.

(a)

(b)

(c)
Figure 6. The streamlines of the solutions obtained by using (a) Fluent, (b) mesh-based IB method
and (c) IB-PINN.

The profiles of streamwise velocity along the horizontal centerline and vertical line
passing through the center of the cylinder are shown in Figure 7. The quantitative agreement
between the three solutions can be seen clearly. Again, larger discrepancies are only found
on the segment inside the cylinder (corroding to the region where fictitious flows are
produced in the two IB methods).

(a) (b)
Figure 7. A comparison between the velocity profiles obtained using Fluent, mesh-based IB and
IB-PINN. (a) streamwise velocity profile along the horizontal centerline; (b) streamwise velocity
profile along the vertical line passing through the center of the cylinder. The gray rectangles denote
the segment inside the cylinder.
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The pressure contours obtained using IB-PINN and Fluent are compared in Figure 8.
The distributions of the pressure coefficient along the cylinder surface are also compared in
Figure 9. A good agreement between the two solutions is clearly demonstrated. The slight
under-prediction of the pressure coefficient near the front stagnation point in IB-PINN
is associated with the smearing effect of diffusive-interface IB methods. The pressure
prediction in IB-PINN can be improved by adopting a local refinement strategy in the
generation of collocation points. Here, the pressure field for the mesh-base IB method is not
available. This is because the mesh-based IB solver is based on the discrete stream-function
formulation in which the pressure is eliminated.

(a) (b)

(c)

Figure 8. A comparison between the pressure contours obtained by using Fluent and IB-PINN.
(a) pressure (Fluent); (b) pressure (IB-PINN); (c) difference in pressure between IB-PINN and Fluent.
For the solution of IB-PINN, the interior region is filled with white color and the data are removed.

Figure 9. A comparison between the distributions of the pressure coefficient along the cylinder surface

obtained using Fluent and IB-PINN. The pressure coefficient is defined as Cp = p
/
( 1

2 ρU2
max), where

ρU2
max = 1.

The length and position of the separation bubble behind the cylinder, the separation
angle and the drag coefficient are listed in Table 1 for comparison. For the IB methods, the
drag coefficient is computed by

Cd =

(
−

Nr

∑
j=1

fxh2

)
/
(

1
2

ρU2
maxD

)
, (12)

where fx denotes the x-component of volume force f; ρ, Umax and D are (non-dimensional)
density, maximum velocity and diameter, respectively, (i.e., ρ U2

maxD = 1). For the solution
of Fluent, the drag coefficient is computed by the integration of pressure and friction forces
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on the cylinder surface. From this table, it can be seen that the results from the three
simulations also agree very well.

Table 1. The length and position of the separation bubble, the separation angle and the drag coefficient
obtained using Ansys Fluent, mesh-based IB method and IB-PINN.

l/D a/D b/D θs Cd

Fluent 1.19 0.45 0.48 47.7◦ 2.17
IB 1.19 0.46 0.48 46.7◦ 2.21
IB-PINN 1.17 0.45 0.48 46.7◦ 2.18

The distributions of the volume force obtained in the two simulations of IB methods
are compared in Figure 10. It is interesting to note that although the velocity fields obtained
in the two simulations are very similar, the two volume forces differ significantly. The
dissimilarity in the distributions of volume force is partially due to the lack of the force
compactness constraint inside the cylinder in the IB-PINN simulation. Another reason for
the discrepancy between the two volume forces is that no interpolation kernel function is
used in IB-PINN, while in the mesh-based IB method, an interpolation kernel function is
used to regulate the distribution of volume force.

(a) (b)

(c) (d)

Figure 10. Components of volume forces obtained by using IB-PINN and mesh-based IB method.
(a) x-component (IB-PINN); (b) y-component (IB-PINN); (c) x-component (IB); (d) y-component (IB).

3.3. Influences of Some Parameters on the Performance of IB-PINN

In this section, we study how the performance of IB-PINN is affected by the variations
of some parameters. The IB-PINN with the numerical settings aforementioned is regarded
as the baseline model to compare with. The value of final loss after training and the relative
L2 error of velocity are used to quantify the convergence behavior and prediction accuracy,
respectively. Here, the relative L2 error is defined as

εϕ = ‖ϕ̂− ϕ‖2
/
‖ϕ̂‖2, (13)
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where ϕ represents the two velocity components (u, v) obtained by IB-PINN. ϕ̂ represents
an accurate solution, which is obtained using the conventional IB method, on a very fine
mesh of h = 0.005. Please note that the fictitious velocity inside the circular cylinder is
excluded in the computation of relative L2 error.

The effects of the DNN architecture on the convergence of training and velocity
error are tested by using DNNs with nine different configurations. To be more specific,
three numbers of hidden layers (5, 6, 7) and three numbers of neurons per layer (90, 100,
110) are considered. The results obtained by the nine DNNs are summarized in Table 2.
The low values of final loss indicate good convergence in training all DNNs. As to the
prediction accuracy, the smallest velocity error is achieved in DNN with 6 hidden layers
and 100 neurons per layer. This implies that for a fixed number of collocation points, a
DNN with a more complex architecture (i.e., larger size) does not necessarily provide a
more accurate prediction. Similar findings were also reported in some previous studies on
PINNs [20–22,26].

Table 2. Final loss and velocity error obtained in nine DNNs with different configurations.

90 100 110

5
Final Loss 7.3764 × 10−5 8.1033 × 10−5 5.4935 × 10−5

εu(%) 0.28 0.27 0.26
εv(%) 0.64 0.84 2.65

6
Final Loss 5.8943 × 10−5 3.8017 × 10−5 4.4175 × 10−5

εu(%) 0.28 0.16 0.25
εv(%) 0.87 0.62 0.82

7
Final Loss 3.4572 × 10−5 4.1086 × 10−5 3.2451 × 10−5

εu(%) 0.20 0.22 0.20
εv(%) 1.18 0.96 0.60

Figure 11 shows the influence of the number of Adam iterations (before L-BFGS-B)
on the convergence of training. From Figure 11a, it is seen that the final loss is not very
sensitive to the number of Adam iterations. A low value of final loss (less than 5× 10−5)
can be achieved if the number of Adam iterations lies in the range of 1.0× 104 to 2.5× 104.
From the convergence histories shown in Figure 11b, it can be seen that a much larger loss
declining rate can be achieved in the L-BFGS-B optimizer in comparison with the Adam
optimizer. However, since L-BFGS-B is a local optimizer, a certain number of iterations in
Adam is necessary at the beginning to avoid becoming stuck on the local optimum. To keep
the total number of iterations (in both optimizers) as small as possible while maintaining a
low final loss, 1.0× 104 iterations in Adam before switching to L-BFGS-B is an appropriate
choice. Due to the non-convexness of the loss function in this study, optimization can
get stuck in local minima in a few cases with certain numbers of collocation points. It
is found that the optimization can escape the local minima by adjusting the number of
Adam iterations.

The effects of four weights in the loss function on the convergence of training and
prediction accuracy are tested by changing one weight once a time while keeping the other
three fixed. The influences of the weights on the value of the final loss and prediction error
are shown in Figure 12. It is seen that choosing appropriate weights is crucial for ensuring
the convergence of training and achieving high accuracy in prediction. A rule that provides
guidance to the selection of weights can be easily inferred from the figure. If it is required
that the low final loss is less than 1.0× 10−4 and the relative velocity errors are less than 1%,
λ and γ should lie in range of [0.1, 1.0], while α and β should lie in the range of [2.0, 100.0].
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(a) (b)

Figure 11. Influence of the number of Adam iterations on convergence of training: (a) final loss as a
function of the number of Adam iterations; (b) convergence histories of training for different numbers
of Adam iterations.

(a) (b)

(c) (d)

Figure 12. Influences of the weights on final loss and prediction error: (a) variable λ with α = 2.0;
β = 2.0; γ = 1.0; (b) variable α with λ = 1.0; β = 2.0; γ = 1.0; (c) variable β with λ = 1.0; α = 2.0;
γ = 1.0; (d) variable γ with λ = 1.0; α = 2.0; β = 2.0.

The interpretations of the optimized ranges of weights observed in this figure are as
follows. First, weights much larger than one should be assigned to the boundary losses.
This is because the boundary losses are usually one order of magnitude smaller than the
other two loss components in the training process. Small weights for the boundary losses
can result in the domination of equation and force components in the total loss. This
makes the optimization hard to converge since the boundary conditions are never properly
satisfied. Second, when the weights for the PDE and force losses are too small, a prediction
error rises even if the training converges very well. Here, the large discrepancy between
predicted and true solutions is linked with the violations of the governing equation and
force compactness condition.

The convergence of the prediction error with respect to the number of collocation
points is also examined. In the refinement and coarsening process, auxiliary rectangular
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meshes with different resolutions are generated for arranging the collocation points. The
variation of the velocity error with the number of collocation points is shown in Figure 13a.
It is seen that with the increasing number of collocation points, an (almost) converged
solution can be reached when the number of collocation points is larger than 7.2× 104.
The relative L2 velocity errors in the converged solution are in the order of 10−3 to 10−2.
If the number of collocation points is increased further from 7.2 × 104, the prediction
error almost levels off (even increases slightly). This can be explained by the fact that the
prediction accuracy is ultimately limited by the optimization error in training the DNN if
the number of collocation points becomes sufficiently large. The supporting evidence for
this explanation can be found in Figure 13b. It is seen that the value of final loss does not
change significantly if the number of collocation points is larger than 1.8× 104.

(a) (b)

Figure 13. Influences of the number of collocation points on (a) velocity error and (b) final loss.

Similarly, the effect of the number of marker points on the prediction accuracy is
tested by changing the number of marker points from 8 to 314 while keeping the number
of collocation points fixed to 7.2 × 104. From Figure 14, it is seen that the prediction
accuracy is less sensitive to the number of marker points. Thus, the requirement of marker-
point resolution for representing the cylinder surface is not very stringent. In this test,
125 marker points on the cylinder surface correspond to a resolution that is compatible
with that of the collocation points. However, 31 marker points are sufficient for achieving
an accurate prediction.

Figure 14. Influence of the number of marker points on velocity error. The dashed line denotes the
place where the resolutions of marker points and collocation points are compatible.

The influence of imposing a force compactness constraint inside the cylinder is also
examined. In other words, force penalties are also applied to the collocation points that are
in the interior of the cylinder and beyond a distance of ∆ from the immersed boundary. We



Fluids 2022, 7, 56 14 of 17

notice that in the mesh-based IB method used for obtaining the reference solution, half of
the support in the interpolation kernel function lies inside the cylinder and spans a width of
∆. Thus, the distribution of volume force in the IB-PINN with such a constraint is supposed
to be more akin to that in the mesh-based IB method. The final loss, velocity errors and
drag coefficient obtained by IB-PINNs with and without such a constraint are compared
in Table 3. It is seen that imposing such a constraint makes the training process hard to
converge and thus leads to a much larger prediction error.

Table 3. Final loss, velocity error and drag coefficient obtained in IB-PINNs with and without the
interior force compactness constraint.

Final Loss εu(%) εv(%) Cd

With interior constraint 2.5749 × 10−3 3.10 6.77 1.96
Without interior constraint 3.8017 × 10−5 0.16 0.62 2.21

3.4. Transfer Learning

In the current setting of IB-PINN, we only consider solving Navier–Stokes equations
with a fixed Reynolds number. For a prediction at a different Reynolds number, the DNN
needs to be re-trained. The large re-training overhead is an inherent drawback that severely
limits its application in optimization problems.

Transfer learning is a powerful technique in machine learning to accelerate conver-
gence and save training time. In transfer learning, a base network is first trained on one
task. It is then used as a starting point for training the target network on a different but
related task. This technique has been successfully applied to the fields of computer vision
and natural language processing. In one recent work by Chen et al. [36], it was shown
that for solving N-S equations at different Reynolds numbers using PINN, the re-training
benefited from the transfer learning technique.

In this study, a transfer learning experiment is conduced on solving N-S equations
with different Reynolds numbers using IB-PINN. We consider four tasks of solving N-S
equations with Reynolds numbers Re = 10, 20, 30, 40. We first train the base DNN for the
task of Re = 40. In training the other three targeted DNNs for the tasks of Re = 10, 20, 30,
two approaches are adopted. In the original approach, the three DNNs are trained from
scratch (with Xavier initialization). In the transfer learning approach, the three DNNs are
initialized by copying the layers from the trained base DNN.

The total number of iterations at convergence, the final loss and the prediction errors
in three targeted DNNs trained by using the two aforementioned approaches are compared
in Table 4. The reference solutions for Re = 10, 20, 30 are obtained by using the conventional
IB method on a very fine mesh of h = 0.005. It is observed that for predictions at different
Reynolds numbers, the re-training of DNNs benefits from the transfer learning approach.
The reduction in the amount of training time is substantial, especially when the Reynolds
numbers in the targeted DNN and base DNN are close. This observation is consistent with
the finding reported by Chen et al. [36].

Table 4. A comparison of the performances in re-training the DNNs using original and transfer
learning approaches.

Original Tranfer Learning

# Iterations Final Loss εu(%) εv(%) # Iterations Final Loss εu(%) εv(%)

Re = 10 45011 8.7173 ×10−4 1.62 2.50 38258 2.7832 ×10−4 0.79 1.36
Re = 20 81341 2.1812 ×10−4 0.47 1.23 25420 7.3278 ×10−5 0.27 0.82
Re = 30 53915 4.7878 ×10−5 0.19 0.78 11500 5.6311 ×10−5 0.24 0.78
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4. Summary

In this paper, we propose using a direct-forcing IB method in combination with a
PINN to solve steady incompressible Navier–Stokes equations. In the proposed IB-PINN,
the inputs are the spatial coordinates, and the outputs are the velocity, pressure and volume
force. The velocity penalties at the IB marker points and force penalties at some collocation
points are incorporated into the total loss function to enforce the no-slip condition and
ensure a compact distribution of the volume force.

Some differences in the implementations of the proposed IB-PINN and the mesh-
based IB method are highlighted here. First, the surface force and interpolation kernel
function are not used in IB-PINN. Second, in IB-PINN, the pressure and volume force are
two hidden states that can be obtained automatically via imposing constraints without
the extra computational cost of splitting the Navier–Stokes equations using the projection
approach [29].

The laminar flow past a circular cylinder that is placed in a channel is simulated using
the proposed IB-PINN method, and the result is compared with the reference solution
obtained using a conventional mesh-based IB method. The comparison indicates that the
results from IB-PINN and from the mesh-based IB method are in excellent agreement.

A study is carried out to investigate the influences of some parameters on the perfor-
mance of IB-PINN. If the number of collocation points is fixed, the neural network with
an appropriate size can achieve the best accuracy. Both the convergence of training and
prediction error are found to be sensitive to the weights of different components in the loss
function. It is found that with increasing number of collocation points, a converged solution
can be achieved. The prediction accuracy is found to be less sensitive to the resolution of
marker points for a given number of collocation points.

A transfer learning experiment is conducted on solving Navier–Stokes equations with
different Reynolds numbers. It is found that the re-training DNNs can benefit from the
transfer learning approach in terms of convergence acceleration.

There are several future research avenues. First, the effect of the supporting width in
the force compactness constraint on the performance of IB-PINN needs to be explored sys-
tematically. Second, an adaptive refinement strategy needs to be employed to enhance the
solution accuracy of IB-PINN with respect to collocation points’ distribution. Third, aiming
at fluid flow problems with unsteadiness, three-dimensionality and high Reynolds num-
bers, the computational efficiency of IB-PINN needs to be greatly improved. We notice that
the parallel PINNs developed based on the strategies of parallel in-time [37] and domain-
decomposition [38] are two promising candidates for efficiently solving time-dependent
PDEs. In addition, the proposed IB-PINN can also be implemented with a parametric set-
ting in which the Reynolds number is one input [20]. Under such circumstances, re-training
the DNN is not needed for predictions at different Reynolds numbers.
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Appendix A. Simulation by Using Ansys Fluent

We perform an additional validation simulation using the software Ansys Fluent [39], in
which an ordinary CFD method (with body-fitted mesh and velocity-pressure formulation)
is employed. A velocity–pressure coupled scheme is used in solving the incompressible
Navier–Stokes equations. A second-order scheme is used in the spatial discretization.

A quadrilateral mesh is used the simulation, and the number of elements is 76,602. The
multi-block strategy is adopted in meshing, and an ‘O-type’ mesh with the grid width of
0.025 is generated in the vicinity of the cylinder (see Figure A1). The boundary conditions
on the four outer boundaries are the same as those in the simulations of mesh-based IB and
IB-PINN.

Figure A1. Mesh used in the simulation of Fluent (with a zoom in view near the cylinder).
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