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Abstract: Vibro-acoustic processes are an interacting set of pulsations of the working fluid and
vibrations of mechanical structural elements. The simulation of vibro-acoustic processes in a long
pipe with an elastic round cylinder is considered. The mathematical model is developed in a coupled
formulation, when not only pressure pulsations cause pipe vibrations, but also vibrations of the
mechanical subsystem affect sound wave propagation in the working fluid. The influence of vortex
formation processes in the channel on the system dynamics is taken into account. The fluid flow is
found using delayed detached eddy simulation. The flow regimes around a single round cylinder
corresponding to various Reynolds numbers are investigated to validate the computational algorithm.
The distributions of the flow quantities and vibro-acoustic behavior of the system are discussed.

Keywords: numerical simulation; coupled problem; channel; cylinder; turbulence

1. Introduction

Turbulent pressure fluctuations on a streamlined surface play an important role in
acoustic measurements in moving media. In particular, in flexible extended towed antennas,
which are used in seismic exploration to search for minerals under the seabed, sensitive
receiving elements are enclosed in an acoustically transparent cylindrical shell and are
located close enough to the streamlined surface. Sources of hydrodynamic noise and vibra-
tions are the phenomena associated with the flow around various structural elements [1]
(boundary layer formed on a streamlined surface, separation regions near bluff bodies, and
jet streams). An important role in excitation of vibrations is played by pressure fluctuations
in the boundary layer on the walls and acoustic oscillations excited by the separation of
vortices. Pseudo-sonic pulsations of near-wall pressure on the streamlined surface of carriers
of hydro-acoustic equipment lead to the appearance of hydrodynamic noise.

The generation of coherent vortices and their interaction with each other and with
the streamlined surface lead to the emission of powerful pressure pulsations into the
environment. The variety of scales of vortex structures in a turbulent boundary layer and
their transfer rates lead to a broadband spectrum of velocity and pressure fluctuations. The
appearance of dominant vortex formations, generated in one way or another, determines
the presence of discrete or tonal peaks in the spectral dependencies of pressure fluctuations
measured both above the streamlined surface and on its surface.

The hydrodynamic noise of the turbulent boundary layer, the sources of which are
coherent vortex structures interacting with each other and with the streamlined surface,
has sonic and pseudo-sonic components [2]. Unlike sound, which has a wave nature and
propagates into the environment at the speed of sound, pseudo-sonic pressure pulsations
are transferred at a speed close to the flow speed. Pseudo-sound generated by the nonlinear
interaction of the vortex structures of the boundary layer does not obey the superposition
principle. The pseudo-sound pressure does not depend on the average ambient pressure
and decreases inversely with the square of the distance from the source. When gas flows
around elongated bodies (strings, cables, long rods, high pipes), acoustic vibrations arise
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due to the separation of vortices (Aeolian tones). The appearance of Aeolian tones is
associated with fluctuations in the lift force acting on a streamlined body and its drag [3].

Pseudo-sonic pressure fluctuations are localized within the turbulent flow, while sonic
pressure fluctuations propagate over large distances outside the region occupied by the
turbulent flow. The study of the physics of turbulent pressure fluctuations is important not
only because they are sources of hydrodynamic noise. They affect the surface in a flow,
generating vibrational oscillations, but they are also present in the correlation dependencies
in the Reynolds stress transfer equations and the dissipation tensor energy.

One of the test problems that make it possible to determine the characteristic features
of hydrodynamic acoustic processes is the problem of flow past a round cylinder. The
fluid flow around a circular cylinder is considered in a large number of experimental and
computational studies [4–7]. A round cylinder in a transverse flow of fluid is a typical
element of many structures and is the object of intensive theoretical, numerical, and exper-
imental research. The formation and shedding of vortices behind the cylinder and other
bluff bodies leads to unwanted vibrations and destruction of the structure. In this regard, it
is necessary to be able to control the process of vortex shedding, reduce the drag force of
the streamlined body and the amplitude of fluctuations of the forces applied to it [8,9]. The
results of calculations of the loads experienced by an obstacle during its flow are used to
optimize the methods of attaching the cylinder to the channel walls.

Modeling and simulation of the flowfield around cylinders have been tackled by many
researchers at various Reynolds and Mach numbers [10–23]. The results obtained form a
basis for validation of new models and computational algorithms.

Studies of the flow around a cylinder near the wall include data on the effect of the
gap between the cylinder and the wall on the frequency of vortex formation (von Karman
road), as well as information on the interaction of shear layers on the surface of the cylinder
and on the wall depending on the gap and the Reynolds number [5,24–26]. A system of
large-scale horseshoe-shaped vortices is formed at the junction of the shedder body and
the walls parallel to the flow. Such vortex formations have a significant impact on the flow,
determining local shear, acoustic noise, drag and lift coefficients [27,28].

Pseudo-sonic pulsations of near-wall pressure behind an annular obstacle on a lon-
gitudinally streamlined flexible extended cylinder are studied in [29]. The integral and
spectral statistical characteristics of the pressure fluctuation field behind the obstacle are
obtained, and its influence on the structure of the turbulent boundary layer is studied. An
increase in the obstacle diameter and flow velocity leads to an increase in the low-frequency
spectral components of pressure fluctuations and a weakening of high-frequency pressure
fluctuations in comparison with the boundary layer on a hydraulically smooth cylinder.

The results of theoretical, numerical, and experimental studies of the characteristics
of pseudo-sonic pressure oscillations caused by the interaction of the flow and the sound
field inside a three-dimensional spherical dimple are presented in [30]. Symmetric and
asymmetric large-scale vortex systems inside the dimple are found, the existence of which
depends on the flow regime, their location and periodicity of ejection to the outside
are indicated.

An important task in assessing the vibration strength of technical systems is to de-
termine their vibration characteristics. Many of the developed approaches are empirical
in nature and are not universal. The available methods for calculating the vibration pa-
rameters of a system under its force loading by a pulsating flow of the working fluid are
characterized by significant idealization. Mathematical modeling of vibro-acoustic pro-
cesses in technical systems is an important task, the solution of which will make it possible
to predict vibro-acoustic loads at the design stage and ensure the operability of the system
by rationally choosing its parameters, locations, and characteristics of supports, devices
for correcting dynamic characteristics (vibration dampers, dynamic vibration dampers,
vibration dampers of the working liquids).

In [31], simulation of vibro-acoustic interaction processes is implemented for a rectan-
gular channel with one compliant and three rigid bounding surfaces. The form of vibration
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of the compliant plate, excited by the pulsations of the pressure of the working medium, is a
superposition of at least two natural modes of vibration. The possibilities of eddy-resolving
approaches to modeling turbulent flow near a system of ordered circular cylinders and
predicting their flow characteristics, including pressure fluctuations, are shown in [32].
One of the main requirements for the methods of solving vibro-acoustics problems is the
high resolution of the difference scheme and its low dissipation in the calculation of con-
vective flows, which is important for the correct transfer of acoustic disturbances with a
small amplitude.

The solution of coupled problems is characterized by large velocity and pressure gradi-
ents. In such problems, there is also a wide range of flow quantity variations, which creates
challenges for numerical methods. Many previous studies, for example, Refs. [29–32] are
limited to the assumption that it is possible to describe acoustic processes in a working
medium by a one-dimensional wave equation. In addition, in many previous works, an
assumption is made about the harmonic law of changing the parameters of the working
environment. Insufficient attention is also paid to the issues of determining variable stresses
from the impact of vibro-acoustic loads when calculating the strength of systems.

In this study, large vortices of vibro-acoustic processes are simulated in a pipe with a
transversely located round cylinder. The generalized mathematical model is considered in
a coupled formulation, when not only pressure pulsations cause pipe vibration, but also
vibrations of the mechanical subsystem affect wave processes in the working fluid. Based on
the results of numerical simulation, the vibro-acoustic behavior of the system is discussed.

2. Coupled Problems

Vibro-acoustic problems (Acoustic–Structure Interaction, ASI) imply joint modeling
of elastic waves in solids, acoustic pressure waves in a liquid, and taking into account the
interaction between them. Acoustic waves in different types of materials are described by
different equations.

The loads on the surfaces found from the CFD problem are applied to the boundaries
of the computational domain. These loads define boundary conditions for the solution of
the stress–strain state. With a single transfer of data on the impact of a flow on a certain
structural element from a CFD package to an FEA package, the interaction is unidirectional
and may be used when the reverse effect of the deformation process on the flow is weak.
In the general case, a bidirectional data exchange is required (the CFD package transmits
loads, but receives the displacement values of the nodes of the interface boundary).

With a single data exchange during a time step, an explicit scheme for pairing software
systems is implemented. Multiple data exchange at the time step of solving the adjoint
problem leads to an implicit conjugation scheme. The need for multiple data exchange
is associated with the problem of stability of the calculation process, which is explained
by the high inertia of the liquid due to its density and leads to large reaction forces acting
from the flow on the moving interface. The iterative procedure [33,34] is used to obtain a
convergent solution of the adjoint problem at a time step.

The need to modify the grid structure is due to the displacement of the boundaries
that form the object and are the boundaries of the computational domain of the hydrody-
namic problem. Modification of the grid consists in its local rebuilding or deformation
(stretching/compression) of the set of grid lines while maintaining the relationships of
nodes, edges, and faces of control volumes.

For situations that do not express a high degree of interaction nonlinearity, the explicit
method seems to be more efficient and flexible, allowing flow calculations and finite
element analysis to be performed independently and then iteratively linked. Pairing on
each time step is implemented by a recursive procedure based on iterations between
different calculated modules until the specified level of convergence is reached.
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3. Governing Equations

Modeling of vibro-acoustic processes consists of description of the non-stationary
movement of the working medium, the interaction of the working medium with moving
or stationary surrounding or surrounding elements of the mechanical subsystem, their
interaction with the environment, and other elements that, for some reason, were not
included in this system.

3.1. Sound Propagation in Fluid

Flows are considered in whichever period of change of flow parameters is much
greater than the frequency of sound propagating in the flowfield. The flow quantities
are presented as sum of average and fluctuating components (u = u + u′). The prime
corresponds to small fluctuations of flow quantities.

The governing equations describing small fluctuations of the flow parameters have
the form (the line above the average values is omitted)

∂v′

∂t
+ [rot v, v′] + [rot v′, v] +∇(v, v′) = −1

ρ
∇p′ +

1
ρ2∇(p · ρ′);

∂ρ′

∂t
+ (v,∇ρ′) + (v′,∇ρ) + ρdiv v′ + ρ′div v = 0; (1)

∂s′

∂t
+ (v,∇s′) + (v′,∇s) = 0.

The equation of state is written as

p′ = c2ρ′ + hs′, c2 =

(
∂p
∂ρ

)
s
, h =

(
∂p
∂s

)
ρ

.

The system of Equation (1) is valid for a flow with non-uniform entropy (∇s 6= 0) and
in the presence of vorticity (rot v 6= 0). Approximations consist only in the fact that only
linear terms are taken into account, and irreversible processes in the sound wave are not
taken into account; therefore, the propagation of sound waves is considered as an adiabatic
process d(s + s′)/dt = 0. Auxiliary relations, which are necessary for the transition from
entropy to temperature, have the form

∇s =
cp

T
∇T −

βp

ρ
∇p,

(
∂p
∂s

)
ρ

=
ρc2

cp
βpT,

where cp is the specific heat capacity, βp = (1/V)(∂V/∂T)p is the volume expansion
coefficient.

Assuming that the flow is isentropic (∇s = 0) and irrotational (rot v = 0), for a small
adiabatic compression or expansion of the gas, the equation of state takes the form

p′ = c2ρ′.

The pressure potential, Π, and the velocity potential of sound vibrations, ϕ, are
introduced using the relations

Π =
p′

ρ
, v′ = −∇ϕ.

The equation for the velocity potential is

d2 ϕ

dt2 = c2∆ϕ + (∇Π0,∇ϕ) +
dϕ

dt
(v,∇lnc2). (2)

The potential of the initial flow is

Π0 =
∫ dp

ρ
.
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The convective derivative is defined as
dϕ

dt
=

∂ϕ

∂t
+ (v,∇ϕ).

It follows from Equation (2) that in the absence of vorticity and entropy gradient, no
sound is generated in the medium.

In a medium at rest v = 0 and rot z, v = 0, the wave equation for the velocity
potential (2) takes the form

∂2 ϕ

∂t2 − c2∆ϕ = 0,

where c2 = γp/ρ is the speed of sound.
The boundary condition on the surface of an elastic body has the following form

∂ϕ

∂n
= −v0n,

where v0n is the normal velocity of the body surface. For an absolute rigid body,

∂ϕ

∂n
= 0.

For the correct statement of the boundary value problem, it is necessary to set the
initial conditions for ϕ and ∂ϕ/∂t.

3.2. Oscillations of an Elastic Body

The equation of motion for an elastic body is written in the following form

ρa = ρF + div σ,

where a is acceleration, F is external force, σ is stress tensor. Acceleration is represented in
terms of derivatives of speed

a =
dV
dt

=
∂V
∂t

+ Vi
∂V
∂xi

.

Slow deformations are considered (velocities Vi are small) and it is assumed that
a ≈ ∂V/∂t. The equations in displacements u for an elastic body take the form

ρ
∂2u
∂t2 = ρF + div σ.

The stress tensor is determined by Hooke’s law for an isotropic elastic medium in the
Lame form

σ = λI trace(ε) + 2µε.

The function trace(ε) denotes the trace of the strain tensor. The strain tensor has the
following form

ε =
1
2
[
grad u + (grad u)′

]
.

The stress tensor satisfies the relation

σ = λIdiv u + µ
[
gradu + (gradu)′

]
.

The Lame coefficients are determined by the relations

µ =
E

2(1 + ν)
, λ =

νE
(1 + ν)(1− 2ν)

,

where E is Young’s modulus, ν is Poisson’s ratio.
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Substituting the stress tensor from Hooke’s law into the equations of motion, we
obtain the equation in small displacements

ρ
∂2u
∂t2 = ρF + (µ + λ)grad div u + µ∆u. (3)

Equation (3) is used to describe small oscillations in an elastic body.

4. Coupling Scheme

The pressure fluctuations obtained from CFD calculations under the assumption of
stationary pipe walls are not sound, since the signal drifts with the flow velocity. The
fluid acts on the pipe walls and barriers, which are made of elastic material and begin to
deform and oscillate. In a solid material, not only body waves propagate, as in a fluid, but
also shear waves. Interaction of wall vibrations with the fluid leads to the generation of
acoustic waves and their propagation. Acoustic waves also propagate in the surrounding
air. Simulation of vibro-acoustic characteristics is a coupled problem, in which waves in a
solid material and acoustic waves in the fluid interact. To simplify the model, it is assumed
that acoustic waves have a small effect on the flow. In this case, the vibro-acoustic problem
is considered as three independent problems: wave propagation in a solid material, acoustic
wave propagation in water and ambient air.

At stage 1, a water flow in a channel with rigid walls and unsteady pressure and
friction forces on the pipe walls are found. At stage 2, the problem of the propagation of
vibro-acoustic waves is solved under the influence of non-stationary forces on the wall
from the inside of the pipe.

The internal diameter of the channel is d = 50 mm. Wall thickness is h = 5 mm, and
length of the channel is L = 500 mm. The density of water is ρ = 998.5 kg/m3. Kinematic
viscosity of water is ν = 1.003 · 10−3 m/s2. The pipe ends are fixed (Figure 1). The diameter
of cylinder is dc = 8 mm. The cylinder is located at l1 = 0.1 m from the inlet. The inlet water
velocity is V = 5 m/s. Relative pressure at the outlet is zero. In the solution of the CFD
problem, the pipe walls are stationary. No-slip and no-penetration boundary conditions are
applied to the walls. Air pressure and temperature are p = 105 Pa and T = 300 K. Material
of the pipe is steel. When calculating the vibro-acoustic problem on the inner walls of the
pipe, the pressure fluctuations (pressure amplitudes for each frequency after the Fourier
transform) are interpolated from the hydrodynamic problem.

100

8

5
0

500

Figure 1. Scheme of the computational domain in the plane of symmetry (dimensions are given
in millimeters).

5. Estimations of Flow Quantities

The flow regime is defined by the Reynolds number Reh = ρVdh/µ, where ρ is density,
V is flow velocity, dh is hydraulic diameter, µ is dynamic viscosity. If the flow velocity is
V = 5 m/s, the Reynolds number equals Reh = 248, 804 (turbulent regime of flow).
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In fluid flows past a cylinder, the vortex shedding frequency depends on the Reynolds
number [10–12]. The Strouhal number is found as St = f dc/V, where f is characteristic
frequency, dc is cylinder diameter, V is flow velocity. The Reynolds number calculated from
the cylinder diameter is Rec = 39, 809 (turbulent regime of flow). For Reynolds numbers
larger than about 1000, the Strouhal number remains almost constant (St = 0.21). The vortex
street during the flow in a pipe with a cylinder is the dominant non-stationary process;
therefore, the fundamental frequency is approximately equal to fm = StV/dc = 131 Hz,
and the oscillation period is Tm = 7.62× 10−3 s.

To describe a periodic process, it is necessary to measure at least two points per period
(Nyquist’s theorem). The calculations use approximately 100 points per period to resolve
the dominant frequency. The time step is chosen equal to ∆t = Tm/100 = 7.62× 10−5 s.
In this case, processes with frequency fmax = 1/(10∆t) = 1312 Hz are calculated with 10
points per period.

To perform a Fourier transform on the fundamental tone of a signal, it is necessary to
have data for a certain number of periods of this tone. A total of 100 periods of the pitch
signal is stored in the calculations. After the oscillations reach a stable mode, the data are
saved for t f = 100Tm = 0.76 s. In this case, it is necessary to perform N = t f /∆t = 104 steps
in time. During the time t f , there are 10 periods with frequency fmin = 10/t f = 12.5 Hz.
Proper resolution is observed in the frequency range from fmin to fmax (greater errors occur
above or below these frequencies).

6. Scheme of Simulation

The delayed detached-eddy simulation (DDES) method with a shear stress transport
(SST) k–ω turbulence model is used to resolve vortex structures. DDES is an alternative
to Reynolds-averaged Navier–Stokes (RANS) equations and large-eddy simulation (LES).
RANS models are not capable of providing acceptable accuracy for calculating flows with
large separation zones [7], and LES imposes high requirements on computational resources
when modelling separated flows, which makes their practical use difficult [19].

The following approach is used to simulate the unsteady flowfield. A preliminary
stationary calculation of the flow in the pipe is performed using the RANS equations
with the SST-model. The semi-implicit method for pressure-linked equations-consistent
(SIMPLEC) method is used to integrate the equations. Then, unsteady calculations of the
flow in the pipe are performed with DDES and the SST-model. The calculations are carried
out until a steady state flow is realized. To integrate the equations of motion, a modified
pressure implicit with a splitting of operator (PISO) method is used. The pressure correction
step is performed more times by the SIMPLEC method. The time step is found from the
stability conditions. An unsteady flowfield in a pipe with a fixed time step is found. The
pressure values are preserved in each cell bordering the pipe and cylinder walls at every
time step.

A block-structured mesh is used. Nodes are clustered near the cylinder surface, wake
region, and pipe walls to resolve the boundary layer (Figure 2). In the pipe, DDES operates
in the LES mode, and the mesh is uniform. In the DDES approach, inviscid fluxes are
discretized with a hybrid scheme and the Roe method to maintain accuracy in the LES
region and stability of the scheme in the RANS region with a non-uniform and coarse mesh.
The distributions of flow quantities found from the RANS solution with the SST-model are
used as initial conditions.

The mesh nodes are distributed uniformly along the circumferential coordinate. In
the inner region (0.5 6 r 6 5), which is a circle, an O-type mesh is used. In the near-wall
region (0.5 6 r 6 1), the minimum step along the radial coordinate is rmin = 0.003, the
growth factor is q = 1.032 (about 16 nodes along the radial coordinate are used to resolve
the boundary layer). In the outer region, the minimum step in radial direction is rmin = 0.2,
and the growth factor is q = 1.04. In the buffer region, which is located at a considerable
distance from the cylinder and allows avoiding the reflection of sound waves from the
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boundaries of the computational domain, the maximum step in radial direction is rmin = 20,
and the growth factor is q = 1.09.

Figure 2. A block-structured mesh.

The total number of mesh nodes is about 1.5 million. In this case, the condition
y+ < 1.2 is satisfied in the near-wall region. The dimensionless time step is 0.1056. The
calculations are carried out on a time interval equal to 162.

Calculations are based on a fully compressible solver [34]. Convergence to a steady
state is accelerated by the use of multigrid techniques, and by the application of block-Jacobi
preconditioning for high-speed flows, with a separate low Mach number preconditioning
method for use with low-speed flows.

With a known flowfield, the calculations of pressure fluctuations that occur on the channel
walls due to the influence of an unsteady fluid flow are performed. The boundary condition is
set in the form of a known amplitude of pressure fluctuations for each frequency.

The fast Fourier transformation (FFT) allows to obtain dependencies of pressure on
time over the pipe walls and cylinder. The data obtained are input for solving the vibro-
acoustic problem. The solution of the fluid problem, which describes the distribution
of amplitudes of pressure fluctuations along the walls of the pipe and cylinder, contains
data with a fine frequency step. For vibro-acoustic calculation, such a set of frequencies is
redundant, and therefore, the data are averaged over a coarser frequency grid (1/n octave
spectrum filters). The most common are 1/3-octave and 1/8-octave filters.

7. Flow around Cylinder

A numerical simulation of an unsteady flow of a viscous compressible fluid around a
cylinder is considered. The calculation results are given for two Reynolds numbers equal to
Re = 150 (regime 1) and Re = 3900 (regime 2), which are widely used for testing numerical
methods in the literature. In both cases, the Mach number is set equal to M = 0.2. The
Reynolds numbers correspond to the flow regime near the cylinder with flow separation
from its surface. Using the fast Fourier transform, the values of the Strouhal numbers, the
amplitudes of oscillations of the aerodynamic coefficients are determined, and the phases
of the formation of vortices and separation of the flow are found from the values of the
maximum amplitudes.
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7.1. Computational Domain and Boundary Conditions

A transverse flow around a circular cylinder located in a viscous compressible gas,
which is at rest for t 6 0, is simulated. For t > 0, the gas is set in motion with a constant
speed U0. When calculating the Reynolds number, the diameter of the cylinder and the
velocity of the undisturbed flow are used as characteristic parameters of the problem. The
equations are solved in the region external to the cylinder boundary.

The center of the cylinder with diameter D is located at the origin. In the (x, y) plane,
the computational domain has the shape of a rectangle (−20 < x < 80, −20 < y < 20). The
extent of the computational domain in the direction of the z axis is 4D.

The potential flow field is used as the initial conditions, which is modified in the
boundary layer region in such a way as to satisfy the no-slip conditions on the cylinder
surface. At the inlet boundary, the velocity of the undisturbed flow is set, which is found
from the given Reynolds number, and the temperature is equal to 290 K. At the outlet
boundary of the computational domain, non-reflecting boundary conditions are used. A
static pressure equal to 105 Pa is fixed at the upper and lower boundaries of the compu-
tational domain. The surface of the cylinder is assumed to be thermally insulated. In the
direction of the z axis, periodic boundary conditions are applied.

7.2. Regime 1

The distribution of pressure over time at various points on the surface of the cylinder is
shown in Figure 3. The lines correspond to the numerical simulation data, and the symbols
correspond to the calculated data of [10]. There is a fairly good agreement between the
calculation results and the data of [10]. The amplitude of pressure fluctuations at θ = −90◦

(symbols4, solid line) and θ = +90◦ (symbols �, dotted line) is several times greater than
the amplitude pressure fluctuations observed at θ = 0◦ (symbols �, dash-dotted line).

−8.5 8.50

0

0.01

−0.01

p'/(ρ c )
0 0

2

M(t−t )1

θ=−90o

θ=+90o

θ=0oo

∆

Figure 3. Change in pressure over time for Re = 150.

The distributions of the lift coefficient, drag coefficient, and pressure coefficient are
shown in Figure 4. The lines correspond to the numerical simulation data, the symbols
◦ correspond to the data of [10]. It achieves good agreement with the available data for
all characteristics.
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0 18090
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1.5

−1.5

0

θ, deg

ο

CFD
[10]

ο

CFD
[10]

C D

CL

Figure 4. Changes in the lift coefficient (dashed line) and drag coefficient (solid line) over time
(a), and the distribution of the average pressure coefficient over the cylinder surface (b) for Re = 150.

The characteristics of the flow in regime 1 are in good agreement with the available
numerical and experimental data (Table 1, where Cpb, CL, and CD are the mean pressure
coefficient, the mean square lift coefficient, and the mean drag coefficient). In particular,
in calculations the Strouhal number is 0.186, while the data of a physical experiment give
a value of 0.184 [8] and 0.183 [12]. The angular coordinate of the flow separation point is
θs = 108.5◦. Averaging is carried out over a time interval equal to 150. To find the Strouhal
number, the correlation relation St = 0.2684− 1.0356Re−1/2 from [15] is used. The Strouhal
number equals St = 0.1838 for Re = 150, which is in good agreement with the obtained
value. The results of calculations of the Strouhal number in comparison with experimental
data are shown in Figure 5.

50 100 150 200
0.12

0.14

0.16

0.18

0.2

Re

St

Figure 5. Comparison of calculation results (symbols •) of the Strouhal number with experimental
data [15] (solid line).
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Table 1. Comparison of calculated data with available numerical and experimental results (for
Re = 150).

Source St −Cpb CL CD Lz/D

CFD 0.186 0.850 0.342 1.224 20
[18] 0.184 0.848 — 1.313 140
[13] 0.185 0.885 — 1.333 56
[16] 0.181 — 0.338 1.268 16.46
[14] 0.191 — 0.403 1.418 12
[12] 0.183 — 0.356 — —
[8] 0.184 0.856 — — —
[10] 0.184 — — 1.334 —
[20] 0.184 0.846 0.355 1.305 —

The instantaneous pressure distribution near a circular cylinder is shown in Figure 6,
which clearly shows oscillations of the wake behind the cylinder.

Figure 6. Instantaneous pressure distribution around a cylinder for Re = 150.

7.3. Regime 2

The characteristics of the flow in mode 2 are in good agreement with the available
numerical and experimental data (Table 2). Cpb, CL, CD, CD, θs are understood as mean
pressure coefficient, mean square lift coefficient, mean square drag coefficient, mean drag
coefficient, mean angular coordinate of the lift-off point, average length of the recirculation
region. In particular, in the calculations, the Strouhal number is 0.186, while the data of a
physical experiment give values of 0.184 [8] and 0.183 [12]. The angular coordinate of the flow
separation point is θs = 108.5◦. Averaging is carried out over a time interval equal to 150.

Table 2. Comparison of calculated data with available numerical and experimental results (for
Re = 3900.

Source St −Cpb CL CD CD θs Lr /D Lz/D

CFD 0.209 0.860 0.074 0.029 0.963 88.3 1.57 20
[17] 0.219 0.840 — — — — 1.59 20
[19] 0.220 0.920 — — 1.03 85.7 1.30 18

The cause of noise generation is the deterministic tone sound with discrete frequencies
and turbulent fluctuations in the boundary layer and wake, which are stochastic in nature
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and have a continuous frequency spectrum. The sound intensity is found from the relation
I = p′2/(ρ0c0). The RMS pressure is determined by the relation〈

p′2(x)
〉
= lim

T→∞

1
T

T∫
0

p′2(x, t)dt,

where T = tn − t0 is the averaging period. Under t0 and tn, we mean the moments of time
corresponding to the beginning and end of saving the samples.

RMS pressure distributions obtained using various approaches are shown in Figure 7.
The control surface is located at r0/R = 1.2, and the observation point—on a circle with
radius rc/D = 250. Symbols � correspond to simulation results, dash-dotted line—
experimental data [12] at Re = 3000, double dash-dotted line corresponds to experimental
data [12] at Re = 5100. Good agreement between the calculated and experimental data
takes place at 30 < Lc/D < 150.

0
0

100 200 300 400 500

4 10. −6

8 10. −6

1.2 10. −5

L /Dc

p'/(ρ c )0 0
2

Re=3900

Re=3000

Re=5100

Figure 7. RMS pressure distributions depending on the length of the cylinder at θ = 90◦ for
Re = 3900.

8. Results and Discussion

The structure of the flow behind a transversely streamlined cylinder in a stationary
external flow has been well studied. In the case of a transverse flow around a cylinder,
a boundary layer is formed on its surface, the thickness of which gradually increases
upstream. The main determining parameters of this layer are the Reynolds number and the
turbulence of the oncoming flow. The separation of the boundary layer and the formation
of vortices in the wake of cylindrical bodies are periodic processes. The frequency of
separation is characterized by the Strouhal number, which depends on the Reynolds
number, the turbulence of the external flow, the degree of obstruction of the channel, and
other factors.

The flow that is formed when the boundary cylinder is separated from the surface
loses its stability and interacts with the pipe walls. As a result, self-sustaining pressure
oscillations arise, which lead to the presence of intense peaks in the spectrum of the
generated noise. The field of the vorticity modulus and the z-component of the vorticity
vector in the symmetry plane are shown in Figure 8. The vortices form an extensive wake,
grow downstream, and interact with the pipe walls. The level lines of the z-component of
the vorticity vector give an idea of the direction of rotation of the vortices.
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Figure 8. Contours of the modulus of the vorticity vector (a) and the z-component of the vorticity
vector (b) in the symmetry plane for Rec = 39, 809.

The distribution of overpressure on the channel walls is shown in Figure 9. The
pressure is distributed in a significantly non-uniform way, and therefore, one should expect
the occurrence of oscillations of the elastic walls of the pipe.

−4 10

p

. 4
2 10. 4

−6.3 10. 3
−3.6 10. 4

−2.5 10. 4

Figure 9. Overpressure field on pipe walls for Rec = 39, 809.

One of the criteria used to identify eddy flows is the Q-criterion

Q =
1
2

(
|Ω|2 − |S|2

)
,

where |S| = [trace(SS′)]1/2, |Ω| = [trace(ΩΩ′)]1/2. The tensor invariant is

Q = −1
2
(λ1 + λ2 + λ3),

where λi are the eigenvalues of the velocity gradient tensor (i = 1, 2, 3). A vortex is defined
as a flow region in which the inequality Q > 0 is satisfied (the flow region in which the
norm of the vorticity tensor exceeds the norm of the strain rate tensor). The connection
between the pressure and the Q criterion is established using the Poisson equation for the
pressure ∇2 p = 2ρQ. The condition Q > 0 does not necessarily correspond to the pressure
maximum (for Q > 0, the pressure maximum is observed at the boundary).
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To identify eddies, the λ2-criterion is used, based on the decomposition of the velocity
gradient tensor into symmetric (strain rate tensor) and antisymmetric (rotation tensor)
tensors [35]. The S2 + Ω2 tensor is symmetric and has real eigenvalues (λ1 > λ2 > λ3), two
of which are negative. The vortex flow region is defined as the region in which

λ2

(
S2 + Ω2

)
< 0,

where λ2(A) is an eigenvalue of the symmetric tensor A. Under adiabatic conditions, this
criterion guarantees an instantaneous pressure minimum in a two-dimensional flow [36].

The level surfaces of the Q and λ2 criteria, which are different combinations of the
velocity gradient tensor invariants [37], colored according to the value of the velocity
modulus, make it possible to visualize the vortex structure of the flow (Figure 10). The
figure clearly shows both the three-dimensional flow structure and the resulting large-scale
vortex component of the Karman street.

а)

b)

0 107.552.5

0 107.552.5

Figure 10. Contours of Q-criterion (a) and λ2-criterion (b) for Rec = 39, 809.

The presented fields of physical quantities illustrate the general picture of the separated
flow near the cylinder. As quantitative estimates of the accuracy of solving this problem, the
most interesting are the spectra of pressure fluctuations on the cylinder surface and acoustic
loads on the pipe walls. At each point on the wall, as well as at some selected points, the
Fourier transform of the data is performed, expressing the dependence of pressure on time.
The time dependence of overpressure on the pipe wall is shown in Figure 11 at x = 0.1 m.
Dotted lines show pressure levels corresponding to ±200 Pa.
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Figure 11. Time dependence of pressure on the wall at point (0.1, 0, 0).

The Fourier transform of the pressure signal at the same point is shown in Figure 12.
Line 1 shows the results of calculations, line 2—smoothed spectrum, and columns—results
of calculations using the 1/12 filter. A peak with a frequency corresponding to the funda-
mental tone of the pulsations stands out well.

f, Hz

101 103
102

S, dB

0

140

100

60

120

80

40

20

12

Figure 12. Spectrum of pressure fluctuations on the wall at point (0.1, 0, 0).

The distribution of the spectrum over all points on the channel wall for a certain
frequency makes it possible to judge the places of the most intense impact from the flow on
the walls at a given frequency (Figure 13).

The power spectral densities of near-wall pressure fluctuations on the streamlined
surface and on the channel walls have clear discrete peaks that correspond to the nature
of the vortex motion over the surface under study. Discrete peaks of the spectral levels
of near-wall pressure fluctuations, which have the most energy-intensive main frequency
harmonic, have higher-order harmonics, as well as sub-harmonics, due to the nonlinear
interaction of vortex structures (sources of pseudo-sonic fluctuations) with each other
and with the surface in a stream. This occurs due to the merging of the vortex structures
dominating here with each other (generation of sub-harmonics) and their destruction in
accordance with the mechanism of the cascade process of vortex transformation.
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55 16213611082
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Figure 13. Spectrum of pressure fluctuations on the walls at f = 167.5 Hz.

As a result of the calculations, the displacement amplitudes were obtained depending on
the frequency. The dependence of the displacement amplitude at the point (0.5, 0, 0) is shown
in Figure 14. There is a clear peak corresponding to the frequency of the fundamental tone.

f, Hz
100 104102

103101
0

0.5

1.5

2.5

3

1

2

a, µm

Figure 14. The dependence of the displacement amplitude on the frequency at the point (0.5, 0, 0).

9. Conclusions

A mathematical model and computational algorithm to perform coupled simulations
of unsteady processes in the circular channel with a round cylinder were developed and
validated. At the first stage, the velocity and pressure fields are calculated with delayed
detached eddy simulation. At the second stage, the problem of calculating the stress–strain
state of the pipe is solved using the finite element method.

Stand-alone CFD simulation of unsteady viscous flowfield around a circular cylinder
were performed, and results of CFD calculations were validated against experimental
and computational data from the literature. The values of Strouhal numbers and ampli-
tudes of oscillations of the aerodynamic coefficients are determined with the fast Fourier
transformation technique.

When fluid flow separates from the cylinder and flow loses its stability, self-sustaining
pressure oscillations arise, which lead to the presence of intense peaks in the spectrum of
the generated noise. The spectrum of pressure oscillations on the cylinder surface and wall
of the pipe have clear discrete peaks. The behavior of spectral dependencies is generally
preserved if the flow velocity (Reynolds number) increases.
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