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Abstract: The interaction of waves and currents with marine structures finds interesting applications,
including the study of offshore and shoreline protection systems, as in the case of permeable break-
waters. The latter systems exhibit various benefits, including a decrease in wave run-up, reflected
wave energy and load excitation, allowing for the propagation of part of the incident flow to the
lee side, facilitating the improvement of water quality in the protected areas. The present work
focuses on the modelling and numerical simulation of wave fields, interacting with arrays of vertical
cylinders in the presence of currents. The problem is treated in the framework of potential theory in
the frequency domain, assuming waves of small steepness, in conjunction with boundary integral
formulation. Numerical results are presented and discussed, concerning the structure of the reflected
and transmitted 3D flow fields, making the model suitable for optimization purposes; however, it
presents increased computational cost. On the other hand, for small current velocities the problem
can be approximately considered on the horizontal plane, modelled by the 2D Helmholtz equation
with variable coefficients, which is numerically treated by a coupled BEM–FEM scheme. Numerical
examples are presented, demonstrating that the latter model is cost-efficient, providing reasonable
predictions, and can be used for the preliminary study of the hydrodynamic characteristics of the
considered configurations and the support of the design.

Keywords: waves and current; arrays of vertical cylinders; BEM; FEM

1. Introduction

Knowledge of the properties of water waves in nearshore regions is essential for the
design and optimization of coastal defense systems. The latter is a subject of particular
interest especially in coastal engineering, aiming towards the conservation and protection
of inhabited areas, as well as other areas of interest, from loads arising due to interaction
with the highly dynamic marine environment. Permeable breakwaters, see, e.g., [1], are
a case exhibiting various benefits, including a decrease in wave run-up, reflected wave
energy and load excitation, allowing for the propagation of part of the incident flow to the
lee side, facilitating the improvement of water quality in protected areas. Among several
protection systems concerning permeable breakwaters, one particular class consists of
arrays of vertical cylinders, as presented in Figure 1. The problem of wave propagation
through such structures has been addressed by several researchers, providing useful data
by both experimental (e.g., Arnaud et al. [2]) and numerical studies (Belibassakis et al. [3,4])
concerning wave reflection and dissipation. Similar structures have been studied as sloshing
dampers in tanks by Molin et al. [5]; see also Jamain et al. [6].

Moreover, wave diffraction by arrays of vertical circular cylinders in a channel is
an interesting subject concerning the study of strong Bragg resonances, see, e.g., Li and
Mei [7], as well as the investigation of appearance of trapped modes; see, e.g., Linton and
McIver [8] and Utsunomiya and Eatock Taylor [9], and the references cited therein. The
above problems find useful applications in the analysis of large structures, such as offshore
airports supported on vertical piles, and the design of marine renewable energy systems.
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Figure 1. Configuration of the arrangement of vertical cylinders considered as permeable 
breakwaters. 
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McIver [8] and Utsunomiya and Eatock Taylor [9], and the references cited therein. The 
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offshore airports supported on vertical piles, and the design of marine renewable energy 
systems. 

Furthermore, the effects of currents on water wave propagation and interaction with 
the seabed and structures often prove to be significant, since they result in Doppler effects 
causing additional refraction, reflection, and breaking phenomena. The above may 
radically change the pattern of energy propagation in a fluid channel with obstructions 
(see, e.g., [3]). The prediction of loads on cylindrical structures arising due to wave–
current interaction (Sumer and Fredsoe [10]) is becoming increasingly important as the 
number of bottom-founded and floating marine structures grows, driven, among other 
factors, by the development of ocean energy plants. This fact has been also demonstrated 
by recent works focusing on the experimental study of wave–current interaction effects 
on the wave loads on vertical surface piercing cylinder; see, e.g., Ghadirian et al. [11]. 

The wave-current-body hydrodynamic interaction problems are usually examined in 
the context of potential flow applications, and the consideration of harmonic waves (see, 
e.g., Thomas [12]) facilitates the preliminary analysis and investigation of the field 
features, and supports the engineering studies concerning the loads on structures. The 
present work focuses on the modelling and numerical simulation of wave fields 
interacting with arrangements of vertical cylinders within a waveguide, in the presence 
of currents. The configuration is considered to consist of arrays of bottom-seated vertical 
cylinders, extending all over the water column; see Figure 1. For relatively slow currents, 
the problem is decomposed into steady and wave flow parts and is treated by 3D BEM. 
Numerical results are presented and discussed, concerning the structure of the reflected 
and transmitted flow fields, making the model suitable for optimization purposes. 
However, the 3D model presents increased computational cost. For this reason, the 
problem is approximately reformulated and treated on the horizontal plane, modelled by 
the 2D Helmholtz equation with variable coefficient. The above approximate 
reformulation of the problem for small current velocity is a novelty of the present work, 
and substantially reduces the computational cost. In particular, for the latter simplified 
formulation, a coupled BEM–FEM scheme is proposed for the numerical simulation of 
wave fields propagating over multiple vertical cylinder arrays, in the presence of currents. 
Numerical examples are presented and compared with the 3D BEM for verification, 
including data concerning the memory and time requirements, demonstrating that the 
above model is cost-efficient, provides reasonable predictions and can be used for the 

Figure 1. Configuration of the arrangement of vertical cylinders considered as permeable
breakwaters.

Furthermore, the effects of currents on water wave propagation and interaction with
the seabed and structures often prove to be significant, since they result in Doppler effects
causing additional refraction, reflection, and breaking phenomena. The above may radi-
cally change the pattern of energy propagation in a fluid channel with obstructions (see,
e.g., [3]). The prediction of loads on cylindrical structures arising due to wave–current
interaction (Sumer and Fredsoe [10]) is becoming increasingly important as the number of
bottom-founded and floating marine structures grows, driven, among other factors, by the
development of ocean energy plants. This fact has been also demonstrated by recent works
focusing on the experimental study of wave–current interaction effects on the wave loads
on vertical surface piercing cylinder; see, e.g., Ghadirian et al. [11].

The wave-current-body hydrodynamic interaction problems are usually examined
in the context of potential flow applications, and the consideration of harmonic waves
(see, e.g., Thomas [12]) facilitates the preliminary analysis and investigation of the field
features, and supports the engineering studies concerning the loads on structures. The
present work focuses on the modelling and numerical simulation of wave fields interacting
with arrangements of vertical cylinders within a waveguide, in the presence of currents.
The configuration is considered to consist of arrays of bottom-seated vertical cylinders,
extending all over the water column; see Figure 1. For relatively slow currents, the problem
is decomposed into steady and wave flow parts and is treated by 3D BEM. Numerical re-
sults are presented and discussed, concerning the structure of the reflected and transmitted
flow fields, making the model suitable for optimization purposes. However, the 3D model
presents increased computational cost. For this reason, the problem is approximately refor-
mulated and treated on the horizontal plane, modelled by the 2D Helmholtz equation with
variable coefficient. The above approximate reformulation of the problem for small current
velocity is a novelty of the present work, and substantially reduces the computational cost.
In particular, for the latter simplified formulation, a coupled BEM–FEM scheme is proposed
for the numerical simulation of wave fields propagating over multiple vertical cylinder
arrays, in the presence of currents. Numerical examples are presented and compared with
the 3D BEM for verification, including data concerning the memory and time requirements,
demonstrating that the above model is cost-efficient, provides reasonable predictions and
can be used for the preliminary study of the hydrodynamic characteristics of the considered
configurations and support design.

2. Mathematical Formulation of the 3D Problem

Let D ∈ R3 denote the constant depth water domain including the vertical cylinders.
A Cartesian coordinate system x = (x1, x2, x3) is introduced, with the origin placed on
Still Water Level (SWL), with the x3-axis pointing upwards, as illustrated in Figure 2. The
domain D is bounded by the free surface of the water (∂DFS) and the impenetrable bottom
(∂DB) located at x3 = −h, where h is the constant water depth. Finally, the wetted surfaces
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of all cylinders are denoted by ∂D WS. Based on standard linear water-wave theory, the
velocity field in D is expressed by the gradient of the (scalar) potential function Φ which
satisfies the Laplace equation in the domain.
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Figure 2. Coordinate system and geometrical configuration of the 3D problem.

In cases of waves propagating under the additional effects of slow steady currents,
the flow variables can be decomposed into a steady background current field and the
time-dependent wave part which, in the present work, is considered as harmonic. The
latter components are described by the potential functions of the incident (I) and the
perturbation–diffraction (D) fields, for both the steady ϕ(S)(x) and the unsteady ϕ(U)(x; t)
potential functions. Let U denote the steady current field velocity on and near the free
surface. Following the standard formulation, the free surface boundary conditions for the
wave field are linearized as follows (see, e.g., Belibassakis et al. [3,13]):

Dη(x)
Dt

− ∂ϕ(x)
∂x3

= 0, x ∈ ∂DFS, (1a)

Dϕ(x)
Dt

+ gη(x) = 0, x ∈ ∂DFS, (1b)

where D/Dt = ∂/∂t+U∇h, with∇h denoting the horizontal gradient∇h = (∂/∂x1, ∂/∂x2),
η(x) being the free surface elevation and ϕ the corresponding wave potential. By eliminat-
ing η(x) from Equations (1a) and (1b) and using Equation (1a), we obtain:

D2 ϕ(x)
Dt2 + g

∂ϕ(x)
∂x3

= 0, x ∈ ∂DFS. (2)

In the present work, the wave field is excited by monochromatic incident waves,
allowing us to consider harmonic time dependence as follows:

Φ(U)(x; t) = Re
{

ϕ(U)(x) · exp(−i ω t)
}

, (3)

where ω is the absolute frequency of the incident wave field, which also coincides with
the angular frequency of the diffracted unsteady field, due to linearity of the governing
equation, and i =

√
−1. Using the representation ϕ(U)(x) = F(x) exp(iS(x)), where

F(x), S(x) are the modulus and the phase of the complex wave potential, respectively, and
assuming slow current and mild variation of the field modulus, from the above equations
we obtain:

∂ϕ(U)(x)
∂x3

+
σ2

g
ϕ(U)(x) = 0, x ∈ ∂DFS, (4)

where σ = ω−U∇hS = ω− kU denotes the intrinsic frequency and k = ∇hS denotes
the generally spatially variable wavenumber vector on the free surface.
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Following the standard decomposition approach used for wave interaction problems
in ship and marine hydrodynamics, the surface flow U is calculated from the solution of a
steady flow problem

(
ϕ(S)(x)

)
, which satisfies the Laplace equation and the no-entrance

boundary condition on the vertical cylinders and the impermeable seabed. Thus, the total
flow field is represented by the following superposition:

Φ(x; t) = ϕ(S)(x) + Re
{

ϕ(U)(x) · exp(−i ω t)
}

. (5)

The complex wave potential is further decomposed into incident wave ϕ
(U)
I (x) and

diffraction ϕ
(U)
D (x) components, i.e., ϕ(U)(x) = ϕ

(U)
I (x) + ϕ

(U)
D (x). The former part

is associated with the incident wave that is defined in the absence of the disturbance
generated by the scatterers, which is described by the diffraction component. For simplicity,
we consider here that the steady flow upstream behaves as a parallel incident flow directed
downstream along the x1-axis; thus, in the far upstream region, ϕ

(S)
I (x) ≈ −U∞x 1, with

U∞ being the current velocity far from the cylinders. Based on the above, the incident wave
potential is defined as:

ϕ
(U)
I (x) = − igH

2σI

cosh(kI(x 3 + h))
cosh(kIh)

exp(−ikI x1), (6)

where H is the wave height, σI = ω− kIU∞, and the incident wavenumber k I is obtained
by the dispersion relation:

σ2
I ≡ (ω− kIU∞)2 = kI gtanh(kIh). (7)

In this work, the current and waves are assumed to be collinear directed along the
x1-axis; however, generalization of the incident flow directed at an angle is possible. The
above considerations allow for the formulation of the problems for the steady ϕ

(S)
D (x) and

the unsteady ϕ
(U)
D (x) diffraction fields in the domain and the development of suitable 3D

Boundary Element Methods for their solution, as described in the following sections.

2.1. Formulation of the 3D Steady Current Flow Problem

As stated above, the steady background current is defined by the interaction of a
uniform parallel flow U∞ = (−U∞, 0, 0) directed towards the negative x1-axis, with
the cylinders in the constant depth strip. Thus, in the upstream region, the steady flow
behaves as:

ϕ(S)(x) ≈ ϕ
(S)
I (x) ≡ −U∞x 1, x 1 → ∞. (8)

The perturbation field is calculated following a Neumann–Kelvin (NK) formulation
(see, e.g., Noblesse [14]) using the decomposition:

ϕ(S)(x) = ϕ
(S)
I (x) + ϕ

(S)
D (x). (9)

The steady perturbation field ϕ
(S)
D (x), which is expected to present wavelike behavior

downstream the cylinders, is calculated as a solution to the Laplace equation, subjected to
the free-surface boundary condition and the no-entrance conditions at the seabed and the
wetted surface of the bodies:

∇2 ϕ
(S)
D (x) = 0, x ∈ D, (10a)

∂2 ϕ
(S)
D (x)

∂x2
1

+
g

U2
∞

∂ϕ
(S)
D (x)
∂x3

= 0, x ∈ ∂DFS, (10b)
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∂ϕ
(S)
D (x)
∂n

= −U∞ n = U∞ n1, x ∈ ∂DWS, (10c)

∂ϕ
(S)
D (x)
∂n

= 0, x ∈ ∂DB, (10d)

as well as appropriate conditions at infinity. In Equation (10a)–(10d), n = (n1, n2, n3)
denotes the unit vector, normal to the boundary ∂D, directed towards the exterior of D.
The problem is treated by means of a panel method using simple singularity distributions;
see, e.g., Katz and Plotkin [15]. The following integral representation is introduced for the
potential function ϕ

(S)
D (x) in the domain D:

ϕ
(S)
D (x) =

∫
∂D

µ(S)(x′)G(x′, x
)
dS
(
x′
)
, x ∈ D, x′ ∈ ∂D̂, (11a)

where ∂D̂ = ∂DFS ∪ ∂DWS is the total boundary of the flow field, excluding the seabed
(∂DB), and

G
(
x′, x

)
=

1
4π

(
1

|x′ − x| +
1

|x′ − x̂|

)
(11b)

is the Green’s function of the Laplace equation in 3D, x̂ = (x1, x2,−2h− x3) is the mirror
point with respect to the bottom plane: x3 = −h and µ(S) is a source/sink strength
distribution, defined on ∂D̂. The above method is used in conjunction with an appropriate
scheme to satisfy the conditions at infinity based on the discrete Dawson operator, as
described in the sequel.

2.2. The 3D BEM for the Steady Flow Problem

The geometry of the different sections of ∂D̂ is approximated using four-node quadri-
lateral elements, on which the singularity distribution is taken to be piecewise constant.
In the discrete model, the field equation is (by default) satisfied by the sum of the con-
tributions by all elements, while the boundary conditions are satisfied at the center of
each element (collocation point). The induced potential (ϕk,j) and velocities (Uk,j, Vk,j, Wk,j)
associated with the j-element’s contribution to the k-collocation point are numerically
calculated (see also Belibassakis and Kegkeroglou [16]), and the corresponding matrices
of induced potential (ϕ) and velocity (U, V, W), respectively, are calculated. The latter
matrices have dimension M = MFS + MWS, where MFS, MWS denote the discretization of
the free surface and cylinder parts of the boundary ∂D̂ by four-node quadrilateral elements,
ensuring global continuity of the geometry approximation. The Boundary Value Problem
(BVP) for the steady problem is accordingly reduced to the following algebraic system:

M

∑
j = 1

A(S)
k,j µ

(S)
j = b(S)k , k = 1, 2, . . . , M, (12)

with respect to the unknown singularity strengths µ
(S)
j , j = 1, 2, . . . , M. In the devel-

oped numerical method for the steady flow, the free-surface discretization is based on a
streamline-like arrangement of the panels, and the second derivative of the potential with
respect to x1, that is involved in Equation (10b), is approximated by the derivative of the
velocity in the ξ-direction, as shown in Figure 3,

∂2 ϕ
(S)
D (x)

∂x2
1

=
∂U(S)

D (x)
∂x1

≈ −
∂U(S)

D (x)
∂ξ

, (13)
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which has been proved to provide better predictions in the neighborhood of bluff bodies.
The present model utilizes a four-point upstream finite difference (FD) scheme based on
the Dawson backward operator [17], defined as follows:

∂U
∂ξ

∣∣∣∣
k
≈ Ak ·Uk + Bk ·Uk−1 + Ck ·Uk−2 + Dk ·Uk−3, (14a)

where

Ek = (ξk−1 − ξk) · (ξk−2 − ξk) · (ξk−3 − ξk) · (ξk−3 − ξk−1) · (ξk−2 − ξk−1)·
(ξk−3 − ξk−2) · (ξk−3 + ξk−2 + ξk−1 − 3ξk),

(14b)

Dk =
1
Ek

[
(ξk−1 − ξk)

2 · (ξk−2 − ξk)
2 · (ξk−2 − ξk−1) · (ξk−2 + ξk−1 − 2ξk)

]
, (14c)

Ck = − 1
Ek

[
(ξk−1 − ξk)

2 · (ξk−3 − ξk)
2 · (ξk−3 − ξk−1) · (ξk−3 + ξk−1 − 2ξk)

]
, (14d)

Bk =
1
Ek

[
(ξk−2 − ξk)

2 · (ξk−3 − ξk)
2 · (ξk−3 − ξk−2) · (ξk−3 + ξk−2 − 2ξk)

]
, (14e)

Ak = − (Bk + Ck + Dk) and (14f)

Uk =
M

∑
j = 1

µ
(S)
j ·Uk,j. (14g)
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Based on the above Dawson–FD scheme [17], the additional non-square matrix ∂U of
dimensions MFS ×M is defined, whose elements

∂Uk,j = Ak ·Uk,j + Bk ·Uk−1,j + Ck ·Uk−2,j + Dk ·Uk−3,j, (15)

account for the contribution of the j-element on ∂Uk/∂ξ, at the k-collocation point on the
free surface. Based on the above, the discrete model of the steady flow problem, modelling
the disturbance field, is defined by the linear algebraic system of Equation (12), where:

A(S)
k,j =

{
∂Uk,j +

g
U2

∞
Wk,j , Element(k) ∈ ∂DFS

Uk,j nk,1 + Vk,j nk,2, Element(k) ∈ ∂DWS
(16a)

b(S)k =

{
0, Element(k) ∈ ∂DFS

U∞ nk,1, Element(k) ∈ ∂DWS
(16b)
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After solving the above linear system, the free surface elevation is obtained from the
dynamic boundary condition as:

η
(S)
D (x) =

U∞

g
∂ϕ

(S)
D (x1, x2, 0)

∂x1
, x ∈ ∂DFS (17)

which also approximates the free-surface elevation of the steady flow, noting that the
set-down of the slow incident stream flow is very small and can be neglected.

2.3. Resulting Steady Flow Fields

Indicative results regarding the free surface elevation of the steady perturbation field
are illustrated in Figure 4, for the case of a single cylinder of radius R = 0.15 m, in a strip of
constant depth equal to h = 1 m, corresponding to an experimental setup in a tank, under
the effect of a constant current flowing at speed U∞ = 0.7 m/s towards the negative x1-
direction, corresponding to bathymetric Froude number equal to Fn = U∞/

√
gh = 0.22.
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Figure 4. (a) Color plot and (b) rendered view of the free surface elevation generated by the steady
perturbation field for one cylindrical scatterer of diameter D = 0.3 m, h = 1 m, U∞ = (−0.7, 0, 0).

Moreover, the present model can be extended for the study of any arrangement of
cylindrical scatterers. As an example, Figure 5 illustrates the calculated steady perturbation
field generated by a configuration consisting of four cylindrical scatterers, identical to the
previous one, interacting with the same steady incident current in the waveguide of depth
h = 1 m. The centers of the scatterers’ circular sections (parallel to the plane x3 = 0), are
located 0.8 m and 1.1 m apart in the x1- and x2-directions, respectively.

In cases of slower current flows, characterized by F < 0.1, the wavelike pattern becomes
very weak, and a useful approximation of the steady field on the free surface with the
disturbance effect by the cylinders is obtained from a two-dimensional solution, corre-
sponding to parallel flow over the cylinders. For example, in the case of the single cylinder
and current flow of Figure 4, the following approximation can be used, exploiting standard
results, for the disturbance potential:

ϕ
(S)
D (x1, x2, 0) ≈ Re

(
−U∞R2/z

)
, z = x1 + ix2, (18)

and the above approximation provided by Equation (18) can be extended to include
multiple cylindrical bodies.
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2.4. Formulation of the 3D Wave Problem

For slow currents, the unsteady field associated with the wave flow can be calculated
iteratively using, as a first approximation, the solution in the absence of the background
current; see e.g., Belibassakis et al. [3].

In the case of waves without current, the incident field ϕ
(U)
I is given by

ϕ
(U)
I (x) = − igH

2ω
F(x3) exp

[
−i k(I)

0 ·R
]

(19a)

where F(x3) = cosh−1(k 0h) · cosh[k 0(x 3 + h)] and R is the position vector on the hori-
zontal plane, R(x) = x 1 · e 1 + x 2 · e 2, with e i, i = 1, 2 denoting the unit vectors on the
plane. The wavenumber k 0 is calculated as the root of the dispersion relation:

ω 2 = k 0g · tanh(k 0 h), (19b)

and for incident waves propagating at an angle β, the wavevector k(I)
0 (x) is defined by

k(I)
0 (x) = k0[e 1 · cos(β) + e 2 · sin(β)]. (19c)

The problem concerning the diffraction field consists of the Laplace equation, com-
bined with the linearized free surface boundary condition and impermeability conditions
on the wetted surfaces of the cylinders and the seabed:

∇2 ϕ
(U)
D (x) = 0, x ∈ D, (20a)

∂ϕ
(U)
D (x)
∂ x3

− µ(x; ω) ϕ
(U)
D (x) = 0, x ∈ ∂DFS, (20b)

∂ϕ
(U)
D (x)
∂n

= −
∂ϕ

(U)
I (x)
∂n

, x ∈ ∂DWS, (20c)

∂ϕ
(U)
D (x)
∂n

= 0, x ∈ ∂DB, (20d)



Fluids 2022, 7, 378 9 of 23

where µ(x; ω) = ω2/g is the frequency parameter, which is modified in the absorbing
layer’s region, as described in the sequel.

2.4.1. Implementation of the Absorbing Layer Technique

For the satisfaction of an appropriate condition at infinity expressing the radiation of
waves in the subcritical case, an absorbing layer (ABL) technique is adopted, consisting
of a damping zone, surrounding the domain of interest; see, e.g., Bonovas et al. [18]. The
latter is used to attenuate the outgoing scattered waves in an optimal way, preventing
reflections from the outer boundary. For the implementation of the ABL, a rectangular
frame is considered around the border of the domain on the free surface plane x 3 = 0.
The thickness of the absorbing layer is selected to be of the order of the local wavelength
λ = 2π/k 0. Implementation of the ABL is achieved by modifying the frequency parameter
inside the absorbing layer, as follows:

µ(x; ω) =


ω 2

g , R(x) < RPML[θ(x)]
ω 2

g

[
1 + ic |R(x)−RPML [θ(x)] | n

λn

] 2
, R(x) ≥ RPML[θ(x)]

(21)

where RPML[θ(x)] denotes the PML activation radius in the direction θ(x) = tan−1 (x 2/x 1),
while c and the exponent n are parameters depending on the angular frequency ω, that
have been optimized in previous work concerning similar scattering problems; see Bono-
vas et al. [18]. The BVP described by Equations (20a)–(20d) is numerically solved using
a low-order BEM with a piecewise constant normal-dipole singularity distribution on
four-node quadrilateral elements equivalent to vortex rings. In this case, the induced
quantities associated with each element’s contribution to a collocation point are analytically
calculated, based on the equivalence of the 3D constant-strength doublet element to a
vortex ring, surrounding the panel around its edges [15]. Finally, the free surface elevation
is obtained from the solution ϕ(U) = ϕ

(U)
I + ϕ

(U)
D as follows:

η(U)(x) = − iω
g

ϕ(U)(x1, x2, 0), x ∈ ∂DFS (22)

An indicative result of the diffraction field (real and imaginary part) without current
effects is illustrated in Figure 6a,b, concerning a single cylinder of radius R = 0.15 m,
located in a waveguide of constant depth equal to h = 1 m. In this case, the wave height
of the incident field is H = 0.2 m and the corresponding wavelength is λ = 1.2 m. The
direction of propagation of the incident field is considered to be collinear to the velocity of
the background current of Figure 4 directed along the negative x1-axis (β = π).

2.4.2. An Iterative Scheme for the Additional Scattering Effect Due to Current

In order to take into account the additional effects of the current on the wave scattering,
the directional wavenumber k(D)

0 (x) involved in the formulation of the wave diffraction

problem is iteratively estimated using the gradient of the phase of the c function ϕ
(U)
D :

k(x) = ∇h

(
S(U)

D (x)
)

, S(U)
D (x) = ln

 ϕ
(U)
D (x)∣∣∣ϕ(U)
D (x)

∣∣∣
. (23)

The developed iterative scheme is based on the redefinition of the local intrinsic
frequency σ(x) of the diffracted field ϕ

(U)
D , as modified by the background flow. The local

intrinsic frequency is calculated by:

σ(x) = ω−
[
k
(

k̂ ·U(S)
)]

, (24)
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where U(S)(x) = ∇h

(
ϕ
(S)
I + ϕ

(S)
D

)
, x ∈ ∂DFS is the free-surface velocity field generated

by the steady background current, k̂(x) = k/|k| is the unit wavevector, with a direction
defined by Equation (23) and k(x) is the local wavenumber, calculated by the modified
dispersion relation, which also accounts for the presence of the current, as follows:

σ(x) = ω−
[
k
(

k̂ ·U(S)
)]

=
√

k g · tanh(kh). (25)
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Figure 6. Incident waves of wavelength and height λ = 1.2 m, H = 0.2 m interacting with a vertical
cylinder of diameter D = 0.3 m in water depth h = 1 m, in the presence of a parallel flow current
U∞ = (−0.3 m/s, 0, 0). (a,b) Imaginary and real part of the initial estimation of the disturbance field
and corrected patterns after the first iteration (c,d) and after the second iteration (e,f), respectively.
The dashed line indicates the absorbing layer region.

Subsequently, the linear system resulting from the BEM discretization of Equations
(20a)–(20d) and (21) is solved, using the local intrinsic frequency σ(x) on ∂DFS including
the absorbing layer. In each iterative step the incident wave field is:

ϕ
(U)
I (x) = − igH

2σI
F(x3) exp

[
−i k(I)

0 (x) ·R
]
, (26a)
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with F(x3) = cosh−1
(

k(I)
0 h
)

cosh
[
k(I)

0 (x 3 + h)
]
, and k(I)

0 is calculated as the root of the
dispersion relation:

σ2
I ≡

(
ω− k(I)

0 U∞

)2
= k(I)

0 g · tanh
(

k(I)
0 h

)
. (26b)

Indicative results of the modified diffraction field (real and imaginary part) are illus-
trated in Figure 6 concerning the diffraction wave field by a single cylinder in the presence
of a background steady current, with velocity U∞ = 0.25 m/s flowing towards the neg-
ative x1-direction. In Figure 6, we observe the change of the wavelength in the upwave
and downwave regions due to the Doppler effect of the current, as well as the fact that the
present iterative scheme converges very fast to the final solution.

Furthermore, the 3D BEM for the calculation of the unsteady field can also be ex-
tended to treat more general arrangements of cylindrical scatterers. Indicative results are
illustrated in Figure 7, concerning the diffracted and the total unsteady field generated
by a configuration consisting of four cylindrical scatterers of radius R = 0.15 m, in the
waveguide of depth h = 1 m. The centers of the scatterers’ circular sections (parallel to the
plane x3 = 0), are located 0.8 m and 1.1 m apart in the x1- and x2-directions, respectively.
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Figure 7. Incident waves of wavelength and height λ = 1.2 m, H = 0.1 m interacting with an
arrangement of four cylindrical scatterers of diameter D = 0.3 m in water depth h = 1 m, in the presence
of a collinear following current U∞ = (−0.25 m/s , 0, 0), indicated with an arrow. (a,b) Real and
imaginary part of free surface elevation of the diffracted and (c,d) the total unsteady field, respectively.
The dashed line indicates the absorbing layer region.

The wave height of the incident field is again H = 0.2 m and the wavelength (of the
initial field) is λ = 1.2 m. The direction of propagation of the incident field is β = π. The
subplots in the first column of Figure 7 illustrate the diffracted field, while the total unsteady
field is shown in the right column subplots, respectively, as calculated by the previously
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described iterative scheme, showing the modifications induced by the uniform background
current propagating at speed U∞ = 0.25 m/s towards the negative x1-direction.

In Figure 7, we observe the strong modification of the wave field due to multiple
interactions by the scatterers and the current, leading to the generation of reflection beams,
in addition to the Doppler effect due to the current, that is clearly presented in the far
upwave and downwave regions.

3. A Simplified 2D Formulation on the Horizontal Plane

As stated earlier, in cases of slow current flows, characterized by bathymetric Froude
number Fn = U∞/

√
gh < 0.1, the wavelike pattern downstream the cylinders becomes

quite small. Furthermore, for such currents there is a significant decrease in the Kelvin
pattern’s wavelength, resulting in waves of the order of a few millimeters in length. Tak-
ing into account that the proposed 3D BEM necessitates a minimum of 15 elements per
wavelength on the free surface in order to represent the flow, we conclude that the model
leads to excessive mesh size requirements. For this purpose, in this section, a simplified
2D formulation on the horizontal plane is developed using a coupled BEM–FEM approach
overcoming the above limitations. In addition, having in mind possible applications of
wave–current-body interaction problems in channels and in experimental studies in wave
flumes, we consider a water tank of a constant depth equal to h, where an arrangement
of rigid cylinders with diameter d = 2a is confined between two parallel vertical side
walls. The same Cartesian coordinate system as before is used, with the x3-axis pointing
upwards and xh = (x1, x2) spanning the mean water level plane (at x3 = 0). The
tank’s width is equal to B and the water body is bounded by vertical sidewalls. Let the
bounded region Dh ⊂ R2 represent the calm free surface plane of the water, containing the
configuration of cylinders. The horizontal domain, again denoted by D, has length L and
is bounded by the vertical sidewalls at x2 = ∓B/2 and two fictitious lateral boundaries
at x 1 = ∓L/2. The free surface of the water is also interrupted by the projections of the
cylinders’ cross sections on the x 1 x 2-plane; see Figure 8. As before, the fluid motion is
considered to be fully described by the potential function Φ(x, x3 ; t), whose gradient is
equal to the fluid’s velocity:

v(x ; t) = ∇Φ(xh, x3 ; t), xh ∈ D, −h < x3 < 0. (27)

Fluids 2022, 7, x FOR PEER REVIEW 14 of 25 
 

sidewalls. Let the bounded region 2
hD ⊂  represent the calm free surface plane of the 

water, containing the configuration of cylinders. The horizontal domain, again denoted 
by D , has length L and is bounded by the vertical sidewalls at 2 / 2x B=   and two 
fictitious lateral boundaries at 1 / 2x L=  . Τhe free surface of the water is also interrupted 
by the projections of the cylinders’ cross sections on the 1 2x x -plane; see Figure 8. As 
before, the fluid motion is considered to be fully described by the potential function

( )3, ;x tΦ x , whose gradient is equal to the fluid’s velocity: 

( ) ( )3 3; , ; , , 0.h ht x t D h x= ∇Φ ∈ − < <v x x x   (27) 

The flow variables are again decomposed into a steady background flow and the 
time-dependent wave part, which are, respectively, described by a steady and an 
unsteady potential function, while harmonic time dependence is considered for the 
unsteady problem; thus, 

( ) ( ) ( )( ) ( )
3 3 3, ; , , ; ,S U

h h hx t x x tΦ = Φ + Φx x x   (28a) 

( ) ( ) ( ){ }( )
3 3, ; Re , exp ,U

h hx t x i tϕ ωΦ = −x x   (28b) 

where ω  is the absolute frequency of the incident wave field. 

 
Figure 8. Indicative boundary mesh of .D∂  

3.1. Formulation of the Steady Current Problem 
The steady background current is defined by the interaction of a uniform flow 

parallel to the 1x -axis, ∞U , with the cylinders in the constant depth domain. Under the 
assumption of incompressibility, the continuity equation reduces to the Laplace equation 
for the potential function ( ) ( )SΦ x . The boundary D∂  is decomposed in 4 CN+  
sections, where CN  is the number of cylinders in the considered arrangement, as 
presented in Figure 8. The flow entrance and exit are denoted as 1D∂  and 3,D∂  
respectively, and the sidewalls are denoted by 2D∂  and 4D∂ . Finally, the vertical rigid 

walls of the cylinders are represented by 
4

5
.CN

C nn
D D+

=
∂ = ∂  

The corresponding 3D steady field can be evaluated as a solution to the BVP 
described by Equation (10a)–(10d). However, for slow inflow current velocity 

min( , )U gh gR∞ << , the Neumann–Kelvin free-surface boundary condition 
(Equation (10b) reduces to: 

( )

3
3

0, 0.
S

x
x

∂Φ = =
∂

  (29a) 

Taking into account the same (homogeneous Neumann) condition on the seabed, 

Figure 8. Indicative boundary mesh of ∂D.

The flow variables are again decomposed into a steady background flow and the
time-dependent wave part, which are, respectively, described by a steady and an unsteady
potential function, while harmonic time dependence is considered for the unsteady problem;
thus,

Φ(xh, x3 ; t) = Φ(S)(xh, x3) + Φ(U)(xh, x3 ; t), (28a)

Φ(U)(xh, x3 ; t) = Re{ϕ(xh, x3) exp(−i ω t)}, (28b)
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where ω is the absolute frequency of the incident wave field.

3.1. Formulation of the Steady Current Problem

The steady background current is defined by the interaction of a uniform flow parallel
to the x 1-axis, U∞, with the cylinders in the constant depth domain. Under the assumption
of incompressibility, the continuity equation reduces to the Laplace equation for the po-
tential function Φ(S)(x). The boundary ∂D is decomposed in 4 + NC sections, where NC
is the number of cylinders in the considered arrangement, as presented in Figure 8. The
flow entrance and exit are denoted as ∂D1 and ∂D3, respectively, and the sidewalls are
denoted by ∂D2 and ∂D4. Finally, the vertical rigid walls of the cylinders are represented
by ∂DC = ∪NC+4

n = 5 ∂Dn.
The corresponding 3D steady field can be evaluated as a solution to the BVP de-

scribed by Equations (10a)–(10d). However, for slow inflow current velocity U∞ <<
min(

√
gh,
√

gR), the Neumann–Kelvin free-surface boundary condition (Equation (10b)
reduces to:

∂Φ(S)

∂x3
= 0, x3 = 0. (29a)

Taking into account the same (homogeneous Neumann) condition on the seabed,

∂Φ(S)

∂x3
= 0, x3 = −h, (29b)

and the fact that the side walls of the cylinders are vertical, the flow field is approximately
constant in the vertical direction and, thus, Φ(S)(xh, x3) ≈ Φ(S)(x1, x2). Under the addi-
tional assumption that the steady perturbation field has died out near the vicinity of the
lateral boundaries located at x 1 = ∓L/2, the steady potential function Φ(S)(x) can be
approximated as a solution to the following BVP on the x1 x2-plane:

∇2Φ(S)(xh) = 0, xh ∈ D, (30a)

∂Φ(S)(xh)

∂n
= 0, xh ∈ (∂D2 ∪ ∂D4 ∪ ∂Dc), (30b)

∂Φ(S)(xh)

∂x1
≈ U∞ , xh ∈ (∂D1 ∪ ∂D3), (30c)

where Equation (30c) is an approximation, stating that the flow in the inlet and outlet
sections ∂D1 and ∂D3 is uniform and parallel to the x1-axis. The numerical solution to the
above problem is obtained using boundary integral equation formulations, based on the
single-layer potential; see also Belibassakis et al. [4]. This is achieved by introducing the
following integral representation for the steady potential function in D:

Φ(S)(x) =
∫

∂D

µ
(
x′
)
G
(
x′, x

)
d`
(
x′
)
, x ∈ D , x′ ∈ ∂D, (31)

where G(x′, x) = ln|x′ − x|/2π, µ(x′), x′ ∈ ∂D is a source density distribution, defined
on the boundary of the domain D and d`(x′) denotes the differential element along ∂D.
Based on Equation (31), the normal derivatives of Φ(S)(x), taking into account that the
normal vector on ∂D is directed towards the exterior of the domain, reduce to the following
equation (see, e.g., Kress [19]):

∂Φ(S)(xh)

∂n
=
∫

∂D

µ
(
x′h
)∂G

(
x′h, xh

)
∂n

d`
(
x′h
)
− µ(xh)

2
,
(
xh, x′h

)
∈ ∂D. (32)

A low-order 2D BEM approach based on simple (Rankine) sources, combined with
a collocation technique, is used to derive numerical solutions of the above problem. The
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boundary is approximated using linear segments on which the source distribution is as-
sumed to be piecewise constant [15] and the boundary integrals expressing each segment’s
contribution to a collocation point are analytically calculated. Moreover, the collocation
points, where the corresponding equations are satisfied, are chosen to coincide with the
linear segments’ midpoints. Thus, the boundary integral equations reduce to an algebraic
system, which can be solved to determine the piecewise constant values of the vector
{µk}M

k = 1, M, being the number of boundary elements used to approximate the geometry
of ∂D.

As an indicative solution of the above 2D problem, the case of a porous structure
tested in a flume, studied by Belibassakis et al. [4], is examined, as illustrated in Figure 9.
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Figure 9. Equipotential lines and streamlines of the steady field resulting from the interaction of a
current propagating along the x 1 axis at speed U∞ = 0.5 m/s with a configuration of 23 cylinders of
radius a = 0.15 m in a 6 m wide tank.

In particular, an arrangement of 23 cylinders with radius R = 0.15 m, interacting
with a uniform current flowing towards the positive x 1-axis, with speed U∞ = 0.5 m/s, is
considered. For low current speed, the 2D approach provides reasonable prediction of the
flow characteristics, while it has very low computational cost.

3.2. Formulation of the Wave Propagation Problem on the Horizontal Plane

Restricting ourselves to small-amplitude waves, the harmonic wave field in the region
of interest is approximated by keeping only the propagating mode in the representation of
the wave potential in the constant depth strip, as follows:

Φ(U)(xh, x3 ; t) ≈ Re
{
− igA

ω
ϕ(xh)F(x3) exp(−i ω t)

}
, (33)

where F(x3) = cosh−1(k 0h) · cosh[k 0(x 3 + h)], A = H/2 is the wave amplitude, and k 0
is the wavenumber, obtained as the solution of the dispersion relation (Equation (19b)).
Using Equation (33) in the Laplace equation, we obtain(

∇2
h + k2

0

)
ϕ(xh) = 0, xh ∈ D, (34)

where ∇h = (∂/∂x 1, ∂/∂x 2) is the horizontal gradient. Therefore, in the absence of
currents, the complex wave field ϕ(x) on the free surface is obtained as a solution to the
Helmholtz equation (Equation (34)). The latter’s coefficient is defined by the dispersion
relation and appropriate boundary conditions apply to the boundaries as follows:
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On the tank’s side walls, at x2 = ∓B/2 and on the cylinders’ boundaries:

∂ϕ (x)
∂n

= 0, x ∈ (∂D 2 ∪ ∂D 4 ∪ ∂DC). (35)

At the entrance and outlet boundaries, x1 = ∓L/2, appropriate wave entry and
radiation conditions need to be defined. The first one, at x1 = −L/2 is derived by
assuming a parallel plane incident wave directed along the x1-axis, which is partially
reflected due to the structure; thus, ϕ(xh)|x1 = −L/2 = exp(ik0x1) + R exp(−ik0x1), where
R denotes the reflection coefficient. Subsequently, by differentiating with respect to x1 and
eliminating R, we obtain the following mixed-type condition, that is used on the entrance
boundary ∂D 1:

∂ϕ(xh)

∂n
− ik0 ϕ(xh) = −2A ik0 exp(−ik0 L/2), xh ∈ ∂D1 . (36)

On the exit boundary, an absorbing boundary condition is used by employing an opti-
mal Perfectly Matched Layer; see Karperaki et al. [20]. Similar PML techniques have been
developed for the numerical treatment of wave propagation and scattering problems over
general seabed topographies; see Belibassakis et al. [21] and the references cited therein.

In order to ensure radiation of the solution at the outlet boundary, a PML reformulation
of Equation (34) is considered. Assuming a layer of finite thickness θ, the domain of interest

is extended as
_
D = D ∪ DPML, where:

DPML = [L/2, L/2 + θ]× [−B/2, B/2]. (37)

The absorbing layer is constructed so as to attenuate the waves in the PML zone
ϕ(∗) ∈ DPML rapidly, with minimum backscattering, leaving intact the numerical solution
ϕ ∈ D. This is achieved by employing a coordinate stretching, using the transformation
function γ(x1, x2):

γ(x) =

{
1, (x1, x2) ∈ D

1 + i σ(x1)
k0

, (x1, x2) ∈ DPML
, (38a)

where σ(x 1) is the absorbing function, controlling the attenuation rate in the PML. Follow-
ing Karperaki et al. [20], an unbounded absorbing function is employed in Equation (38a)
to ensure parameter-free and optimal solution decay; thus,

σ(x1) =
1

(L/2 + θ)− x1
, (x1, x2) ∈ DPML. (38b)

Notably, the employed unbounded absorbing function Equation (38b) allows for a
thin layer, approximately 2% of the characteristic wavelength, suggesting minimal compu-
tational cost. In the extended region, the governing equation becomes:

∂

∂x1

(
γ−1 ∂ϕ

∂x1

)
+

∂

∂x2

(
γ

∂ϕ

∂x2

)
+ k2γϕ = 0, x ∈

_
D. (39)

It is worth noticing here that the above PML technique could be easily extended to
also apply to the transverse boundaries in order to treat the same interaction–scattering
problem in the unbounded horizontal plane.

3.3. An FEM for the Wave Propagation–Scattering Problem

For the numerical solution of the above problem on the horizontal plane, and taking
into account that the wavenumber parameter k2

0(xh) involved in the field Equation (34) is
spatially variable due to the current effect, a conforming finite element scheme is employed

for the numerical solution. Considering the weight functions w ∈ H1(
_
D), the weak form
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is derived by multiplying Equation (34) with w(xh) and integrating over the domain.
Subsequently, performing integration by parts and imposing the boundary conditions
results in:

−
∫
_
D

∇hw·γ d
_
D +

∫
_
D

k2wγϕ d
_
D +

x2 = B/2∫
x2 = −B/2

w(−L/2, x2)(I − ik ϕ)ds+

+
x2 = B/2∫

x2 = −B/2
n ·
(

w(L/2 + θ, x2) γ| x1 = L/2+θ

)
ds = 0 .

(40)

where I = 2ik0 exp(−ik0L/2), and γ denotes the following vector field:

γ =

(
γ−1 ∂ϕ

∂x1
, γ

∂ϕ

∂x2

)
. (41)

A Delaunay-based triangular partitioning is employed for the region of interest, while
a regular triangular mesh is employed for the PML region, as shown in Figure 10. For the
solution of Equation (40), linear triangular elements are employed; thus, the approximate
solution in each element is written as:

ϕh
e (x1, x2) =

3

∑
i = 1

Ni ϕi = Nϕ (42)

where ϕ denotes the vector of nodal unknowns and N is the vector containing the linear
shape functions associated with the triangular elements. Thus, the discrete weak form
expressed for each K-element of the subdivision of the domain is written in terms of the
nodal unknowns as follows:

−
∫
K
(N,x1)

T γ−1(N,x1)ϕ d
_
D−

∫
K
(N,x2)

T γ(N,x2)ϕ d
_
D +

+
∫
K

k2
0 γ NTNϕ d

_
D− i

∫
∂K

k NTN ϕ ds = g,
(43a)

where

g = −I
x2 = B/2∫

x2 = −B/2

w(−L/2, x2) ds . (43b)
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Upon assembly, the final FEM system in terms of the global unknowns Q (the global
collection of nodal values associated with the field approximation) is finally obtained:

K Q = G, (44)

with G being the forcing vector, obtained from the global collection of elemental forcing
terms (g) and K being the global stiffness matrix.

3.4. Iterative Scheme

Similarly, as in the 3D case examined in Section 2, the refraction–diffraction effect of
the current on the wave field is evaluated by considering the vector wavenumber k(xh),
the modulus of which (k0 = |k|) is the parameter of the field equation of the propagation
problem in Equations (34) and (39). Again, by using the representation:

ϕ(xh) = F(xh) exp(iS(xh)) (45a)

where F(x) denotes the complex modulus and S(x) the phase of the wave potential ϕ on
the surface, the directional wavenumber in D equals:

k(x) = ∇h(S(x)), S(x) = ln
[
|ϕ(x)|−1 ϕ(x)

]
. (45b)

The developed iterative scheme is based on the redefinition of the local wavenumber
k(x1, x2), which, in turn, defines the local intrinsic frequency σ(xh) of the wavefield, as
modified by the steady flow. The local frequency equals:

σ(xh) = ω−
[
k
(

k̂ U(S)
)]

, (46)

where U(S)(xh ∈ D) =
∫

∂D
µ
(
x′h
)
· ∇G

(
x′h, x

)
d`
(
x′h
)

is the velocity field generated by the

steady background current (as calculated by the 2D BEM described in the Section 3.1),
k̂(x) = k/|k| is the unit wavevector with a direction defined by Equation (45b), and
k(xh) = k0 is the local wavenumber that is obtained using the modified dispersion relation
Equations (19a)–(19c) taking into account the effects of the local current:

σ(xh) =
√

k0(xh) gtanh[k0(xh)h]. (47)

Based on the above, the solution of the wave problem is again obtained by iterations
and the local direction of the wavenumber along with its modulus are calculated at each
step. Subsequently, the field is obtained from the numerical solution of the resulting linear
system (Equation (44)), from which a renewed prediction of the wavenumber vector field is
calculated via the horizontal gradient of the phase S(xh). This procedure continues until
consecutive iterations bear no additional transformations.

4. Numerical Results

In this section numerical results are presented for the verification of the simplified
numerical scheme on the horizontal plane and demonstration of the applicability of the
model.

4.1. Verification of the FEM Scheme without Current

We first consider the wave propagation problem, in the absence of current, which
is governed by the Helmholtz equation with a constant coefficient k0, provided by the
root of the dispersion relation (Equation (19b)). This problem can also be treated by
means of boundary integral representations, by exploiting the Green’s Function of the
Helmholtz equation in 2D, as presented by Belibassakis et al. [4], and the numerical results
are compared against the solution obtained by the present the FEM scheme. In particular,
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a numerical wave tank configuration is considered, containing a symmetrical array in a
finite subregion modelling a porous structure consisting of multiple vertical bottom-seated
vertical cylinders, as shown in Figure 11, and the transformation of the wave field by the
considered configuration is examined.
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Figure 11. Real part and modulus of the symmetric wave field in the waveguide of water depth
h = 0.23 m, at frequency f = 1 Hz, as calculated by (a,c) the modal BEM developed by Belibas-
sakis, et al. [4] and (b,d) the present FEM scheme.

Figure 11 depicts the real part of the calculated wave field, generated by the interaction
of an arrangement consisting of Nc = 148 cylinders of radius R = 0.016 m (porous
breakwater) with an incident wave field of frequency f = 1 Hz in a 10 m long and 2.6 wide
flume. The porous structure is modelled by arranging seventeen rows of four cylinders
and placing a series of five cylinders between two consecutive four cylinder-rows. The
overall layout is contained in a rectangle of dimensions [L× B] = [0.3 m× 1.2 m] and,
thus, the porosity of this arrangement is equal to γp = 1− NcπR2/(LB) = 0.67; see also
Belibassakis et al. [4].

In particular, in the lower part of Figure 11b, the present FEM solution of the symmetric
field near the porous structure is plotted and compared against the corresponding BEM
solution, that is included in the upper half of the Figure 11a, where in both subplots, only
the half-symmetric field is shown. Similarly, Figure 11c,d depicts the modulus of the
potential field for the same case as before, as calculated by the BEM and the proposed
FEM scheme.

The FEM results of the Figures are based on a discretization of 487,952 triangular
elements for the whole domain, 603 of which are located in the PML region. As can
be observed in this figure, the results of the two methods show very good agreement,
verifying the present FEM scheme in the case of wave interaction with complex structures
consisting of multiple vertical cylinders, as in the case of such systems operating as porous
breakwaters.

4.2. Verification of the Present FEM in the Case of Waves and Currents

First, the case of waves only (without current) is considered. In Figure 12b, the present
FEM solution is compared against the corresponding 3D BEM solution on the free-surface
shown in Figure 12a, where again only the half-symmetric field is shown. In this case, a
single cylinder of radius R = 0.3 m interacts with an incident wave field of frequency
f = 1 Hz, in water depth h = 1 m. The resulting wavelength is λ = 1.56 m. The BEM
results are calculated on a 3D structured boundary mesh, based on quadrilateral elements
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(see Section 2). The free surface part of the mesh is generated by defining 24 nodes per
wavelength in both horizontal directions, modelling a square domain of dimension 3.2λ
with 23,700 elements. In this case, a 1.2λ thick absorbing layer is used to attenuate the
diffracted outgoing wavefronts, in order to avoid backscattering.
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Figure 12. Real part of the symmetric field on the horizontal plane, in water depth h = 1 m, for a wave
at frequency f = 1 Hz, interacting with a cylinder of radius 0.3 m without current, as calculated
by (a) the 3D BEM and (b) the proposed 2D FEM scheme. Calculated field for waves of the same
frequency and height in the presence of a current of speed U∞ = 0.1 m/s as calculated by (c) the
present 3D BEM and (d) the proposed 2D coupled BEM–FEM scheme.

The present FEM results are based on a 2D mesh consisting of 60,447 triangular
elements on the horizontal plane, 1567 of which are in the absorbing layer of thickness
0.02λ. Since the proposed FEM scheme was developed to simulate wave phenomena in a
tank, a square domain of side length 12λ was considered in order to minimize reflection
effects from the sidewalls. As depicted in Figure 12, the results of the two methods are
compatible, verifying the proposed scheme. Next, the same configuration is considered
with waves of the same frequency and a uniform following current, flowing along the
x 1-axis at a small speed U∞ = 0.1 m/s. Figure 12c,d illustrates the comparison of the
wave field on the free surface as calculated by the present two methods: 3D BEM (upper
subplot) and FEM on the horizontal plane (lower, subplot), respectively. In this case results
are plotted after five iterations, which are found to be enough for numerical convergence
as discussed in the sequel.

As can be seen in the above Figures, both models predict the increase in the wavelength
due to the following current, whose theoretical value is λ = 1.78 m, based on the modified
dispersion relation (Equation (47)). Minor differences are observed between the two
methods, mainly driven by the FEM approximation based on the mixed-type condition
on the entrance boundary, which only allows for the propagation of normally incident
waves and ignores the effects of evanescent modes. However, it should be stressed that
the present simplified 2D method on the free-surface plane has a computational cost that
is orders of magnitude smaller than the 3D BEM, while it is able to provide reasonable
predictions of the wave field, including the current refraction/diffraction effects along with
flow disturbances due to the presence of the structure.

The results of the above example, obtained from the present 2D FEM approximation,
also provide useful information and data concerning (i) the convergence characteristics of
the present method from the point of view of iterations and discrete unknowns, and (ii)
the reduction of the computation cost and the corresponding savings (both concerning the
computer memory and time requirements), which are presented and discussed in more
detail below.
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First, in Figure 13 the convergence of the present FEM scheme, in the case of the wave
scattering by the cylinder with and without the effect of current, is shown concerning the
example of Figure 12. The relative L2-error of the calculated solution, defined with respect
to the result obtained by the finest grid with N = 171,860 elements for the discretization
of the domain, is presented against the number of finite elements used for the domain
subdivision. It is clearly observed that the present method exhibits a convergence which
is compatible with the expected result for linear approximation of the unknown function
based on triangular mesh.
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Figure 13. Convergence of the numerical solution obtained by the present FEM scheme in the case of
waves with and without current scattered by a cylinder.

Next, in Figure 14, the convergence of the iterative scheme used to obtain a convergent
solution in the case of waves and current scattered by a cylinder is presented. Results
are presented for a coarse (N = 43,134 elements), a medium (N = 60,447 elements), a
finer (N = 95,928 elements) and a fine grid (N = 171,860 elements). It can be observed
that a convergent solution is achieved after 3–4 iterations. It is also noted here that the
computation cost of the present 2D FEM scheme (using a standard configuration based on
an i7, 2.6 GHz processor with 32 GB RAM), as compared to the 3D BEM of Section 2.2, is
found to be less than 5% in terms of computer time and memory requirements.
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Figure 14. Convergence of the iterative scheme used to obtain a convergent solution by the present
FEM scheme in the case of waves and current scattered by a cylinder. The iteration numbered
0 corresponds to the starting solution obtained without the current.

4.3. Resonances of Wave and Current Systems in the Case of a Line Array of Cylinders

Finally, we consider the case of normally incident waves in the tank scattered by a
single row of vertical cylinders, seated on a flat horizontal bottom. Both the case of waves
without current and the presence of a uniform following current are considered and results
concerning the modulus and the real part of the field are presented in Figures 15 and 16,
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respectively. Such configurations numerically simulate experiments in a flume for the inves-
tigation of resonance effects due to wave–current multiple cylindrical structure interactions.
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5. Conclusions 

Figure 15. Modulus of the wave field in the 10 m long and 0.3 m wide waveguide of water depth
h = 0.305 m, resulting from the interaction of an incident field of frequency f = 1.3 Hz, with an array
of eight cylinders (a) in the absence of currents and (b) in the presence of a steady following current
corresponding to volumetric flow rate Q = 70.5 cm3/s.

Fluids 2022, 7, x FOR PEER REVIEW 23 of 25 
 

results concerning the modulus and the real part of the field are presented in Figures 15 
and 16, respectively. Such configurations numerically simulate experiments in a flume for 
the investigation of resonance effects due to wave–current multiple cylindrical structure 
interactions. 

In the examined test case, the vertical cylinder array is placed in a 10 m long and 0.3 
m wide tank and a total number of eight equidistant cylinders positioned in line are 
considered in water depth 0.305h m= . The distance between centers of the cylinders is 
set to 0.5 m. Figures 15 and 16 illustrate the modulus and the real part of the calculated 
wave field generated by the interaction of an incident wavefield of frequency 1.3f Hz=  
with the above configuration of scatterers without current (Figures 15a and 16a) and in 
the presence of current (Figures 15b and 16b), respectively, as obtained by the present 
FEM. In the latter case, a following uniform current propagating at speed 

0.077 /U m s∞ =  corresponding to a volumetric flow rate in the numerical flume of 
370.5 /cm s  is considered. As can be observed in these figures, the wave pattern, as well 

as the expected reflection and transmission characteristics, are substantially altered by the 
presence of the background current flow and scatterers. 

The above configuration constitutes an interesting set-up to investigate limiting 
wavefield transformations, such as mode trapping, local amplitude amplification and 
resonance phenomena, and future research, also supported by a complementary 
experimental study, will be focused on this direction. Finally, extensions of the present 
method to treat effects by sheared currents (see, e.g., Belibassakis et al. [22]) are possible 
and will be considered in future work. 

 
Figure 15. Modulus of the wave field in the 10 m long and 0.3 m wide waveguide of water depth h 
= 0.305 m, resulting from the interaction of an incident field of frequency 1.3 ,f Hz=  with an array 
of eight cylinders (a) in the absence of currents and (b) in the presence of a steady following current 
corresponding to volumetric flow rate 370.5 /Q cm s= . 

 
Figure 16. Real part of the wave field in the 10 m long and 0.3 m wide waveguide of water depth h 
= 0.305 m, resulting from the interaction of an incident field of frequency 1 .3f H z= , with an array 
of eight cylinders (a) in the absence of currents and (b) in the presence of a steady following current 
corresponding to volumetric flow rate 370.5 /Q cm s= . 

5. Conclusions 

Figure 16. Real part of the wave field in the 10 m long and 0.3 m wide waveguide of water depth
h = 0.305 m, resulting from the interaction of an incident field of frequency f = 1.3 Hz, with an array
of eight cylinders (a) in the absence of currents and (b) in the presence of a steady following current
corresponding to volumetric flow rate Q = 70.5 cm3/s.

In the examined test case, the vertical cylinder array is placed in a 10 m long and
0.3 m wide tank and a total number of eight equidistant cylinders positioned in line are
considered in water depth h = 0.305 m. The distance between centers of the cylinders is
set to 0.5 m. Figures 15 and 16 illustrate the modulus and the real part of the calculated
wave field generated by the interaction of an incident wavefield of frequency f = 1.3Hz
with the above configuration of scatterers without current (Figures 15a and 16a) and in the
presence of current (Figures 15b and 16b), respectively, as obtained by the present FEM.
In the latter case, a following uniform current propagating at speed U∞ = 0.077 m/s
corresponding to a volumetric flow rate in the numerical flume of 70.5 cm3/s is considered.
As can be observed in these figures, the wave pattern, as well as the expected reflection and
transmission characteristics, are substantially altered by the presence of the background
current flow and scatterers.

The above configuration constitutes an interesting set-up to investigate limiting wave-
field transformations, such as mode trapping, local amplitude amplification and resonance
phenomena, and future research, also supported by a complementary experimental study,
will be focused on this direction. Finally, extensions of the present method to treat effects
by sheared currents (see, e.g., Belibassakis et al. [22]) are possible and will be considered in
future work.

5. Conclusions

The problem of water wave scattering by arrays of vertical cylinders in the presence
of background uniform currents in constant depth is considered and treated by a low-order
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hybrid 3D BEM, based on source and dipole distributions. The flow variables are decom-
posed, and the method is first used to calculate the steady perturbation field, generated by
the uniform current. The resulting steady flow field is then used in order to formulate the
wave diffraction problem and an iterative scheme is developed for the calculation of the
interacting wave part, for monochromatic harmonic waves. As in the case of the steady flow
problem, the corresponding wave and current scattering problem is numerically treated
by 3D BEM in the frequency domain. Numerical results are presented and discussed,
concerning the structure of both the steady and the time-dependent resulting fields, making
the model suitable for applications in optimization studies. However, the above 3D model
presents increased computational cost, which prevents its systematic use in the initial
design stage, especially for complex configurations involving arrangements consisting of
multiple cylindrical scatterers. For this purpose, for small current velocity, the problem
can be approximately considered on the horizontal plane, modelled by the 2D Helmholtz
equation with variable coefficients, which partially carries the effects of the variable current
flow. The resulting 2D problem on the horizontal plane is numerically treated by a coupled
BEM–FEM scheme, with substantially reduced computational cost. The effectiveness of
the latter model is demonstrated, showing that the latter model can provide reasonable
predictions and can be used for the preliminary study of the hydrodynamic characteristics
of the considered configurations and support the design. Comparison against experimental
data for further verification and calibration of the present simplified method is planned as
the next step of research that will further support the study of the reflection/transmission
characteristics and resonance phenomena in the case of complex configurations. Finally,
extension of the present method to treat effects by vertically sheared currents interacting
with waves and vertical cylindrical structures is also possible, and is planned to be studied
in future work.
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