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Abstract: The demand for wind energy harvesting has grown significantly to mitigate the global
challenges of climate change, energy security, and zero carbon emissions. Various methods to
maximize wind power efficiency have been proposed. Notably, neural networks have shown large
potential in improving wind power efficiency. In this paper, we provide a review of attempts to
maximize wind power efficiency using neural networks. A total of three neural-network-based
strategies are covered: (i) neural-network-based turbine control, (ii) neural-network-based wind farm
control, and (iii) neural-network-based wind turbine blade design. In the first topic, we introduce
neural networks that control the yaw of wind turbines based on wind prediction. Second, we discuss
neural networks for improving the energy efficiency of wind farms. Last, we review neural networks
to design turbine blades with superior aerodynamic performances.

Keywords: wind power; artificial neural network; design optimization; wind turbine control; wind
farm; surrogate

1. Introduction

Concerns surrounding climate change continue to grow and related treaties have been
signed. For example, in COP26 (26th UN Climate Change Conference of the Parties), most
developed countries agreed to abolish traditional coal power generation and halt new
construction. This agreement aims to control rises in temperature by achieving a “net zero”
balance of carbon emission and absorption by 2050 [1]. Therefore, it is crucial to minimize,
or eliminate if possible, carbon generation during energy harvesting processes.

Wind is a ubiquitous source of energy that can be harvested without carbon emission.
Wind turbines (WT) are utilized to convert the kinetic energy of wind to usable forms of
energy (e.g., electricity). Accordingly, the installation of WTs has significantly increased
owing to their negligible carbon emission [2,3]. However, the number of WTs that can be
installed is limited due to concerns related to species protection and geopolitical and supply
risks [2]. Indeed, the high production and maintenance costs associated with WTs also
present one of the main factors warranting consideration before installation [4]. Therefore,
with limits in increasing the number of WTs, it is essential to maximize the zero-carbon
energy generation from wind by further optimizing the energy efficiency of turbines.

The energy efficiency of WTs depends on the interactions between atmospheric flow
and wind blades. Atmospheric flow—a turbulent boundary layer flow with moving bound-
aries and external energy sources—is highly non-linear. The interaction between turbulent
flow and wind blades is also non-linear, and depends on factors such as wind direction,
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angle of attack, and blade geometry. Hence, designing WTs requires simulations or ex-
periments that involve full interactions between turbulent atmospheric flow and turbine
blades [5,6]. Therefore, significant challenges exist in optimizing the energy efficiency of
WTs. Recently, several studies have employed machine learning (ML) models to optimize
WT energy efficiency [7,8] or to maintain WTs [9–11] efficiently. In particular, neural net-
works (NN), a type of ML model, have shown significant potential to be utilized for wind
energy harvesting. This is due to the state-of-the-art performance of NNs in learning non-
linear patterns, such as the chaotic patterns in atmospheric flows. Studies on improving
the energy efficiency of WTs using deep NNs can be categorized as follows (see Figure 1):

• NN-based single turbine control
• NN-based wind farm control
• NN-based wind blade design

Single turbine control Wind farm control Blade design

Artificial Neural Network

Figure 1. Schematic of our categorization.

We discuss the recent developments of deep NNs for improving the energy efficiency
of WTs in the three categories above. This paper is organized as follows: NN-based turbine
control is discussed in Section 2. Section 3 investigates approaches for NN-based wind
farm control. NN-based blade design methods are introduced in Section 4, followed by
concluding remarks in Section 5. All WTs covered in this paper are horizontal-axis upwind
wind turbines (see Appendix A for more details about upwind wind turbines).

2. NN-Based Single Turbine Control

Atmospheric flows around WTs are turbulent, leading to chaotic changes in har-
vestable winds in space and time. Therefore, a WT must constantly respond to the sur-
rounding atmospheric flow to stabilize power production and minimize fatigue dam-
age [4,12]. Accordingly, modern WTs are designed with pitch- and yaw-angle control
systems (Figure 2). A turbine pitch-control system controls the pitch of wind blades. A
turbine yaw-control system controls the WT’s nacelle position (i.e., turbine face direction)
to react to the chaotic surrounding flows properly [4].

A turbine pitch-control system generally aims to prevent WT damage caused by
large aerodynamic loads due to excessively high-speed winds with large turbulent fluc-
tuations [4,12–16]. This can be achieved by controlling the pitch angle of wind blades,
leading to a change in angle of attacks [12]. Newer pitch-control systems employ electrical
or hydraulic drive systems with a proportional–integral–derivative (PID) controller or a
proportional–integral (PI) controller [13,14]. Since NN-based pitch-control systems gener-
ally aim to prevent turbine damage, they are not further reviewed in this paper. In contrast
to pitch-control systems, turbine yaw-control systems aim to maximize energy production.
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Controlling the yaw angle is one of the most effective methods for maximizing wind energy
efficiency. Generally, the maximum wind energy can be harvested when the turbine’s
nacelle position is aligned with the surrounding wind velocity vector. One approach for
this could be to align the position continuously with the guidance of sensors. However,
conventional wind turbines rotate with a slow angular velocity of almost ∼ 0.5◦/s [17–19].
Due to the slow angular velocity, changes in the surrounding wind direction can occur
during rotation, making it challenging to maintain the desired alignment. Continuous
movement would also lead to faster wear. In addition, according to Yang et al. [20], the
wind data measured by a turbine’s sensor differs from the true wind conditions. Therefore,
it is suggested to use future wind directions for improving wind turbine performance.
However, forecasting wind velocity presents a significant challenge due to the turbulent
characteristics of atmospheric flow. Recently, researchers have attempted to control the
yaw angle using NNs for wind forecasting. Details of such methods are discussed below.

Pitch

Yaw

Figure 2. Schematic of yaw and pitch control of a wind turbine.

The idea to control yaw angles of WTs based on wind prediction was proposed
by Hure et al. [17]. The authors developed a yaw controller using information from
short-term wind predictions and reported an improvement in power generation. The
wind prediction was performed using a multi-layer perceptron (MLP) type NN developed
by Kani and Ardehali [21] and Ðalto et al. [22]. Consequently, researchers have actively
employed MLPs for predicting wind [23–25]. Figure 3 provides an example of such an MLP.
In this example, the input layer has three neurons (I1, I2, I3), each hidden layer has four
neurons (X1, . . . , X4; Y1, . . . , Y4), and the final layer has two neurons (O1, O2).

NNs are reported to display state-of-the-art performance in learning non-linear data.
They can be considered non-linear functions that transform input information into predic-
tions. Let Xi and Yj be two connected layers with i ∈ {1, . . . , m} and j ∈ {1, . . . , n} neurons,
with X ∈ Rn and Y ∈ Rm. The information in X is then transported to the next layer Y by a
matrix calculation with non-linear activation ( f (·)) as:

Y = f (WX + b), (1)
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where W is the weight matrix connecting the layers X and Y, and b is a bias vector. The
process is illustrated in Figure 4 for the computation of X1 from Figure 3. Note that
W ∈ Rn×m and b ∈ Rn. The objective of NNs is to learn the best weights W and biases b
that best model the mapping between input and output data. The activation function ( f (·))
enables NNs to learn non-linear relationships between input and output data [26]. Note that
a leaky-Rectified linear unit (ReLU) activation function, a variation of the ReLU activation
function [27], is one of the most representative activation functions, and is defined as

f (x) = max(αx, x), (2)

where x is an arbitrary tensor, α is typically a value between 0.01 < α < 0.1 [28,29]. The
input information is transported to the output layer by repeating the process in Equation (1).
The final layer of the NN outputs the prediction. Subsequently, the errors between the
model prediction and ground truth data (i.e., labeled data) are computed to evaluate the
model prediction. Generally, the mean squared error (MSE) is utilized to evaluate errors in
regression results. The MSE is the mean value of squared errors defined as:

MSE =
1
n

n

∑
i=1

(ỹi − yi)
2, (3)

where ỹ and y are the predicted and labeled values, respectively. The weights and biases
are updated with respect to a minimization of the calculated error.

Input Layer Output LayerHidden Layer

X2

X3

X4

X1

Y2

Y3

Y4

Y1
I1

I2

I3

O1

O2

Figure 3. Schematic of an MLP model.

X

X

X

Activation function 
f(·) 

Figure 4. Schematic of a neuron shown for the computation of X1 from Figure 3.

More recently, owing to the success of long short-term memory (LSTM) NNs, some
studies have used LSTMs for predicting the wind direction [30,31]. An LSTM is proposed
to compensate for a recurrent neural network (RNN)’s difficulty in learning long-term
time-series data.
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An RNN predicts sequential values by inputting the previous time step’s hidden state
(ht−1) and the current time step’s input (it) to a gate with a hyperbolic tangent function (see
Figure 5). The current time step’s output (ht) functions as the next time step’s hidden state.
This process can be seen as having a short-term memory of past values.

Figure 6 provides a detailed illustration of an LSTM that is known to outperform
RNNs in learning sequential correlations for the sake of the long- and short-term memories.
Unlike RNNs, an LSTM contains three gates:

• Forget gate: The forget gate calculates the element-wise product of the sigmoid
(1/(1 + e−x)) values of the current input (it) and previous hidden state (ht−1). The
forget gate affects the current cell state (Ct).

• Input gate: The input gate computes the element-wise product of the sigmoid and
tanh values of it and ht−1. The result of the input gate is used together with the result
of the forget gate to compute Ct.

• Output gate: The output gate performs the element-wise product between the tanh
value of Ct and sigmoid values of ht−1 and it. As a result, the current hidden state (ht)
can be calculated.

tanh RNN Cell (t+1)

RNN Cell (t)

Output of the current time step

Figure 5. Schematic of a basic RNN model.

tanhSigmoid

Sigmoid

tanhSigmoid

× +

×

×

Forget gate

Input gate Output gate

LSTM Cell (t)

Output of the current time step

Figure 6. Schematic of an LSTM model.

The cell states and hidden states in an LSTM cell function as long- and short-term
memories, respectively.

Using an LSTM, Chen et al. [18] successfully controlled the yaw angle of a wind
turbine. Their LSTM model was trained with wind data acquired by a light detection and
ranging (LiDAR) system. The input of their model was the wind LiDAR data, while the
outputs were the desired yaw angle and actuation time that can cope with future wind.
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Using the LSTM model, energy efficiency improved by approximately 3.5% and a reduction
of 5.3% in travel distance in yaw direction were reported.

In addition to LSTM, convolutional neural networks (CNN) are also well known for
their capability of learning spatio-temporal data [32–35]. Few studies have integrated yaw-
control systems with recent CNNs to advance wind prediction. In this paper, we also review
CNN-based wind prediction methods that could improve turbine yaw-control systems.

CNNs with different dimensionalities have been exploited for wind prediction, such
as one-, two-, and three-dimensional CNNs. First, one-dimensional (1D) CNNs are capable
of learning one-dimensional time-sequential data (Figure 7a). For example, Harbola and
Coors [36] developed a 1D CNN that predicts temporal wind data in the Netherlands
and in the German city of Stuttgart. The authors pre-processed the wind velocity data by
categorizing it into 11 classes with different ranges (lower range, upper range):

{(µ− k1σ, µ + k1σ), (µ + k1σ, µ + k2σ), (µ + k2σ, µ + k3σ), (µ + k3σ, µ + k4σ), (µ + k4σ, µ + k5σ),
(µ + k5σ, ∞), (µ− k2σ, µ− k1σ), (µ− k3σ, µ− k2σ), (µ− k4σ, µ− k3σ), (µ− k5σ, µ− k4σ), (−∞, µ− k5σ)},

where µ and σ are the mean and standard deviation of the wind velocity data, and
(k1, k2, k3, k4, k5) = (0.15, 0.45, 0.65, 0.95, 1.25).

t=0 t=1 t=2 ...

Time

(a) (b)

Time

Taiwan 
t=0

South
Korea 

t=0

China1 
t=0

China2 
t=0

China3 
t=0

Philippines
t=0

t=1 t=1 t=1 t=1 t=1 t=1

t=2 t=2 t=2 t=2 t=2 t=2

... ... ... ... ... ...

Time

Space

Figure 7. Schematic of input data of 1D (a) and 2D (b) CNNs for wind prediction.

Their CNNs aim to predict the class of wind velocity on a future occasion. They
developed a 1D CNN that predicts the future wind speed and velocity based on the past
25-h wind velocity data within 30-min time-intervals. This 1D CNN model successfully
classified the range of the future wind speed and direction at 96.8%, 99.7%, respectively, for
Stuttgart, and 98.8%, 99.4%, respectively, for the Netherlands.

However, the underlying physics of atmospheric flow is not one-dimensional. It is a
function related to both space and time. Therefore, physically, the inclusion of spatial infor-
mation should improve the performance of wind prediction. Two-and three-dimensional
CNNs can learn spatial correlations in wind data. Hong and Satriani [37] used a two-
dimensional (2D) CNN model to predict wind at a target site in Taiwan, using additional
wind data from six other regions in South Korea, China, and the Philippines. In total,
78 h of past wind data at the seven sites, which can be rearranged to a 78× 7 array, were
used as the input of their 2D CNN model (Figure 7b). Their model showed a lower root
mean square error (RMSE), normalized mean square error (NMSE), and mean absolute
percentage error (MAPE) compared to an LSTM and an MLP. The errors are defined as:

root mean square error: RMSE =
√

MSE,
normalized mean square error: NMSE = MSE/σ2,
mean absolute percentage error: MAPE = 100/n ∑n

i=1 |(ỹi − yi)/ỹi|,
(4)
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where y is the ground truth value, ỹ is the predicted value, n is the number of data, and σ2

is the variance of the ground truth data.
Wu et al. [38] proposed a novel wind prediction method based on a graph neural

network (GNN) with a Transformer. GNN is a model capable of learning unstructured data
in graph structures [39]. A Transformer is an NN model derived from attention mecha-
nisms proposed by Vaswani et al. [40], which have shown state-of-the-art performance in
learning sequential data. The developed GNN model with a Transformer was reported to
outperform a CNN-LSTM model and a 2D-CNN model for predicting wind speed. Table 1
summarizes the studies of predicting wind information using NNs. The information on the
employed NN models, the purpose of the study, the data source and sampling rate, and
the quantitative performance of studies introduced in the current section are included in
the table.

Table 1. NN-based wind prediction and single WT control methods.

References NN Model Purpose Data Source Sampling Rate Quantitative
Performance

Kani and Ardehali
(2011) [21] MLP Wind direction

prediction - 2.5 s
MAPE = 3.144%

(wind speed
prediction)

Dzulfikri et al.
(2020) [24] MLP Wind direction

prediction
Measured wind

data 3 h
MAPE = 0.4%
(wind direction

prediction)

Zhang et al.
(2022) [25] MLP

Wind speed on the
WT surface
prediction

Measured wind -
MAPE = 1.479%

(wind speed
prediction)

Delgado and
Fahim (2020) [30] LSTM

Wind speed and
direction

prediction

Measured wind
data in Turkey 10 min

R-squared > 0.902
(wind speed

prediction) and
R-squared > 0.366

(wind direction
prediction)

Chen et al.
(2020) [18] LSTM Yaw angle control Simulated wind 10 s

power increases by
3.5% (at the wind

speed of 8m/s)

Harbola and Coors
(2019) [36] 1D CNN

Dominant wind
speed and
direction

classification

Measured wind
data in Germany
and Netherlands

30 min

98.8% and 99.7%
accurate in

dominant wind
speed and
direction

classification

Hong and Satriani
(2020) [37] 2D CNN

Dominant wind
speed and
direction

classification

Measured and
simulated wind

data in China and
S.Korea and
Taiwan and
Philippines

1 h MAPE = 13.840%
for best CNN.

Wu et al.
(2022) [38]

GNN &
Transformer

Wind speed and
direction

prediction

Measured wind
data in Denmark
and Netherlands

1 h

Mean absolute
error = 1.244

(wind speed [m/s]
prediction in

Denmark dataset
after 6 h)
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3. NN-Based Wind Farm Control

A wind farm is a power plant composed of arrays of WTs. The total power output of
a wind farm is lower than the summation of power outputs of stand-alone WTs. This is
because WTs at downstream locations produce less wind energy by encountering wake flow
with less momentum due to the upstream turbines [41,42] (Figure 8a). The computational
fluid dynamics (CFD) results in Figure 8b, which were generated with the framework
developed in [43–45], provide an example of such wake effects for a wind farm. The
velocity field of an offshore wind farm is shown with the easterly wind flowing from right
to left. The wind farm is located in the North Sea and contains 370 neighboring WTs. It is
clearly visible that the wind speed declines and that wake flow significantly affects wind
power generation. Therefore, it is crucial to include wake effects when controlling all
individual turbines in a wind farm.

Forward Turbine

Backward Turbine

(a) (b)

Figure 8. (a) A schematic of the wake effect for two WTs. (b) CFD results showing wake effects in an
offshore wind farm [45], reproduced with permission from Abel Gargallo-Peiró. Speedup stands for
the velocity at each location divided by the upstream reference velocity.

The most representative method to embed wake effects in yaw angle control systems
is reinforcement learning (RL) [46–48]. RL is used to learn a sequence of actions that leads
to an optimal state in an environment concerning a pre-defined optimization criterion. RL
is an iterative mechanism where a single agent or multiple agents take an action based
on a state provided by an environment. The environment then evaluates the action(s),
provides feedback in the form of a reward, and passes the new state to the agent(s). A
schematic diagram of controlling a wind farm using RL is shown in Figure 9. The optimum
action(s) of changing the yaw angle of each WT based on a given state of wind flow could
be learned with respect to the total power output. This can be achieved through trial and
error explorations performed by an agent or agents, who are rewarded by a quantity related
to energy production.

Zhao et al. [47] used an RL algorithm based on the deep deterministic policy gradient
(DDPG) approach to control wind turbines in a wind farm. The DDPG is an RL algorithm
for environments with continuous action space, such as yaw angles of WTs. For a discrete
action space, each action could be evaluated with a so-called Q-value. For a continuous
action space, however, the complete space cannot exhaustively be evaluated with this
approach. Instead, a gradient-based learning rule is formulated that takes advantage
of a Q-function that is differentiable with respect to the yaw angles chosen by an agent
or multiple agents. For a more detailed explanation of DDPG, readers may refer to the
following reference [49]. In [47], an algebraic wake model was used to model the wake
effect and control the wind farm through knowledge-assisted learning DDPG (KA-DDPG).
KA-DDPG constrains the learning of agents to physical rules and domain knowledge.
Because of this constraint, an agent of KA-DDPG becomes capable of avoiding dangerous
or low-reward actions. They reported 10% improvement compared to a control algorithm
(e.g., greedy algorithm) which does not involve any future consequences of an action of
WTs. Similarly, Dong et al. [48] controlled WTs in a wind farm using a variant of DDPG.
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They reported a 15% improvement in power production. It is also worth noting that they
calculated the flow fields in a wind farm using high-fidelity simulations. Thus, no algebraic
wake model was used.

Environment 
(Wind Turbine Simulation) 

Agent(s) 
(Wind Turbine Controler) 

Action(s) 
(Nacelle correction rotational speed) 

Reward 
(Reward function related to power generation) 

State 
(Difference between the orientation of the wind and the nacelle) 

Figure 9. Basic RL mechanism for wind farm control.

Predicting the changes of flow fields due to wakes in wind farms using simulations
is highly expensive, while algebraic wake models are inexpensive but inherently contain
uncertainty. This is due to the challenging nature of accurately modeling turbulence and
geometric effects. Therefore, developing an accurate wake model is important to improve
the yaw control of wind farms. Recently, researchers have attempted to model wake by
using NNs. For example, Li et al. [50] predicted unsteady turbine wakes using a CNN
with two types of inputs. The first input is velocity field data over a certain time interval
from the past. The second input is data of inflow velocity and yaw angle of each WT in
the wind farm from the same past time interval. Their CNN model predicts the velocity
fields at a future time based on these two inputs. The predictions under diverse conditions
were compared with the result of large-eddy simulations (LES). LES computes turbulent
flow by modeling sub-grid scale turbulence. Their CNN model showed an average error
of 3.7% in predicting the wind velocity in a wind farm. Bleeg [51] developed a graphical
neural network (GNN) to model wake effects. Reynolds-averaged Navier–Stokes (RANS)
simulations were employed to generate training data. They developed a GNN that predicts
the decay rate of wind speed in downstream locations relative to the front row of WTs. They
reported that the developed GNN was capable of predicting the velocity decay rate with a
small error (0.0028 in Mean absolute error). Table 2 summarizes the studies of yaw control
and wind speed prediction in wind farms using NNs. The information on the employed
machine learning method, the purpose of the study, the data source, and the quantitative
performance of studies introduced in the current section are included in this table.

Table 2. NN-based wind farm control and modeling methods.

References Method Purpose Data Source Quantitative
Performance

Zhao et al. (2020) [47] RL (KA-DDPG) WT Yaw control
Wind farm model
based on 2D CFD

simulation

10% improvement in
power generation

Dong et al. (2021) [48] RL (DDPG) WT Yaw control Wind farm simulation 15% improvement in
power generation

Li et al. (2022) [50] CNN Freestream wind speed
prediction Wind farm simulation 3.7% error

Bleeg (2020) [51] GNN Wind speed decay in
wind farms RANS simulation

Mean absolute
error= 0.0028 for a

non-dimensionalized
wind speed.
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4. NN-Based Turbine Blade Design

WTs convert the rotational energy of a rotor to a usable energy source. The rotation
of rotors occurs due to the aerodynamic lift force generated on the turbine blade surfaces.
The key to maximizing wind energy efficiency is to maximize the lift-to-drag ratio of a
turbine blade. This ratio describes how effectively a blade can generate lift (i.e., rotation)
while experiencing energy loss from drag. It is highly dependent on the shapes of the
turbine blades and the flow conditions. Optimizing the design of a turbine blade aims to
improve the lift-to-drag ratio at flow conditions in an operating WT. However, such an
optimization process involves numerous design elements and conditions. In addition, for
design robustness, flow analysis on the blade considering these factors should be repeated
for various flow conditions. Therefore, the optimization process becomes costly. The
increased computational costs can be overcome by employing NNs for efficiently designing
optimal turbine blades.

Wen et al. [52] proposed a design method that combines a genetic algorithm and a back-
propagation (GABP) NN to optimize the design of airfoils with reduced computational cost
and complexity. Their NN was trained to predict a WT blade’s lift coefficient and lift-to-
drag ratio, whose shape is represented by Bessel polynomials. The NN is reported to have a
90% accuracy in predicting an arbitrary turbine blade’s lift coefficient and lift-to-drag ratio.
Based on this network, the authors were able to design a blade with improved aerodynamic
properties. Lalonde et al. [53] developed and compared six different NNs which function
as surrogate models of an aerodynamic blade. These surrogate models are helpful because
an NN connects input and output data without time-consuming computations such as CFD
simulations. For example, they used the time-independent MLP with a full set of input
data architecture with the following aerodynamic input data: wind speed, blade geometry,
and blade deflected shape. Consequently, the CNN model predicted the aerodynamic load
on the blade with a normalized root mean squared error (NRMSE) of 0.66%, where NRMSE
is defined as:

NRMSE(%) =
RMSE

ō
× 100 (5)

where ō is the average of the ground truth values.
Jasa et al. [54] proposed an approach for an airfoil design that utilizes an invertible

neural network (INN), as illustrated in Figure 10. An INN processes inputs to outputs
and vice versa. The INN was trained with data acquired from two-dimensional numerical
simulations of airfoils. The inputs of their INN are airfoil shapes and operating conditions,
whereas the outputs are aerodynamic performances and structural considerations. The
INN’s invertible nature allows the creation of an airfoil design that fully satisfies the desired
aerodynamic performances and structural considerations. Their optimized blade is reported
to increase the annual energy production by 3.4% compared to non-optimized airfoil.

Oh [55] developed a neural network for predicting and optimizing the aerodynamic
performances of WT airfoils. The developed NN demonstrated a superior optimization
performance compared to conventional design methods, such as the response surface
method (RSM) [56]. They found their NN suitable for learning the integrated influences
of airfoil geometry and flow conditions on aerodynamic performances. Their optimized
airfoil using NN showed 18.560% and 8.194% increases in the lift-to-drag ratio compared
to an unoptimized airfoil and an airfoil optimized through RSM, respectively.

Jia et al. [57] demonstrated a tunable WT blade using RL. The twist angle distribution
of the turbine blades was tuned using RL to maximize aerodynamic performances. Based
on the power coefficient (cp) of a blade with seven controllable actuators. they stated an
average improvement of 12.9% in the high-speed wind regime (9 ∼ 13 m/s), but showed
an average reduction in performance of -11.3% at low speed (5 ∼ 8 m/s), compared to
blade control using a conventional genetic algorithm (GA). Table 3 summarizes the studies
on designing WT blades using NNs. The information on the employed machine learning
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method, the purpose of the study, the data source, and the quantitative performance of
studies introduced in the current section are included in this table.

Airfoil shape parameteres,

Angle of attack

Reynolds Number 

Drag coefficient, Ratio of lift to drag, Stall
margin, Maximum thickness-to-chord ratio

Latent variables  
(to ensure the model's invertibility)INN

Reynolds Number 

Input Output

InputOutput

Figure 10. Schematic of an INN architecture.

Table 3. NN-based turbine blade design methods

References Method Purpose Data Source Quantitative
Performance

Wen et al. (2019) [52] MLP + GA

WT blade’s lift
coefficient &

lift-to-drag ratio
prediction

Experimental airfoil
database

90% accuracy
(maximum lift-drag

ratio and the maximum
lift coefficient

prediction)

Lalonde et al.
(2020) [53] CNN Aerodynamic load on

the blade prediction
Wind turbine

simulation

NRMSE = 0.66%
(Aerodynamic

load prediction)

Jasa et al. (2022) [54] INN Airfoil design
optimization CFD simulation

Increase in Annual
energy production

by 3.4%

Oh (2020) [55] MLP
Creation of surrogate

model and Design
optimization model

Airfoil simulation

18.560% and 8.194%
increase over baseline

and RSM
(lift-to-drag ratio)

Jia et al. (2021) [57] RL

Creation of surrogate
model and Finding
optimal blade twist
angle distribution

Wind turbine
simulation

Average improvement
of 12.9% compared to
GA (at the high-speed

wind regime
9 ∼ 13 m/s)

5. Conclusions

WTs generate wind power from the kinetic energy of atmospheric flow. NNs are
suitable for efficiently modeling the effects of atmospheric flow to wind power generation
since NNs are capable of modeling non-linear functions. We investigated studies that
have successfully improved power generation efficiency using NNs. To the best of our
knowledge, we are the first to provide a review of neural-network-based methods to
improve WT power generation in categories that cover wind turbines to wind farms and
from control methods to blade design strategies.

First, studies focused on increasing the efficiency of a WT through the control of yaw
angles were reviewed. In these studies, various types of NNs, e.g., MLP, LSTM, or CNN,
were used to predict wind directions. Maximum power generation of a WT generally
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occurs when the nacelle direction and the wind direction are parallel. Based on accurate
and fast wind predictions, the yaw of a WT can be controlled to achieve an optimal position
and increase power generation.

Second, studies aimed at improving the energy efficiency of wind farms were reviewed.
Due to the momentum loss at upstream WTs’ wake, the total power generation of a wind
farm is inevitably lower than the sum of the maximum power generation of individual WTs.
Typically, quantifying such interactions, e.g., wake flows, is computationally expensive.
This renders the analysis of a wind farm arrangement difficult. We reviewed studies that
employ NNs to overcome this limitation. A number of studies employed RL to control
wind farms in a way that minimizes the negative effects of interactions between WTs and
maximizes total power output. Other studies concentrate on modeling complex wake
effects by developing NN-based surrogate models.

Finally, NN- and RL-based studies that optimized WT blade designs to improve the
aerodynamic performances of WTs were reviewed. An optimization of turbine blades
normally requires iterative CFD computations. Since CFD is a time-consuming method
that requires a large amount of computational resources, NN-based surrogate models of
CFD have been actively proposed. The developed surrogate models show a small margin
of error and only take a fraction of the time needed to conduct simulations, leading to blade
designs with improved wind power generation efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:
WT Wind Turbine
ML Machine Learning
NN Neural Network
HAWT Horizontal-Axis Wind Turbine
VAWT Vertical-Axis Wind Turbine
UWT Upwind Wind Turbine
DWT Downwind Wind Turbine
PID Proportional–Integral–Derivative
PI Proportional–Integral
MLP Multi-Layer Perceptron
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
CNN Convolutional Neural Network
LES Large Eddy Simulation
RL Reinforcement Learning
CFD Computational Fluid Dynamics
RANS Reynolds Averaged Numerical Simulation
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MSE Mean Square Error
NMSE Normalized Mean Square Error
MAPE Mean Absolute Percentage Error
DDPG Deep Deterministic Policy Gradient
GABP Genetic Algorithms Back Propagation
RMSE Root Mean Squared Error
NRMSE Normalized Root Mean Squared Error
RSM Response Surface Method
INN Invertible Neural Network
GA Genetic Algorithm
GNN Graph Neural Network

Appendix A. Wind Turbines

WTs can be categorized into horizontal-axis wind turbines (HAWT) and vertical-
axis wind turbines (VAWT). This classification is determined by the direction of the axis
of rotation of the blade. The axis of rotation of the HAWT is horizontal to the wind.
The advantage of a HAWT is that it has a higher power generation efficiency than a
VAWT [58,59]. However, HAWTs must change the nacelle direction to maintain maximum
power generation. In addition, a sufficiently large space must be secured when constructing
a wind farm because aerodynamic interference occurs between adjacent turbines due to
wake formation [60,61]. In contrast, the axis of rotation of a VAWT is perpendicular to the
wind direction. VAWTs take in wind from all directions. Therefore, they do not require a
yaw system, and most of the mechanical parts are located in the ground. Consequently,
VAWTs bear simpler structures, and their maintenance is easier than HAWTs. In addition,
a VAWT wind farm can be constructed more densely than a wind farm composed of
HAWTs [59,61,62]. Despite the advantages of a VAWT, it is rarely used because of its lower
power generation efficiency than HAWT. [58,59]. Therefore, only HAWT is considered in
the current study.

HAWTs can be further categorized into two sub-classes, based on the direction of the
nacelle: (i) an upwind wind turbine (UWT) where the nacelle direction is opposite to the
wind, and (ii) a downwind wind turbine (DWT) where the nacelle direction is aligned to
the wind (Figure A1). Unlike a DWT, a UWT does not have a tower shadow effect where
the generator pillar causes periodic changes in the wind flow. The tower shadow effect
negatively affects the lifespan of the blades due to increased fatigue [63]. Therefore UWTs
are used more frequently than DWTs.

Wind Direction

Nacelle Direction

Upwind Wind Turbine Downwind Wind Turbine

Nacelle Direction

Wind Direction

Figure A1. Schematic diagrams of a UWT and DWT.
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