# Computational Fluid Dynamics Model for Analysis of the Turbulent Limits of Hydrogen Combustion

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Setup

## 3. Results and Discussion

#### 3.1. Flame Structure in Lean Hydrogen–Air Mixtures

#### 3.2. Modes of Flame–Turbulence Interaction and Definition of the Turbulent Combustion Limit

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

JANAF | Joint Army, Navy, and Air Force |

## References

- Coward, H.F.; Jones, G.W. Limits of Flammability of Gases and Vapors; Technical Report Bulletin 503; U.S. Bureau of Mines: Washington, DC, USA, 1952.
- Gelfand, B.E.; Silnikov, M.V.; Medvedev, S.P.; Khomik, S.V. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Udagawa, Y.; Yamaguchi, M.; Abe, H.; Sekimura, N.; Fuketa, T. Ab initio study on plane defects in zirconium–hydrogen solid solution and zirconium hydride. Acta Mater.
**2010**, 58, 3927–3938. [Google Scholar] [CrossRef] - Petukhov, V.; Naboko, I.; Fortov, V. Explosion hazard of hydrogen—Air mixtures in the large volumes. Int. J. Hydrogen Energy
**2009**, 34, 5924–5931. [Google Scholar] [CrossRef] - Eichert, H.; Fischer, M. Combustion-related safety aspects of hydrogen in energy applications. Int. J. Hydrogen Energy
**1986**, 11, 117–124. [Google Scholar] [CrossRef] - Kumar, R. Flammability Limits of Hydrogen-Oxygen-Diluent Mixtures. J. Fire Sci.
**1985**, 3, 245–262. [Google Scholar] [CrossRef] - Medvedev, S.P.; Gel’fand, B.E.; Polenov, A.N.; Khomik, S.V. Flammability limits for hydrogen-air mixtures in the presence of ultrafine droplets of water (fog). Combust. Explos. Shock Waves
**2002**, 38, 381–386. [Google Scholar] [CrossRef] - Project SAFEKINEX. Report on the Experimentally Determined Explosion Limits, Explosion Pressures and Rates of Explosion Pressure Rise; Technical Report Contractual Deliverable No. 8; Federal Institute for Materials Research and Testing (BAM): Berlin, Germany, 2002. [Google Scholar]
- Leblanc, L.; Manoubi, M.; Dennis, K.; Liang, Z.; Radulescu, M.I. Dynamics of unconfined spherical flames. Phys. Fluids
**2012**, 25, 091106. [Google Scholar] [CrossRef][Green Version] - Ronney, P.D. Near-limit flame structures at low Lewis number. Combust. Flame
**1990**, 82, 1–14. [Google Scholar] [CrossRef] - Yakovenko, I.; Kiverin, A.; Melnikova, K. Ultra-Lean Gaseous Flames in Terrestrial Gravity Conditions. Fluids
**2021**, 6, 21. [Google Scholar] [CrossRef] - Kiverin, A.D.; Yakovenko, I.S.; Melnikova, K.S. On the structure and stability of ultra-lean flames. J. Phys. Conf. Ser.
**2019**, 1147, 012048. [Google Scholar] [CrossRef] - Yang, S.; Saha, A.; Liang, W.; Wu, F.; Law, C.K. Extreme role of preferential diffusion in turbulent flame propagation. Combust. Flame
**2018**, 188, 498–504. [Google Scholar] [CrossRef] - Karpov, V.; Severin, E. Effects of molecular-transport coefficients on the rate of turbulent combustion. Combust. Explos. Shock Waves
**1980**, 16, 41–46. [Google Scholar] [CrossRef] - Abdel-Gayed, R.; Bradley, D. Criteria for turbulent propagation limits of premixed flames. Combust. Flame
**1985**, 62, 61–68. [Google Scholar] [CrossRef] - Chomiak, J.; Jarosiński, J. Flame quenching by turbulence. Combust. Flame
**1982**, 48, 241–249. [Google Scholar] [CrossRef] - Bradley, D.; Shehata, M.; Lawes, M.; Ahmed, P. Flame extinctions: Critical stretch rates and sizes. Combust. Flame
**2020**, 212, 459–468. [Google Scholar] [CrossRef] - Bilger, R.; Pope, S.; Bray, K.; Driscoll, J. Paradigms in turbulent combustion research. Proc. Combust. Inst.
**2005**, 30, 21–42. [Google Scholar] [CrossRef] - Hawkes, E.R.; Sankaran, R.; Sutherland, J.C.; Chen, J.H. Direct numerical simulation of turbulent combustion: Fundamental insights towards predictive models. J. Phys. Conf. Ser.
**2005**, 16, 65–79. [Google Scholar] [CrossRef] - Trisjono, P.; Pitsch, H. Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review. Flow Turbul. Combust.
**2015**, 95, 231–259. [Google Scholar] [CrossRef] - Williams, F.A. Combustion Theory, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Cant, R.; Pope, S.; Bray, K. Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Symp. Int. Combust.
**1991**, 23, 809–815. [Google Scholar] [CrossRef] - Bechtold, J.K.; Matalon, M. The dependence of the Markstein length on stoichiometry. Combust. Flame
**2001**, 127, 1906–1913. [Google Scholar] [CrossRef] - Giannakopoulos, G.K.; Gatzoulis, A.; Frouzakis, C.E.; Matalon, M.; Tomboulides, A.G. Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation. Combust. Flame
**2015**, 162, 1249–1264. [Google Scholar] [CrossRef] - Dave, H.L.; Chaudhuri, S. Evolution of local flame displacement speeds in turbulence. J. Fluid Mech.
**2020**, 884, A46. [Google Scholar] [CrossRef] - Lipatnikov, A.; Nishiki, S.; Hasegawa, T. Closure Relations for Fluxes of Flame Surface Density and Scalar Dissipation Rate in Turbulent Premixed Flames. Fluids
**2019**, 4, 43. [Google Scholar] [CrossRef][Green Version] - Pope, S.B. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci.
**1985**, 11, 119–192. [Google Scholar] [CrossRef] - Kuznetsov, V.R.; Sabelnikov, V.A. Turbulence and Combustion, 1st ed.; Hemisphere Publishing Corporation: New York, NY, USA, 1990. [Google Scholar]
- Haworth, D.C. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci.
**2010**, 36, 168–259. [Google Scholar] [CrossRef] - Zimont, V.L. Conceptual Limitations of the Probability Density Function Method for Modeling Turbulent Premixed Combustion and Closed-Form Description of Chemical Reactions’ Effects. Fluids
**2021**, 6, 142. [Google Scholar] [CrossRef] - Sabelnikov, V.A.; Lipatnikov, A.N. A new mathematical framework for describing thin-reaction-zone regime of turbulent reacting flows at low damköhler number. Fluids
**2020**, 5, 109. [Google Scholar] [CrossRef] - Betev, A.; Kiverin, A.; Medvedev, S.; Yakovenko, I. Numerical Simulation of Turbulent Hydrogen Combustion Regimes Near the Lean Limit. Russ. J. Phys. Chem. B
**2020**, 14, 940–945. [Google Scholar] [CrossRef] - Uranakara, H.A.; Chaudhuri, S.; Lakshmisha, K. On the extinction of igniting kernels in near-isotropic turbulence. Proc. Combust. Inst.
**2017**, 36, 1793–1800. [Google Scholar] [CrossRef] - Volodin, V.V.; Golub, V.V.; Kiverin, A.D.; Melnikova, K.S.; Mikushkin, A.Y.; Yakovenko, I.S. Large-scale Dynamics of Ultra-lean Hydrogen-air Flame Kernels in Terrestrial Gravity Conditions. Combust. Sci. Technol.
**2020**, 193, 225–234. [Google Scholar] [CrossRef] - Yakovenko, I.S.; Ivanov, M.F.; Kiverin, A.D.; Melnikova, K.S. Large-scale flame structures in ultra-lean hydrogen-air mixtures. Int. J. Hydrogen Energy
**2018**, 43, 1894–1901. [Google Scholar] [CrossRef] - Ronney, P.D.; Whaling, K.N.; Abbud-Madrid, A.; Gatto, J.L.; Pisowicz, V.L. Stationary premixed flames in spherical and cylindrical geometries. AIAA J.
**1994**, 32, 569–577. [Google Scholar] [CrossRef] - Kuo, K.K.; Acharya, R. Fundamentals of Turbulent and Multiphase Combustion, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical Numerical Combustion, 2nd ed.; R.T. Edwards, Inc.: Philadelphia, PA, USA, 2005. [Google Scholar]
- Bykov, V.; Kiverin, A.; Koksharov, A.; Yakovenko, I. Analysis of transient combustion with the use of contemporary CFD techniques. Comput. Fluids
**2019**, 194, 104310. [Google Scholar] [CrossRef] - Chase, M.W. NIST-JANAF Themochemical Tables, 4th ed.; American Institute of Physics: Woodbury, NY, USA, 1998; Volume 9. [Google Scholar]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. The Molecular Theory of Gases and Liquids, Revised ed.; Wiley-Interscience: Hoboken, NJ, USA, 1964. [Google Scholar]
- Kee, R.J.; Coltrin, M.E.; Glarborg, P. Chemically Reacting Flow: Theory and Practice, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Coffee, T.; Heimerl, J. Transport algorithms for premixed, laminar steady-state flames. Combust. Flame
**1981**, 43, 273–289. [Google Scholar] [CrossRef] - Kéromnès, A.; Metcalfe, W.K.; Heufer, K.A.; Donohoe, N.; Das, A.K.; Sung, C.J.; Herzler, J.; Naumann, C.; Griebel, P.; Mathieu, O.; et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame
**2013**, 160, 995–1011. [Google Scholar] [CrossRef][Green Version] - McGrattan, K.; McDermott, R.; Hostikka, S.; Floyd, J.; Vanella, M. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model; Technical Report NIST Special Publication 1018-1; U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. [CrossRef]
- Carroll, P.L.; Blanquart, G. A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids
**2013**, 25, 105114. [Google Scholar] [CrossRef][Green Version] - Lu, Z.; Yang, Y. Modeling pressure effects on the turbulent burning velocity for lean hydrogen/air premixed combustion. Proc. Combust. Inst.
**2021**, 38, 2901–2908. [Google Scholar] [CrossRef] - Wang, Z.; Abraham, J. Effects of Karlovitz Number on Flame Surface Wrinkling in Turbulent Lean Premixed Methane-Air Flames. Combust. Sci. Technol.
**2018**, 190, 363–392. [Google Scholar] [CrossRef] - Basevich, V.Y.; Belyaev, A.A.; Frolov, S.M.; Frolov, F.S. Direct Numerical Simulation of Turbulent Combustion of Hydrogen—Air Mixtures of Various Compositions in a Two-Dimensional Approximation. Russ. J. Phys. Chem. B
**2019**, 13, 75–85. [Google Scholar] [CrossRef] - Haugen, N.E.L.; Brandenburg, A.; Dobler, W. Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
**2004**, 70, 14. [Google Scholar] [CrossRef] - Semenov, E.S. Measurement of turbulence characteristics in a closed volume with artificial turbulence. Combust. Explos. Shock Waves
**1965**, 1, 57–62. [Google Scholar] [CrossRef] - Karpov, V.P.; Semenov, E.S.; Sokolik, A.S. Turbulent combustion in closed volume. Dokl. USSR
**1959**, 128, 1220–1223. [Google Scholar] - Kusharin, A.Y.; Agafonov, G.L.; Popov, O.E.; Gelfand, B.E. Detonability of H
^{2}/CO/CO^{2}/Air Mixtures. Combust. Sci. Technol.**1998**, 135, 85–98. [Google Scholar] [CrossRef] - Konnov, A. Refinement of the kinetic mechanism of hydrogen combustion. Khimicheskaya Fiz.
**2004**, 23, 5–19. [Google Scholar] - Boivin, P. Reduced-Kinetic Mechanisms for Hydrogen and Syngas Combustion Including Autoignition. Ph.D. Thesis, Universidad Carlos III de Madrid, Leganés, Spain, 2011. [Google Scholar]
- Starik, A.; Titova, N. Kinetics of detonation initiation in the supersonic flow of the H2 + O
^{2}(air) mixture in O^{2}molecule excitation by resonance laser radiation. Kinet. Catal.**2003**, 44, 28–39. [Google Scholar] [CrossRef] - Al-Khishali, K.; Bradley, D.; Hall, S. Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame
**1983**, 54, 61–70. [Google Scholar] [CrossRef] - Breitung, W.; Chan, C.; Dorofeev, S.; Eder, A.; Gelfand, B.; Heitch, M.; Klein, R.; Malliakos, A.; Shepherd, J.; Studer, A.; et al. Flame Acceleration and Deflagration-to-Detonation Transition in Nuclear Safety, State-of-the-Art Report by a Group of Experts; Technical Report; Technical Report No. NEA/CSNI; OECD Nuclear Energy Agency: Le Seine Saint-Germain, France, 2000. [Google Scholar]

**Figure 1.**(

**a**) Convergence test: dependence of the flame thickness in 10% hydrogen–air mixture on the grid resolution. (

**b**) Dependence of the flame thickness on the hydrogen content in the mixture with air ($\mathsf{\Delta}x=0.1$ mm).

**Figure 2.**(

**a**) Schematic of the problem setup. (

**b**) Stream traces at the background of the normalized vorticity field illustrating the homogeneous isotropic two-dimensional turbulence generated via Equations (1) and (2) with ${\lambda}_{f}=5$ mm. (

**c**) Time dependence of the root mean square velocity characterizing the development of the synthetic turbulence.

**Figure 3.**(

**a**) Definition of thermal and diffusion thicknesses in the background of the temperature and hydrogen concentration profiles. (

**b**) Dependence of the thermal and diffusion thicknesses on the hydrogen content in the lean hydrogen–air mixture. (

**c**) Dependence of the characteristic velocity scales on the hydrogen content in the lean hydrogen–air mixture.

**Figure 4.**Turbulent combustion limit defined with the use of thermal (green) and diffusion (red) scales for hydrogen–air mixtures containing from 5.5% to 10% of hydrogen content. Points are shown for 5.5%, 6%, 7%, 8%, and 10% hydrogen–air mixtures. The lines are the linear fits. The black lines correspond to $Da$ = 1, 10, and 100. The inserts show characteristic patterns of the flame kernels in different ranges of turbulence parameters: stable combustion is demonstrated by the example of 10% hydrogen content, ${u}_{rms}=5.8$ m/s, quenching mode by 9%, ${u}_{rms}=5.8$ m/s.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yakovenko, I.; Kiverin, A.; Melnikova, K.
Computational Fluid Dynamics Model for Analysis of the Turbulent Limits of Hydrogen Combustion. *Fluids* **2022**, *7*, 343.
https://doi.org/10.3390/fluids7110343

**AMA Style**

Yakovenko I, Kiverin A, Melnikova K.
Computational Fluid Dynamics Model for Analysis of the Turbulent Limits of Hydrogen Combustion. *Fluids*. 2022; 7(11):343.
https://doi.org/10.3390/fluids7110343

**Chicago/Turabian Style**

Yakovenko, Ivan, Alexey Kiverin, and Ksenia Melnikova.
2022. "Computational Fluid Dynamics Model for Analysis of the Turbulent Limits of Hydrogen Combustion" *Fluids* 7, no. 11: 343.
https://doi.org/10.3390/fluids7110343