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Abstract: We develop the theory of transient electrophoresis of a weakly charged, infinitely long
cylindrical colloidal particle under an application of a transverse or tangential step electric field.
Transient electrophoretic mobility approaches steady electrophoretic mobility with time. We derive
closed-form expressions for the transient electrophoretic mobility of a cylinder without involving
numerical inverse Laplace transformations and the corresponding time-dependent transient Henry
functions. The transient electrophoretic mobility of an arbitrarily oriented cylinder is also derived.
It is shown that in contrast to the case of steady electrophoresis, the transient Henry function of an
arbitrarily oriented cylinder at a finite time is significantly smaller than that of a sphere with the same
radius and mass density as the cylinder so that a cylinder requires a much longer time to reach its
steady mobility than the corresponding sphere.

Keywords: transient electrophoresis; transient electrophoretic mobility; cylindrical colloidal particle;
Henry function

1. Introduction

Transient electrophoresis is the time-dependent unsteady response of a charged col-
loidal particle in an electrolyte solution to an applied step electric field [1–19]. It is often
required to determine the time necessary for the velocity of a particle to approach its steady
value when an electric field is applied to the particle. This information is of practical impor-
tance in the efficient design of systems for measurements of steady-state electrophoresis.
Morrison [1,2] and later Ivory [3,4] initiated the theory of transient electrophoresis of a
spherical or cylindrical particle. The theory of transient electrophoresis has been advanced
significantly by Keh and his coworkers [5–7,9,10,14–16].

Li and Keh [14], in particular, derived the general expression for the Laplace transform
of the transient electrophoretic mobility of a weakly charged infinitely long cylinder with
arbitrary double-layer thickness in an applied transverse or tangential step electric field
and calculated the transient electrophoretic mobility of the particle by using the numerical
inverse Laplace transformation method. This method, however, requires tedious numerical
calculation and it is not very convenient for practical purposes.

In a previous paper [18], we have shown that the fundamental electrokinetic equations
describing the transient electrophoresis of a spherical colloidal particle are quite similar
to those for the dynamic electrophoresis of the spherical particle in an applied oscillat-
ing electric field [20]. Indeed, it has been shown that there is a simple correspondence
between the Laplace transform of the transient electrophoretic mobility and the dynamic
electrophoretic mobility of a charged particle in an electrolyte solution [18]. As in the case
of a spherical particle, it will be shown that there is the same correspondence relation
between the Laplace transform of the transient electrophoretic mobility of a cylinder and
its dynamic electrophoretic mobility [21].

The purpose of the present paper is to develop further the theory of transient elec-
trophoresis of a weakly charged infinitely long cylinder in an applied transverse or tangen-
tial step electric field and derive closed-form expressions for the transient electrophoretic
mobility of the cylinder without involving numerical inverse Laplace transformations.
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2. Theory

Let us consider an infinitely long, cylindrical colloidal particle of mass density ρp,
radius a, and zeta potential ζ in an aqueous electrolyte solution of mass density ρo, viscosity
η, and relative permittivity εr. The electrolyte consists of N ionic species of valence zi, bulk
concentration (number density) ni

∞, and drag coefficient λi (i = 1, 2, . . . , N). We suppose
that a step electric field E(t) is suddenly applied transversely or tangentially to the cylinder
at time t = 0, viz.,

E(t) =
{

0, t = 0
Eo, t > 0

(1)

where Eo is constant and the particle starts to move with an electrophoretic velocity U(t)
in the direction parallel to Eo (Figure 1). The transient electrophoretic mobility µ(t) of the
particle is defined by U(t) = µ(t)E(t) = µ(t)Eo. The origin of the cylindrical coordinate system
(r, θ, z) is held fixed at the center of the particle. We treat the case where (i) the liquid
can be regarded as incompressible, (ii) the applied electric field E(t) is weak so that terms
involving the square of the liquid velocity in the Navier–Stokes equation can be neglected
and the particle velocity U(t) is proportional to E(t), and (iii) the relative permittivity of the
particle εp is much smaller than that of the electrolyte solution εr (εp « εr).
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Figure 1. Cylindrical colloidal particle of radius a and zeta potential ζ moving with a transient ve-
locity U(t) in an applied step electric field E(t). The electric field E(t) is perpendicular to the cylinder 
axis (a) or parallel to it (b). U(∞) is the magnitude of U(∞) at t = ∞. 

The initial and boundary conditions for u(r, t) and vi(r, t) are given by 
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where 𝒏𝒏� is the unit normal outward from the particle surface. Equation (8) states that the 
slipping plane (at which u(r, t) = 0) is located on the particle surface. Equation (10) follows 
from the condition that electrolyte ions cannot penetrate the particle surface.  

For a weak field E(t), the deviations of nj(r, t), ψ(r, t), and µj(r, t) from their equilibrium 
values (i.e., those in the absence of E(t)) due to the applied field E(t) are small so that we 
may write 

𝑛𝑛𝑖𝑖(𝒓𝒓, 𝒕𝒕) = 𝑛𝑛𝑖𝑖
(0)(𝑟𝑟) + 𝛿𝛿𝑛𝑛𝑖𝑖(𝒓𝒓, 𝒕𝒕) (11) 

𝜓𝜓(𝒓𝒓, 𝒕𝒕) = 𝜓𝜓(0)(𝑟𝑟) + 𝛿𝛿𝜓𝜓(𝒓𝒓, 𝒕𝒕)  (12) 

𝜇𝜇𝑖𝑖(𝒓𝒓, 𝒕𝒕) = 𝜇𝜇𝑖𝑖
(0) + 𝛿𝛿𝜇𝜇𝑖𝑖(𝒓𝒓, 𝒕𝒕) (13) 

where the quantities with superscript (0) refer to those at equilibrium, the quantities, with 
δ referring to the deviations from the corresponding equilibrium values, and 𝜇𝜇𝑖𝑖
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(0)(𝑟𝑟) obeys the 
Boltzmann distribution and the equilibrium electric potential satisfies the Poisson-Boltz-
mann equation, viz., 
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Figure 1. Cylindrical colloidal particle of radius a and zeta potential ζ moving with a transient
velocity U(t) in an applied step electric field E(t). The electric field E(t) is perpendicular to the cylinder
axis (a) or parallel to it (b). U(∞) is the magnitude of U(∞) at t = ∞.

2.1. Cylinder in a Transverse Field

We first treat the case where E(t) is perpendicular to the cylinder axis (Figure 1a). The
fundamental electrokinetic equations for the liquid flow velocity u(r, t) at position r(r, θ, z)
and time t and the velocity vi(r, t) of i th ionic species are given by

ρo
∂

∂t
{u(r, t) + U(t)}+ η∇×∇× u(r, t) +∇p(r, t) + ρel(r, t)∇ψ(r, t) = 0 (2)

∇·u(r, t) = 0 (3)

vi(r, t) = u(r, t)− 1
λi
∇µi(r, t) (4)

∂ni(r, t)
∂t

+∇·{ni(r, t)vi(r, t)} = 0 (5)

πa2ρp
dU(t)

dt
= FH(t) + FE(t) (6)

where e is the elementary electric charge, k is the Boltzmann constant, T is the absolute
temperature, εo is the permittivity of a vacuum, p(r, t) is the pressure, ρel(r, t) is the charge
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density, ψ(r, t) is the electric potential, FH(t) and FE(t) are, respectively, the hydrodynamic
and electric forces acting on the cylinder. Equations (2) and (3) are the Navier–Stokes
equation and the equation of continuity for an incompressible flow (condition (i)). The term
involving the particle velocity U (t) in Equation (2) arises from the fact that the particle has
been chosen as the frame of reference for the coordinate system. Equation (4) states that
the flow vi(r, t) of the i th ionic species is caused by the liquid flow u(r, t) and the gradient
of the electrochemical potential µi(r, t). Equation (5) is the continuity equation for the i th
ionic species. Equation (6) is the equation of the motion of the cylinder per unit length.

The initial and boundary conditions for u(r, t) and vi(r, t) are given by

u(r, t) = 0 at t = 0 (7)

u(r, t) = 0 at r = a (8)

u(r, t)→ −U(r, t) as r → ∞ (9)

vi(r, t)·n̂ = 0 at r = a (10)

where n̂ is the unit normal outward from the particle surface. Equation (8) states that the
slipping plane (at which u(r, t) = 0) is located on the particle surface. Equation (10) follows
from the condition that electrolyte ions cannot penetrate the particle surface.

For a weak field E(t), the deviations of nj(r, t), ψ(r, t), and µj(r, t) from their equilibrium
values (i.e., those in the absence of E(t)) due to the applied field E(t) are small so that we
may write

ni(r, t) = n(0)
i (r) + δni(r, t) (11)

ψ(r, t) = ψ(0)(r) + δψ(r, t) (12)

µi(r, t) = µ
(0)
i + δµi(r, t) (13)

where the quantities with superscript (0) refer to those at equilibrium, the quantities, with
δ referring to the deviations from the corresponding equilibrium values, and µ

(0)
i is a

constant independent of r. It is assumed that the equilibrium concentration n(0)
i (r) obeys

the Boltzmann distribution and the equilibrium electric potential satisfies the Poisson-
Boltzmann equation, viz.,

n(0)
i (r) = n∞

i (r)e−ziy(r) (14)

∆y(r) = −κ2 ∑N
i=1 zin∞

i e−ziy(r)

∑N
i=1 z2

i n∞
i

(15)

with

y(r) =
eψ(0)(r)

kT
(16)

κ =

√√√√ e2

εrεokT

N

∑
i=1

z2
i n∞

i (17)

where y (r) is the scaled equilibrium electric potential, κ is the Debye–Hückel parameter,
and 1/κ is the Debye length.

From symmetry, we may write

u(r, t) =
(
−h(r, t)

r
E(t) cos θ,

dh(r, t)
dr

E(t) sin θ, 0
)

(18)

δµi(r, t) = −zieφi(r, t)E(t) cos θ (19)
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where E(t) is the magnitude of E(t), h(r, t), and φi(r, t) are functions of r and t. By substituting
Equations (11)–(13), (18), and (19) into Equations (2)–(5), we obtain the following equations
for h(r):

L
[

Lh(r, t)− 1
ν

∂h(r, t)
∂t

]
= G(r, t) (20)

where

L =
d
dr

1
r

d
dr

r =
d2

dr2 +
1
r

d
dr
− 1

r2 (21)

is a differential operator, G(r, t) is defined by

G(r, t) = − e
ηr

dy
dr

N

∑
i=1

z2
i n∞

i e−ziyφi(r, t) (22)

and
ν =

η

ρo
(23)

is the kinematic viscosity. It follows from Equations (9) and (18) that the transverse transient
electrophoretic mobility µ(t) can be obtained by

µ⊥(t) =
U(t)
E(t)

=
U(t)

Eo
= lim

r→∞

h(r, t)
r

(24)

We solve Equation (20) by introducing the Laplace transforms ĥ(r, s), Ĝ(r, s), and
µ̂⊥(s) of h(r, t), G(r, t), and µ⊥(r, t), respectively, which are given by

ĥ(r, s) =
∫ ∞

0
h(r, t)e−stdt (25)

Ĝ(r, s) =
∫ ∞

0
G(r, t)e−stdt (26)

µ̂⊥(s) =
∫ ∞

0
µ⊥(t)e−stdt (27)

and the Laplace transform of Equation (26) is

µ̂⊥(s) = lim
r→∞

ĥ(r, s)
r

(28)

The Laplace transform of Equation (20) thus gives

L
[

Lĥ(r, s)− s
ν

ĥ(r, s)
]
= Ĝ(r, s) (29)

By solving Equation (29) and using Equation (28), we obtain the following general expres-
sion for µ̂⊥(s):

µ̂⊥(s) =
ν
∫ ∞

a

[(
r2

a2 − 1
)√

s
ν aK0

(√
s
ν a
)
− 2
{

K1

(√
s
ν a
)
− r

a K1

(√
s
ν r
)}]

Ĝ(r, s)dr

4s
{

K1

(√
s
ν a
)
+ β⊥

√
s
ν aK0

(√
s
ν a
)} (30)

where Kn(z) is the n th order modified Bessel function of the second kind.
Now consider the low ζ potential case. In this case, it can be shown that (see Ref. [21])

φi(r, t) = r +
a2

r
(31)
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and Equation (22) becomes

G(r, t) = − εrεoκ2

η

(
1 +

a2

r2

)
dψ(0)(r)

dr
(32)

The Laplace transform Ĝ(r, s) of G(r, t) is given by

Ĝ(r, s) =
G(r, t)

s
= − εrεoκ2

ηs

(
1 +

a2

r2

)
dψ(0)(r)

dr
(33)

where the equilibrium electric potential ψ(0) (r) for the low ζ potential case is given by

ψ(0)(r) = ζ
K0(κr)
K0(κa)

(34)

which is obtained from the linearized Poisson-Boltzmann equation ∆ψ(0) (r) = κ2ψ (0)(r) (see
Equation (15)). By substituting Equation (34) into Equation (30), we obtain

µ̂⊥(s) = −
εrεoκ2ν

∫ ∞
a

[(
r2

a2 − 1
)√

s
ν aK0

(√
s
ν a
)
− 2
{

K1

(√
s
ν a
)
− r

a K1

(√
s
ν r
)}](

1 + a2

r2

)
dψ(0)(r)

dr dr

4ηs2
{

K1

(√
s
ν a
)
+ β⊥

√
s
ν aK0

(√
s
ν a
)} (35)

which agrees with Li and Keh’s result [14]. Li and Keh [14] obtained the transient elec-
trophoretic mobility µ⊥(t) by using the numerical inverse Laplace transform of Equation
(35). This method, however, involves tedious numerical calculations and is not very conve-
nient for practical uses. In order to avoid this difficulty, we employ the same approximation
method as used for the static electrophoresis problem [22]. We first note that the integrand
in Equation (35) has a sharp maximum around r = a + δ/κ, δ being a factor of order unity.
This is because the electrical double layer (of the thickness 1/κ) around the cylinder is
confined in the narrow region between r = a and r ≈ a + 1/κ. Since the factor (1 + a2/r2) in
the integrand of Equation (35) varies slowly with r as compared with the other factors, one
may approximately replace r in the factor (1 + a2/r2) by r = a + δ/κ and take it out before
the integral sign. That is, we make the following approximate replacement of the difficult
factor (1 + a2/r2) by an r-independent constant factor:

1 +
a2

r2 ≈ 1 +
1(

1 + δ
κa

)2 (36)

In the static electrophoresis [22,23], we have found that the best approximation can be
achieved if δ is chosen to be 2.55/

(
1 + E−κa) with negligible errors. We use this choice of δ

in the transient electrophoresis problem. By using this approximation, the integration in
Equation (35) can be carried out analytically to give

µ̂⊥(s) =
εrεoζ

2η

1 +
1{

1 + 2.55
κa(1+e−κa)

}2

 K0(κa)K1

(√
s
ν a
)
− 1

κ

√
s
ν K1(κa)K0

(√
s
ν a
)

s
(

1− s
κ2ν

)
K0(κa)

{
K1

(√
s
ν a
)
+ β⊥

√
s
ν aK0

(√
s
ν a
)} (37)

with

β⊥ =
1
4

(
1 +

ρp

ρo

)
(38)

We obtain µ⊥(t) from µ̂⊥(s) by using the inverse Laplace transformation, viz.,

µ⊥(t) =
1

2πi

∫ γ+i∞

γ−i∞
µ̂⊥(s)estds (39)
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where the integration is carried out along the vertical line Re(s) = γ in the complex plane,
where γ is large so that all the singularities of µ̂⊥(s) lie to the left of the line (γ − i∞,
γ + i∞) (Figure 2). Since µ̂⊥(s) has a branch point at the origin s = 0, we convert this line

integral into a contour integral over a large circle G with a cut along the negative part of
the real axis Re(s). Since the integral over the large circle Γ vanishes as its radius R tends
to infinity, the line integral is replaced by real infinite integrals along CD and EF together
with the contribution from the small circle about the origin s = 0 [24].
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By making the change in variables

s = − ν

a2 λ2 (40)

We obtain from Equation (37) the following expression for µ⊥(t):

µ⊥(t) =
εrεoζ

2η

1 +
1{

1 + 2.55
κa(1+e−κa)

}2


1− 4

π2β⊥

{
1 +

K1(κa)
κaK0(κa)β⊥

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(
1 + λ2

κ2a2

)
λ∆⊥(λ)

dλ

 (41)

with

∆⊥(λ) =
{

λJ0(λ)−
J1(λ)

β⊥

}2

+

{
λY0(λ)−

Y1(λ)

β⊥

}2

(42)

where Jn(λ) and Yn(λ) are, respectively, the n th order Bessel functions of the first and second
kinds. In the limit of t→∞, Equation (41) tends to the transverse steady electrophoretic
mobility, viz., [22]

µ⊥(∞) =
εrεoζ

2η

1 +
1{

1 + 2.55
κa(1+e−κa)

}2

 (43)

which agrees with the following exact expression with negligible errors [22,23].

µ⊥(∞) =
εrεoζ

η

{
1− 4(κa)4

K0(κa)

∫ ∞

κa

K0(x)
x5 dx +

(κa)2

K0(κa)

∫ ∞

κa

K0(x)
x3 dx

}
(44)

Equation (41) is the required approximate expression for the transverse transient
electrophoretic mobility µ⊥(t) with negligible errors. In the limit of large κa (κa » 1),

µ⊥(t) =
εrεoζ

η

1− 4
π2β⊥

∫ ∞

0

exp
(
− νt

a2 λ2
)

λ∆(λ)
dλ

 (45)



Fluids 2022, 7, 342 7 of 11

which agrees with the results of Morison [2] and Li and Keh [14]. For small κa (κa « 1),
Equation (41) reduces to

µ⊥(t) =
εrεoζ

2η

1 +
4

π2β2
⊥
{

ln
(

κa
2
)
+ γ

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(κ2a2 + λ2)λ∆⊥(λ)
dλ

 (46)

where γ is Euler’s constant (γ = 0.5772).

2.2. Cylinder in a Tangential Field

We next treat the case where the applied electric field E(t) = (0, 0, E(t)) is parallel to the
cylinder axis (Figure 1b). The liquid velocity u(r, t) can be expressed as u = u(0, 0, uz(r, t)).
The Navier–Stokes equation for uz(r, t)) is given by

ρo
∂

∂t
{uz(r, t) + U(t)} − η

1
r

d
dr

{
r

duz(r, t)
dr

}
− ρ

(0)
el (r, t)E(t) = 0 (47)

By using the Poisson equation ρ
(0)
el (r, t) = −εrεo(1/r)(d/dr)

(
rdψ(0)/dr

)
and integrating

Equation (47), we finally obtain the following expression for the Laplace transform µ̂‖(s) of
the transient tangential electrophoretic mobility µ‖(t):

µ̂‖(s) =
εrεoζ

η

K1

(√
s
ν a
)
− 1

ζa
∫ ∞

a rψ(0)(r)K0

(√
s
ν r
)

dr

s
{

K1

(√
s
ν a
)
+ β‖

√
s
ν aK0

(√
s
ν a
)} (48)

with
β‖ =

ρp

2ρo
(49)

For the low ζ-potential case, Equation (48) becomes

µ̂‖(s) =
εrεoζ

η

K0(κa)K1

(√
s
ν a
)
− 1

κ

√
s
ν K1(κa)K0

(√
s
ν a
)

s
(

1− s
κ2ν

)
K0(κa)

{
K1

(√
s
ν a
)
+ β‖

√
s
ν aK0

(√
s
ν a
)} (50)

with
β‖ =

ρp

2ρo
(51)

As in the case of µ⊥(t), by using the inverse Laplace transform µ̂⊥(s), i.e.,

µ‖(t) =
1

2πi

∫ γ+i∞

γ−i∞
µ̂‖(s)e

stds (52)

We obtain the following expression for µ‖(t):

µ‖(t) =
εrεoζ

η

1− 4
π2β‖

{
1 +

K1(κa)
κaK0(κa)β‖

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(
1 + λ2

κ2a2

)
λ∆‖(λ)

dλ

 (53)

with

∆‖(λ) =

{
λJ0(λ)−

J1(λ)

β‖

}2

+

{
λY0(λ)−

Y1(λ)

β‖

}2

(54)

In the limit of t→∞, Equation (53) tends to the tangential steady electrophoretic mobil-
ity [22,23], viz.,

µ‖(κa, ∞) =
εrεoζ

η
(55)



Fluids 2022, 7, 342 8 of 11

In the limit of large κa, Equation (53) tends to

µ‖(t) =
εrεoζ

η

1− 4
π2β‖

∫ ∞

0

exp
(
− νt

a2 λ2
)

λ∆(λ)
dλ

 (56)

while for small κa, Equation (53) tends to

µ‖(t) =
εrεoζ

η

1 +
4

π2β2
‖
{

ln
(

κa
2
)
+ γ

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(κ2a2 + λ2)λ∆‖(λ)
dλ

 (57)

It should be noticed that as in the case of a sphere [18], there is a simple correspondence
between the Laplace transform of the transient mobility of a cylinder and its dynamic
mobility. That is, µ̂⊥(s) and µ̂‖(s) of the transient electrophoretic mobilities µ⊥(t) and
µ‖(t), respectively, can be obtained from the dynamic electrophoretic mobility µ⊥(ω) and
µ‖(ω) of a cylinder under an oscillating electric field of frequency ω by replacing -iω with s
and G(r) by G(r)/s.

3. Results and Discussion

The principal results of the present paper are Equations (41) and (53) for the trans-
verse and tangential transient electrophoretic mobilities, respectively. We define the time-
dependent transient Henry function as

µ⊥(t) =
εrεoζ

η
f⊥(κa, t) (58)

µ‖(t) =
εrεoζ

η
f‖(κa, t) (59)

We thus obtain

f⊥(κa, t) =
1
2

1 +
1{

1 + 2.55
κa(1+e−κa)

}2


1− 4

π2β⊥

{
1 +

K1(κa)
κaK0(κa)β⊥

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(
1 + λ2

κ2a2

)
λ∆(λ)

dλ

 (60)

and

f‖(κa, t) = 1− 4
π2β‖

{
1 +

K1(κa)
κaK0(κa)β⊥

} ∫ ∞

0

exp
(
− νt

a2 λ2
)

(
1 + λ2

κ2a2

)
∆(λ)

dλ (61)

As t→∞, the transverse transient Henry functions f⊥(κa, t) and f‖(κa, t) given by Equa-
tions (60) and (61), respectively, tend to the following steady Henry functions [22]:

f⊥(κa, ∞) =
1
2

1 +
1{

1 + 2.55
κa(1+e−κa)

}2

 (62)

f‖(κa, ∞) = 1 (63)

Note that Equations (41) and (60) are approximate expressions (with negligible errors)
that have been derived from the approximation given by Equation (36), while Equations (53)
and (61) are exact results.

It is of interest to note that the ratio of the transient Henry function to the steady Henry
function takes the same form for the transverse and tangential transient Henry functions,
that is, f⊥(κa, t)/ f⊥(κa, ∞) and f‖(κa, t)/ f‖(κa, ∞) are the same except for the difference
between β⊥ and β‖.
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Figure 3 shows some examples of the calculation of f⊥(κa, t) (Figure 3a) and f‖(κa, t)
(Figure 3b) plotted as a function of κa at several values of scaled time νt/a2 at ρp/ρo = 2.
Figure 3 shows how f⊥(κa, ∞) and f‖(κa, ∞) approach their steady values f⊥(κa, ∞) and
f‖(κa, ∞) with time.
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In the present paper, we treat an infinitely long cylinder, neglecting the end effects. 
Sherwood [25] demonstrated that the end effects can be neglected under the condition 
that the cylinder length is much longer than the double-layer thickness 1/κ, Under this 
condition, it can also be assumed that there is no interaction between cylinders when we 
consider a dilute suspension of infinitely long cylinders. 
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its axis and the applied electric field. In the present paper we have treated the two types 
of fields, that is, transverse and tangential electric fields. When an electric field is applied 

Figure 3. Time-dependent transient Henry functions f⊥(κa, t) (a) and f‖(κa, t) (b) of a cylindrical
colloidal particle of radius a and mass density ρp in an electrolyte solution of mass density ρo,
kinematic viscosity ν, and Debye–Hückel parameter κ plotted as a function of κa for various values
of scaled time νt/a2 at ρp/ρo = 2. The values of f⊥(κa, t) and f‖(κa, t) at t→ ∞, i.e., f⊥(κa, ∞) and
f‖(κa, ∞) are the steady Henry functions.

In the present paper, we treat an infinitely long cylinder, neglecting the end effects.
Sherwood [25] demonstrated that the end effects can be neglected under the condition
that the cylinder length is much longer than the double-layer thickness 1/κ, Under this
condition, it can also be assumed that there is no interaction between cylinders when we
consider a dilute suspension of infinitely long cylinders.

Finally, let us consider a cylindrical particle oriented at an arbitrary angle between its
axis and the applied electric field. In the present paper we have treated the two types of
fields, that is, transverse and tangential electric fields. When an electric field is applied at
an arbitrary angle relative to the cylinder axis, the electrophoretic mobility is given by the
weighted average of f⊥(κa, t) and f‖(κa, t). Thus -the transient electrophoretic mobility
f av(κa, t) averaged over a random distribution of orientation is given by [26]:

fav(κa, t) =
2
3

f⊥(κa, t) +
1
3

f‖(κa, t) (64)

Figure 4 shows some examples of the calculation of f av(κa, t) of an arbitrarily oriented
cylinder (solid curves) as a function of κa for several values of scaled time νt/a2 at ρp/ρo = 2
in comparison with the transient mobility f sp(κa, t) of a sphere [18] (dotted curves) with the
same radius a and mass density ρp as the cylinder.
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Figure 4. Time-dependent transient Henry function fav(κa, t) of an arbitrarily oriented cylinder with
radius a and mass density ρp in an electrolyte solution of mass density ρo, kinematic viscosity ν,
and Debye–Hückel parameter κ plotted as a function of κa for various values of scaled time νt/a2 at
ρp/ρo = 2 (solid curves). The transient Henry function f sp(κa, t) for a sphere [18] is also shown for
comparison (dotted curves).

It is seen from Figure 4 that the average transient Henry function f av(κa, t) of a cylinder
at a finite time is considerably lower than the transient Henry function f sp(κa, t) of a sphere
with the same radius a and mass density ρp so that a cylinder requires a much longer time
to reach its steady mobility than the corresponding sphere, in contrast to the case of steady
electrophoresis, where f av(κa, t) is quite similar to f sp(κa, t).

The shape and size dependence of the steady Henry function decreases as its size
relative to the Debye length (1/κ) increases and vanishes in the thin double-layer limit (i.e.,
in the limit of κa→∞ for a sphere and a cylinder, each with radius a) so that a sphere and a
cylinder exhibit the same mobility value as that of a particle with a planar surface. On the
other hand, even in this limit, the transient Henry function always depends on the particle
shape and size.

The present theory can be extended to other types of applied electric fields. It can be
shown that in the case where the applied field is an oscillating electric field with frequency
ω (i.e., the applied electric field is proportional to e−iωt), the inverse Laplace transforms
µ̂⊥(s) and µ̂‖(s) of the transient electrophoretic mobilities µ⊥(t) and µ‖(t), respectively,
can be obtained by replacing s with s-iω in Equations (37) and (50).

4. Conclusions

We developed the theory of transient electrophoresis of a weakly charged, infinitely
long cylindrical colloidal particle under an application of a transverse or tangential step
electric field. We derived closed-form expressions for the transient electrophoretic mobilities
µ⊥(κa, t) and µ‖(κa, t) of a cylinder (Equations (41) and (53)) without involving numerical
inverse Laplace transformations and the corresponding time-dependent transient Henry
functions f⊥(κa, t) and f‖(κa, t) (Equations (60) and (61)). The transient Henry function
f av(κa, t) of an arbitrarily oriented cylinder is also derived (Equation (64)). It is shown that
in contrast to the case of steady electrophoresis, the transient Henry function f av(κa, t) of
an arbitrarily oriented cylinder at a finite time is significantly smaller than the transient
Henry function f sp(κa, t) of a sphere with the same radius a and mass density ρp as the
cylinder so that a cylinder requires a much longer time to reach its steady mobility than the
corresponding sphere. It is also shown that, unlike the steady Henry function, the transient
Henry function for a cylinder differs from that of a sphere even in the limit of large κa.
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