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Abstract: The oscillation and collective behavior of convective flows is studied by a computational
fluid dynamics approach. More specifically, the rising dynamics of heated fluid columns is simulated
in gravitational field using a simplified 2D geometry. The numerical method uses the FEniCS package
for solving the coupled Navier-Stokes and heat-diffusion equations. For the flow of a single heated
fluid column, the effect of the inflow yield and the nozzle diameter is studied. In agreement with the
experiments, for a constant nozzle diameter the oscillation frequency increases approximately linearly
as a function of the the flow rate, while for a constant flow rate the frequency decreases as a power
law with the increased nozzle diameter. For the collective behavior of two nearby flows, we find a
counter-phase synchronization and a decreasing trend of the common oscillation frequency with the
distance between the jets. These results are in agreement with the experiments, and our computational
study also suggests that the phenomenon is present on largely different length-scales.
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1. Introduction

Our recent experimental results reported that rising gas columns can perform oscil-
lations and their interaction leads to fascinating collective behavior [1]. The oscillations
and their related instabilities have been previously known (see for example [2-6]), and this
problem is still actively in the focus of the scientific community [7,8]. Besides many refined
experiments, theoretical studies based on simple hydrodynamics [1,5], theory of dynamical
systems [5], impulse response [2], scaling theory [8], linear stability analyses [2,9], and
numerical fluid dynamics [6,7] were considered. Although the emerging oscillations are
well-studied, to the best of our knowledge there are no theoretical studies on the interaction
and collective behavior of nearby jets.

The collective behavior of convective flows can be discussed in analogy with the very
similar phenomena known for diffusive flames [10-18]. For interactive jets, the toy-model
presented in Ref. [1] is inadequate to explain the fine details of the observed phenomena,
therefore a more sophisticated theoretical approach is needed. On the other hand, we
also believe that this intriguing phenomena is present on larger length-scales as well,
being relevant to industrial processes also. The present study contributes in this sense, by
considering a numerical hydrodynamics approach to this puzzling phenomenon.

For experimental results, we consider as a reference our previous study realized with a
controlled flow of Helium into air [1]. In these experiments, the Schlieren technique [19,20]
was used to visualize the flow, also allowing a digital processing of the oscillations. From the
images processed by the Otsu method [21,22], the characteristic frequency and the relevant
synchronization order parameter was derived. For a better understanding of the phenom-
ena, some sample movies with original recordings and the ones processed with the Otsu
method are provided on our YouTube channel [23] and are uploaded also as Supplemen-
tary Materials for this article. For a single flow column, the experiments investigated the
effect of the nozzle diameter and flow rate on the observed oscillation frequency. For the
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collective behavior of two nearby flows, our experiments investigated as a function of the
separation distance between the flows (i) the phase difference between the oscillations,
(ii) their common oscillation frequency, and (iii) a proper synchronization order parameter.

At constant Helium flow, the oscillation frequency of the rising gas column decreases
in form of a power law as a function of the nozzle diameter. This finding is similar with the
observed oscillation frequency of the flames of candle bundles as a function of the number
of candles in the bundle [18]. For a constant nozzle diameter it was found that the oscillation
frequency of the flow increases linearly with the flow yield. For the collective behavior of
two nearby and clearly separated flow columns with similar flow parameters, only counter-
phase synchronization was observed. This is somehow different from the phenomena
observed for candle bundle flames, where both in-phase and counter phase synchronization
is present depending on the distance between the flames [18]. The experiments concluded
that for short distances, the oscillation frequency of the flow column becomes significantly
higher than the frequency observed for non-interacting Helium columns with the same
parameters (flow rate and nozzle diameter). All the above summarized results should be a
test for any model and numerical approach on this intriguing phenomenon.

Due to the complexity of the problems related to flows in different spatial config-
urations and environments, the computation approaches are often the only theoretical
possibilities to realistically model such phenomena (see for example Refs. [24,25]). Even
with such a modeling methodology, imposing the right boundary conditions and offering a
proper discretization of space and time raises many technical challenges [26]. The incredible
revolution we experience nowadays in computational resources and methods have helped
us overcome much of these difficulties, and computational fluid dynamics have become
the primary tool to investigate theoretical problems related to fluid dynamics. However,
even with the presently available computational power, we are often forced to investigate a
simpler flow topology and reduce the dimensionality of the problem [27]. This is nowadays
a standard procedure for cases where the problem becomes computationally difficult in 3D.
A two-dimensional simplification is usually considered when the periodicity and symmetry
of the considered flow allows for it. Assuming in the following a cylindrical symmetry
for the flow, we consider a two-dimensional numerical fluid dynamics approach for the
above mentioned phenomenon. First, we discuss the theoretical background on which
our approach is built and the details of the applied numerical method. Using simple and
straightforward examples, we thoroughly test the simulation environment to gain confi-
dence in the method. After this methodological part, we approach the proposed problem
and compare the results of the simulations with the experimental data from Ref. [1]. Finally,
the conclusions are drawn and the universality features of this intriguing phenomenon
are discussed.

Before presenting our simulation methodology, we have to mention that we use
equations and system parameters in a dimensional form, rather than following the accepted
methodology with dimensionless variables. The reason for this is that in our approach
we need to take into account the spatial and temporal variation of the density that is
connected with the temperature field. In such cases we cannot use a constant Reynolds
number, and the numerical advantage of the dimensionless formalism is not obvious.
On the other hand, by using dimensional variables and parameters, the connections with
the experimental conditions, time, and length-scales are more straightforward.

2. The Numerical Approach

We present here a 2D numerical approach, which is suitable for modeling the oscil-
lations and collective behavior observed in the rising gas columns. In order to further
simplify the problem, instead of a Helium column injected from the bottom we consider
the flow of the same incompressible fluid as the surrounding, heated in a restricted region
at the bottom of the simulated area. In such a manner we get a rising gas column that is
also realizable in experiments.
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Using the same Schlieren technique as previously, in Figure 1 and in the movies
presented in Ref. [28], we show that very similar instabilities and oscillations occur. In these
experiments the heating is realized by a simple heating coil in which one controls the
dissipated electric power. Unfortunately, in such experiments there is no good control
over the flow debit, therefore one cannot conduct such carefully monitored experiments as
the ones done for Helium. The numerical results are therefore compared with our earlier
experiments [1].

The advantage of the proposed setup is that we do not have to apply the numerical
fluid dynamics method for two component gases. We do pay however for this simplification
by the non-homogeneous temperature field, therefore extra transports and gradients have
to be taken into account.

128ms_2 |160ms._ 192ms__2 224ms.__J

Figure 1. Visualization of a rising hot-air column using the Schlieren technique. Similar instabilities
and oscillations appear in rising Helium gas columns.

In our approach, the fluid is considered to be ideal, as described by the Navier—Stokes
equation. For an incompressible fluid in a gravitational field, the Navier-Stokes equation is
written in the following form:

+po(u-Vju=-Vp+gp+pAu 1)
V-u=0 (2)

Ju
Por

Here p denotes the density, p is the pressure, g the gravitational acceleration, u is the
velocity of the fluid, and y denotes the fluid’s viscosity. The quantities u, p and p can be
time- and position-dependent in the flow-space.

For the considered problem, the convective flow due to the temperature difference
plays a key role, therefore in the Navier-Stokes equation, we will take into account the
temperature dependence of the density and also describe the time evolution of the tem-
perature inside the fluid. As previously emphasized, this is the main reason as to why
the dimensionless form of the equation does not reduce the numerical complexity of
the problem.

The evolution of the temperature and the temperature dependence of the density are
approximated by the following equations:

N
PoI+ (T -To) «
9T ®)
—=D-AT—(u-V)-T
5 (u-V)
In the above equations, py is the density at Ty, T is the temperature of the fluid at
a given spatial position and in a given time-moment, D is the diffusion constant, and
Tp is the ambient temperature. The numerical solution of the coupled systems of partial
differential Equations (2) and (3) was done by using the "FEniCS" software package [29].
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FEniCS is an open-source platform developed for solving Partial Differential Equation
(PDE) systems. We chose this platform because it has high-level programming interfaces
(C ++, Python), the shape of the equations in the program code is similar to their symbolic
form, and the program is optimized for a wide range of hardware from laptops to high-
performance clusters.

2.1. The Simulation Code
FEniCS uses finite element methods to solve PDEs. As an example in Appendix A.1,

we illustrate how to solve the simple 2D Poison equation with FEniCS. For our specific
problem we first deal with the term describing the evolution of the temperature:

oT
E:D~AT—(u-V)~T 4

This equation contains a time derivative, so in addition to the coordinates we also
have to discretize time. This is done by the Euler method, as follows:

W =D-AT(t) = (u-V) - T(t), ®

We then bring each term to the left hand side of the equation, we multiply the equation
by a T test function, and integrate the equation over the entire simulated domain:

/Q[T(t+dt)—T(t)—D~AT(t)-dt+(u-V)-T(t)~dt]~Td0:0 ©)

The equations above contain a second-order derivative for the coordinates, which is
eliminated by partial integration:

/Q(VZ-T(t))-rdQ: aQ<a§I(1t)>~Tds—/QVT(t)-VTdQ @)

Here we denoted by n the unit normal vector to the dQ) surface. The derivative with

respect to n is defined as:

T~ (1) n ®

Rewriting Equation (6) using the above result and the fact that under the Dirichlet and
free boundary conditions the surface integral disappears, we obtain the final form:

/ ([T(t+dt) — T(H) + (u-V)-T(t)-dt] -7 +D-VT()-Vr-dt )dQ=0  (9)
Q
The incompressible Navier-Stokes equation (2) was solved using the IPCS (Incremental

Pressure Correction Scheme) scheme [30]. The IPCS method consists of three steps, but
before specifying the steps we introduce the following functions and notation:

([Veu] +[Veou]l)

N =

[e(u)] =
[o(u,p)] :2~u-€(}1)—P~1
(£,8)q I./Qf'gdﬂ

([A], [B)q = [ [A]: [B] dO

Q

(10)

The ® product defines a matrix with the following elements:

814]-
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We denoted by |...] a square matrix, by [...|” the transpose of a matrix, and by : the

inner product of matrices:
[A] : [B] = ZAU Bij (12)
ij

Using the € and ¢ functions and the specified notation, the steps of the method will be
described in the following. First we reconsider the Navier-Stokes equation using a set of
test functions:

p- (MG v) o ult) Vu(t) v+ (oM p0) ] ew])  + (3
t)+u*
+(p(t) -1, V)0 — (n- [V (LLE))T,v) =p-(gviq
Here v is the test function. For more information on making this choice, one should
consult [29] The first step of the method is the calculation of an intermediate velocity u*

from which the pressure will be determined. Then, the pressure is determined in the t 4 dt
step in equation:

Vu*,
(Vp(t+dt), V) = (Vp(t), Vo) - 0 (19

In the equation above, g is a test function for the pressure. In the last step, the velocity in
the t 4- dt time step is determined based on the pressure and the intermediate velocity:

dt- (V(p(t+dt) — p(t),v)q (15)
0

(u(t+dt),v)q = (u*,v)qg —

The method described above for solving the incompressible Navier—Stokes equation
is implemented in 2D. FEniCS uses a triangular adaptive grid to solve the 2D partial
differential equation. We carefully verified the grid independence of the results, aspects
which will be discussed in the next section. Here, in Figure 2, we illustrate the topology of
the grid we used in the simulation space.
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Figure 2. The topology of the used grid. On the left panel, due to the finite scale of the lines, it is not
possible to visualize the grid of the whole simulation area. A magnified image of the marked region

is illustrated in the panel on the right.

In order to solve the equations numerically, we need boundary conditions in addition
to discretization. We used Dirichlet and free boundary conditions. The Dirichlet boundary
condition means that the value of the quantity at a given point is fixed. In the case of the
free boundary condition, the derivative as a function of the coordinates of the quantity at
the given point is 0.

We visually tested our 2D simulation environment on two simple problems. First
we intended to reproduce the Karman vortices in the flow of a fluid around an obstacle
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(Appendix A.2). Second, we simulated the expansion and rising of a heated sphere,
verifying the code for non-homogeneous temperature conditions as well (Appendix A.3).
The test simulations reproduced the expected realistic behavior for these known problems,
giving confidence for the correct implementation of the relevant equations discussed above.

2.2. Simulating the Rising Hot Air Column

In the followings we provide the details for implementing the simulations, aiming to
reproduce the characteristic oscillations observed in a rising gas column. The boundary
conditions introduced for velocity and temperature will be justified, and we explain how
the time series of the characteristic oscillations were obtained and how the oscillation
frequency was calculated.

We consider the inflow geometry presented in Figure 3, leading to the flow illustrated
in Figure 4a. On the sidewalls, the value of the velocity is fixed to 0, on the lower boundary,
the x-direction component of the velocity is considered as 0, and the y-direction component
is given by the following parabolic-like kernel (see Figure 3)

vy(x,0) = clf(x, %) (% — x) (x + %) + czf(x, % (1- %)), (16)
with:
_ 1 1
f(a’ b) - E—CS-(b+u)+l - 653-(bfa)+1' (17)
r600
2.54
r550
2.0
+500
= 151 —
N 4505,
- ~
S 1.0 L
400
051 350
00| /— ———— [3p
—-0.1 0.0 0.1
x [m]

Figure 3. An example of the y-component of velocity, vy (x,0), and temperature profile, T(x, 0), of the
heated fluid column at the bottom boundary of the simulated space. The following parameters were
used: c; =1600m 1571, ¢y =0.1m-s !, c3 =2000m~1, d =0.08m, Ty = 300K, H = 0.3 m.

In the equation from above, d denotes the nozzle diameter, H denotes the width of the
simulated space, the parameters c1, ¢, determine the incoming flow rate of the fluid, and c3
is a tuning parameter governing the cut in each profile.

At the upper boundary (height L), free boundary conditions are applied for the y
component of the velocity, and for the x component the Dirichlet condition is applied,
i.e., vx(x, L) = 0. For pressure, Dirichlet boundary conditions were used in the upper part
of the simulated volume, p(x,L) = g - po - I, and for the free boundary condition for the
other boundaries. The temperature on the walls is fixed to Tp. On the upper boundary
we consider Tj if the y-direction component of the velocity is negative, otherwise free
boundary conditions are used. The temperature at the lower boundary is determined by
using the following equation:

T(x,0) = To+ Theatingf (* %) (18)
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Figure 4. Oscillation of a heated air column in snapshots. The images show the temperature space at the
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specified t time moments for two different length scales (a,b). The gravity acts in the negative direction
of the y-axis and the parameters of the simulation were chosen as follows: (a) « = 0.33 - 102K, 00 =
12kgm 2, Ty = 300K, D = 10 * m?s 2Kl g, = —981ms 2y = 19-10° kgs !, ¢, =
01ms!, 3 =2000m~!,d=008m,c; =1600m s, (b)a =103K !, pg = 1kgm2, Ty =
300K,D =5-102m?s 1Kl g = —981ms 2y =5102kgs e, = 04ms !5 =
5m1,d=8m,¢ =0375m Ls L.

Here, the Tjeping temperature governs the form of the temperature profile at y = 0
height. For simplicity reasons we have used in all the presented results Tj,eqting = To. In
the first attempts at the upper part of the simulated box, the free boundary condition
was considered for the velocity. However in such cases, unexpected instabilities occurred
and after a certain time the heated fluid column was pushed to one of the sidewalls. We
have carefully examined this phenomenon and concluded that a self-amplifying effect is
responsible for its development. Due to the convective flow, the amount of fluid leaving the
simulation box is larger than the volume of fluid flowing into the simulation box through
the lower boundary. Since the fluid is incompressible, the fluid must flow back into the
simulation box through the upper boundary. Since there is always an asymmetry in the
profile of the fluid inflow, this will slightly deflect the outflowing column. In the direction
of the deflection, the inflow area decreases, so the asymmetry in the fluid inflow increases.
An increase in asymmetry over time will result in the fluid flowing along one of the walls.
This is the simple explanation of the observed instabilty.

Two methods were used to eliminate these instabilities. The first method is to flow a
fluid of ambient temperature Tj at a constant rate on both sides of the heated air column.
Since the flow is two-dimensional, the fluid flowing on a given side can only leave on the
same side and this will always provide a minimum distance from the wall for the rising jet.
The second method is to allow only the y-direction component of the velocity at the upper
boundary. Combining these two methods will eliminate the tendency of the jet to approach
one of the sidewalls.

For the upper boundary, a proper boundary condition has to be applied for the inflow-
ing fluid temperature as well. At the upper boundary, an inflow is also necessary in order
to respect the incompressibility of the fluid. Since the temperature of the outflowing fluid
varies over a wide range we cannot apply the Dirichlet boundary condition to the whole
upper boundary because this would cause unmanageable gradients. Avoiding large gradi-
ents due to large temperature differences was solved by applying the boundary condition
only to those points where the y-direction component of the velocity became negative.

Before performing our large-scale computations we have checked that the used space-
discretization (grid) and chosen time-step does not influence the observed trends. Grid
independence was proved by reducing and increasing space and/or time discretization
consecutively, and comparing the trends and values for the relevant numerical parameters.
In Figure 5, we illustrate the grid independence by plotting the time series of the observed
oscillations for different grid sizes. More precisely we plot the number of pixels with an
intensity above a given threshold detected at bottom of the simulated area (up to height:
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L/3). The observed oscillation frequency is practically independent of the grid size in case

of the refined grids considered in the simulations.

The time series for the relevant hydrodynamical parameters were generated by follow-
ing the temperature distribution in the simulated space. The characteristic frequency was
determined by a Fourier transform and from the Power Spectral Density (PSD) the charac-
teristic frequency was calculated. The used signal is the average of the pixel intensities in
the lower part of the simulated area (height smaller than L/3). A characteristic signal and

the corresponding PSD is sketched in Figure 6.
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Figure 5. Oscillations observed in the flow when using different grid-sizes.
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Figure 6. (a) Characteristic oscillation of the average temperature in the lower simulation area (height
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Fluids 2022, 7, 339

90f18

For realistically chosen parameters, it was shown that the model is capable of produc-
ing an oscillation similar to the one observed in the case of the Helium column. Interestingly,
it was found that such oscillations are possible even on largely different length-scales. The
observed oscillation is shown in Figure 4a,b. where we illustrate the temperature space
at subsequent time moments. For the simulations presented in Figure 4, we used the
parameters specified in the figure caption.

For a quantitative evaluation of the simulated dynamics, the Otsu method was applied
for the 2D temperature field. To obtain the time series, in uniform time intervals the Otsu
processed pixels were summed up to a certain height, after this the obtained time series
was divided by its average value. The oscillation frequency was calculated in a similar
manner with the experiments, based on the above generated time series. In the first step,
a Fourier transform was applied to the time series and then the value of the frequency
belonging to the largest peak was determined as the relevant oscillation frequency.

With the implemented simulation code we examined how the inflow rate (yield) of
the heated fluid column and the nozzle diameter affects its oscillation frequency. We
also investigated the collective behavior for the oscillation of two columns placed nearby
each other.

2.3. Numerical Results for the Oscillation Frequency

The effect of flow yield and nozzle diameter was examined on two different length-
scales. To study the flow yield we used the parameter sets (a) and (b) introduced above,
and the nozzle diameters were d = 0.08 m and d = 8 m, respectively. For constant c3, cy,
and d parameters, the yield (flow debit) of the heated fluid only depends on ¢;:

d
@sz% vy(x,0) dx = (19)

= f%%[clf(x,%) (% —x) (x—l— %) —l—czf(x,%(l - %))]dx

The computed oscillation frequency of the heated fluid column as a function of the &
parameter is plotted in Figures 7a and 8a. One can observe that the oscillation frequency
increases as the flow rate ® increases, and this increasing trend can be well approximated
by a linear fit in good agreement with the experimental results plotted in Figure 9.

The effect of nozzle diameter on the oscillation frequency was investigated at a constant
inflow yield. Since the yield ® depends on d according to Equation (19), for different nozzle
diameters we must rescale the parameters c; so that the flow rate remains constant. For the
smaller length-scale simulations, we used ®; = 0.076 m? /s flow yield and for the larger
scale simulations, we used ®; = 29 m?/s flow yield. To keep the flow yield for different
nozzle diameters constant, we varied the value of the c; parameter. The ¢; values for the
different nozzle diameters are shown in Tables 1 and 2.

(a) M 12.51 o ®)
&

8 2 AN
- o 1001 .
] /.’ 5] .
:% 2 :% 7.51 e.

¥ g
.- ®-__
el 501 T
o ‘ ‘ ‘ ‘ ‘ ___9—e
0.05 0.10 0.15 0.04 0.06 0.08 0.10 0.12 0.14

flow yield (®) [m?/s] nozzle diameter (d) [m]

Figure 7. Simulation results for the smaller length-scale. (a) shows the oscillation frequency of the
heated fluid column as a function of the flow yield ® fixed by Equation (19) ford = 0.08 m inflow
diameter. (b) shows the oscillation frequency of the heated fluid column as a function of the d nozzle
diameter. The other parameters used are the same as the ones specified in the caption of Figure 4,
the value of ¢; for the different nozzle diameters are given in Table 1.
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Figure 8. Simulation results for the larger length-scale. (a) shows the oscillation frequency of the
heated fluid column as a function of the flow yield ® fixed by Equation (19) for d = 8 m inflow
diameter. (b) shows the oscillation frequency of the heated fluid column as a function of the d nozzle
diameter. The other parameters are the same as the ones specified in the caption of Figure 4. The value
of ¢q for the different nozzle diameters are given in Table 2.

»
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Figure 9. Experimentally observed oscillation frequency of a Helium column as a function of the
yield (flow debit) obtained for a setup with a nozzle diameter of 2 cm. With the increasing flow yield,
the frequency of the oscillation increases in an almost linear manner. The plot is done by using our

experimental results detailed in Ref. [1].

Table 1. Value of the ¢; parameter for different nozzle diameters d, in order to keep the flow rate
@1 = 0.076 m?/s.

d [m] 0.04 0.06 0.08 0.1 0.12 0.14
c1 [m~1s71) 6781 1952 800 398 223 136

Table 2. Value of the c¢; parameter for different nozzle diameters d, in order to keep the flow rate
® =29m?/s.

d [m] 7 8 9 10 11 12
c1 [m™1s7) 0.45 0.3 0.21 0.153 0.11 0.088

For both length scales, a decreasing trend of the oscillation frequency as a function of
the nozzle diameter was observed. The results in such sense are plotted in Figures 7b and 8b,
the trend is in good agreement with the experimental results shown in Figure 10.
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Figure 10. Experimentally observed oscillation frequency of a Helium column as a function of the
nozzle diameter for a yield of & =46 + 2.3 L/min. The plot is done by using our experimental results
detailed in Ref. [1].

2.4. Numerical Results for the Collective Behavior

We now turn our attention to reproducing the experimentally observed collective
behavior in form of anti-phase synchronization.

The dimensions of the simulation boxes used to study the collective behavior are as
follows: 46 m wide (H = 46 m) and 30 m high (L = 30 m) for the large length-scale and 0.3 m
wide (H = 0.3 m) and 0.15 m high (L = 0.15 m) at the smaller length-scale. At the lower
boundary, the x component of the inflow fluid velocity is 0, and the y component is given
by the following kernel function:

(50 = (s dot) (o) (x4 £)
+c1f<x+do,%> (% —do —x) (x+d0 + %) +sz(x,% _64) (20)

Here the value of ¢4 is 0.5 m for the large scale system and 0.005 m for the small
scale system.

This leads to an inflow profile with two peaks, where the centers are separated at a
distance of 2dy, as illustrated in Figure 11. The temperature profile is adjusted accordingly:

T(x,0) = To + Theating f (x —do, %) + Theatingf (x +do, %) (21)
61 7 v 600
51 m m £ 550
B D =
S 2] —400[N
1 U 350
R — F ) L— 300

Figure 11. An example for the y-component velocity vy(x, 0) and temperature, T(x,0) profiles of the
heated fluid columns at the bottom boundary of the simulated space. The following parameters were
used:c; =045m - s, cp=04m-s ), c3=5m !, d=7m, dy =6m, Tp = 300K, H = 46 m.
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We used the same simulation parameters as before and fixed d = 7m, ¢c; = 0.45 m1.g71

values for the large length-scale and d = 0.04 m, c; = 6400 m~! - s~! values for the small
length-scale system. Again, for the presented results we considered Tjting = To. The
experimental results from Ref. [1] show that at a small separation distance, collective
behavior in form of counter-phase synchronization appears. A snapshot for a simulated
stable collective behavior is visible in Figure 12, successfully reproducing this counter phase
synchronization on the smaller length-scale. Similar behavior is observable for the larger

length-scales as well.
T

' ) N
‘ =9.U4 ‘ 0.0 550
0.1F |00
4 ‘ | ' = Baso

0.0
0.1 400
| & 350

J 0.0

0.1 00 -0.1 300

Figure 12. Counter-phase synchronization of two nearby heated columns. Computer simu-
lation results with the following parameters: a = 0.33-1072 K1, o0 = 1.2 kgm™2, Ty =
300K, D =104 m?s 1K}, ¢y = —981ms 2,y =196-10° kgs™!, co = 0.1 ms™!, 3 =
2000 m~!, d=0.04 m,c; = 6400 m1-s7!, H=03m, 2-dy = 0.03 m.

For the pictures processed with the Otsu method, the collective oscillation of nearby
heated fluid columns are shown in Figure 13a,b, for the small and large length-scales,
respectively.

-

Figure 13. Simulated time series for the oscillations of nearby heated fluid columns. The motion of the
interface is detected by the Otsu method at the same height from the nozzle. For smaller separation
distances and for the two different nozzle diameters considered in the simulations ((a) 2 - dy =
0.03 m, (b) 2 -dy = 5 m) a clear counter-phase synchronization is observable. The parameters of the
simulations are (a): « = 0.33-10"2 K1, po=12 kg~m_2, To=300K,D =10"*m2s 1.K1, 8y =
—9.81m-=s72,u=19-10"kgs !, c =01m-=s"!,c3 =2000m~!,d =004m,c; =6400m 1571,
2-dy = 003m. (b):a = 103K, pg =1kgm2 Typ =300K D =5-10"2m?s 1.K1,
gy =-98lms 2, u=5102kgs L, e, =04ms !, c3=5m ', d=8m,¢; =0375m Ls7}
2-dy = 0.03m and we have fixedd = 7mand ¢; = 045 m~!.s~1,

For the indicated separation distances, an almost perfect counter-phase synchroniza-
tion develops. For larger separation distances, the phases of the oscillations will begin to
shift relative to each other and no clear phase-difference blocking is observable.

For the simulations performed on the smaller length-scale, corresponding to the exper-
imental conditions in Ref. [1], we computed the synchronization order parameter, which is
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meant to characterize the collective oscillation. We used the same z synchronization order
parameter as the one used in Refs. [1,18]. The computationally derived synchronization
parameter is plotted in Figure 14a. Its values in the neighborhood of —1 indicates that we
have counter-phase synchronization for the studied distances. In Figure 14b we also show
the oscillation frequency of the two synchronized heated fluid columns as a function of
their separation distance. This frequency decreases as we increase the separation distance
between the columns, similarly to what has been reported in our experiments for the
Helium columns [1].

0.00 ®
@ 225{ ®
~0.251 000 O\
#-0.501 = 175 ‘
= ~
..
~0.751 15.0
- - &---" ®--__ o-——--- ) hL S
~1001_ hd ‘ ‘ ‘ ‘ 125 ‘ ‘ ‘ Dt |
001 002 003 004 005 006 001 002 003 004 005 006
2 do [m] 2-do [m]

Figure 14. Simulation results for the collective behavior of two heated columns. (a) The synchroniza-
tion order parameter of two interacting heated fluid columns and (b) shows the collective oscillation
frequency, both as a function of the separation distance between the columns. The following sim-
ulation parameters were considered: a = 0.33 - 1072 K1, po = 1.2 kg-m*Z, To = 300K, D =
1074 m?s 1K}, gy = —981ms 2, p=19-10"kgs !, c; =01ms !, c3 =2000m~ L, d =
0.04m, c; = 6400m~1.s7 1.

Similarly with the case of the oscillations for a single flow, we have tested the grid
independence of the results for synchronization. On Figure 15, we illustrate the observed
collective behavior for two different grid sizes, using the same values for all the other
simulation parameters.

(a) 12,881 grid point (b) 45,975 grid point

1.10 1.10
_ 1051 __1.05]
> >
5 1.00 5 1.00
< <

0.951 0.951

0.90 0.90

30 32 34 36 38 40 30 32 34 36 38 40

tis]

tis]

Figure 15. Grid independence of the observed anti-phase synchronization. Figures (a,b) shows that
apart from some minor differences in the amplitudes, the grid size at the used high resolution does
not influence the observed frequencies and the synchronization order parameter.

3. Discussion and Conclusions

In our previous study [1], we used both experimental and theoretical approaches to
investigate whether the hydrodynamic instabilities that occur in rising gas columns are also
responsible for the oscillations observed for the diffusion flames [18]. It was shown that this
is indeed the case: Helium columns ascending in air from a circular nozzle produce similar
oscillations with the ones observed in diffusion flames. In addition, the similar collective
behavior of these oscillations (counter-phase synchronization) for Helium columns and
flickering candle flames suggest that the hydrodynamic processes by their own are enough
to explain these phenomenon. For modeling the observed oscillations, a simplified but
analytically treatable hydrodynamic approach was used. The model predicted the right
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trends for the oscillation frequencies as a function of the relevant parameters, but was
unsuitable to approach the collective behavior.

In this study, we offered improved modeling by considering a 2D numerical hydrody-
namics computer simulation where, for computational simplicity, heated fluid columns
were considered instead of ascending Helium columns. This approach proved to be success-
ful for reproducing the experimentally observed features. For a constant nozzle diameter,
the numerics led to an oscillation frequency that increased roughly linearly with the flow
yield, which is in agreement with the experimental results. For constant flow yield, the
numerical results suggested a decreasing trend of the oscillation frequency as a function of
the nozzle diameter, confirming the experimental results. The exact shape of the simulated
trend was however slightly different from the one observed in the experiments. The main
reason for this discrepancy is most likely the reduction of the real 3D problem to a 2D topol-
ogy. Finally, the presented computer simulations were successful also in reproducing the
counter-phase synchronization of the two heated fluid columns placed nearby each other.
The computed trends for the synchronization order-parameter and the collective frequency
were also in agreement with the experimental results obtained for Helium columns rising
in air.

From a more general physical point of view it is important to notice once again
the generality of the spontaneous synchronization phenomena in interacting oscillatory
systems. Similarly with the analogous candle flame synchronization, the investigated fluid-
dynamical system offers yet another fascinating example in this sense. The Navier-Stokes
equation for incompressible fluids coupled with the classical heat-diffusion equation, and
by considering a temperature dependent density in a 2D approach, is seemingly enough for
reproducing the experimentally observed trends. The use of a 2D topology is based on the
assumption of the jet’s cylindrical symmetry. Future experiments will decide whether this is
areasonable approximation. However, performing a realistic 3D fluid dynamical simulation
with the FEniCS method was not viable with our available computational resources.

It worth mentioning here that the computer simulations were performed both in
the laboratory and for a much larger length-scale than the experiments. The qualitative
agreement between the results (trends and collective behavior) on these different length-
scales suggests that the investigated phenomenon is more general than it was thought to
be, and might have further, yet unexplored, connections.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/fluids7110339/s1, Video S1: Experimental and Otsu processed
movies for the oscillation and collective behavior of Helium jets.
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Appendix A
Appendix A.1. Solving the 2D Poisson Equation in FEniCS

Here we illustrate how to solve a PDE in FEniCS using the 2D Poisson equation. The
Poisson equation can be given in the following form:

~Ap=f (A1)

If we have a simple rectangular space, then the above equation can be easily given in
the finite element form

Pi-1j = 2Qij + Piv1j  Pij1 —29ij T Qijr1
o 2 - n2 = fijs

(A2)

however, with this simple and intuitive approach, we soon run into problems, because
even for a circle it is impossible to map the boundary with an acceptably small number of
squares. The FEniCS program [29] uses a triangular grid instead of a square grid to cover
the simulated space, in which case we can always select the grid so that the grid points are
on the boundary surfaces.

Discretization alone does not solve the equation, the next question is how to determine
the solution at each lattice point. As the first step, we write the ¢(x1, x2) function in the
following form:

N
p(x1,%2) = Y cigpi(x1,x2) (A3)

i=0
In the above equation, ¢;(x1, x2) is a given k-th order polynomial, c; are the coefficients
that determine ¢(x1,x;), and N + 1 is the number of the grid points. The c; coefficients
are determined by multiplying the Poisson equation by N + 1 different v(x7, xp) so-called
test functions and integrating the product over the whole domain to obtain N + 1 linearly
independent equations from which the ¢; coefficients can be calculated. All this can be

formally given in the following form:

/Q—UA(de:/vadQ (Ad)

We used the notation dQ) = dx1dx;. The above form of PDE is called the weak formula-
tion of the equation and this is what is calculated by the FEniCS program. The second-order
derivative after the coordinates in the above equation means that the polynomials used
need to be twice differentiable. Because the use of polynomials with large degrees requires
more memory and computation, we always strive to keep the degree of polynomials to a
minimum. In the above equation, the reduction of the order of derivatives can be done by
Gauss—Green integration as follows:

_ L
./Q—quole—./QVvVgon—l/mﬁvds (A5)

Since we use Dirichlet boundary conditions for the Poisson problem, the value of v at
the boundary is 0, so the Equation (A4) can be written in the following form:

/QVqu)dQ:/vadQ (A6)

We have seen above how to rewrite the 2D Poisson problem in a form that can be
solved with the FEniCS program, and now we show the implementation of the solution
in Python.
from fenics import = #

import numpy as np #Numpy is required for error calculation
import matplotlib.pyplot as plt #We plot the result with the matplotlib
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Nx=10#The number of grid points in the x directions

Ny=10#The number of grid points in the y directions
mesh=UnitSquareMesh (Nx,Ny)

V=FunctionSpace (mesh, ‘P’ ,1)#space containing first degree polynomials
fi_D=Expression('1+x[0]*x[0]+2*x[1]*x[1] ", degree=2)

#boundary conditions equation (on boundarys fi(x,y)=x"2+2y"2+1)
def boundery(x,on_boundary):

return on_boundary

bc=DirichletBC (V, fi_D ,boundery)#boundary conditions
fi=TrialFunction (V)

v=TestFunction (V)

f=Constant(-6)

a=dot(grad (fi),grad(v))+dx#right side of equation
L=fsv«dx#left side of equation

fi=Function (V)

solve(a==L,u,bc)#solve the~equation

¢ = plot(interpolate(fi, V), mode='"color”)
plt.colorbar(c)

plot(fi)

plt.savefig('resultl.png”’)

plt.show ()
vertex_v_ud=fi_D.compute_vertex_values (mesh)
vertex_v_u=fi.compute_vertex_values (mesh)
err_max=np.max(np.abs(vertex_v_ud-vertex_v_u))
print ("maximum_error: " ,err_max)

The above program solves Equation (A1) on the unit square of {(0,0), (1,1)}. The largest
difference between the theoretically expected and the numerically obtained value was
of the order of the precision of the numerical representation of the numbers, giving us
confidence for the use of the numerical solution.

Appendix A.2. Test for the 2D Fluid Dynamics Simulations—Karman Vortices

The first phenomenon we aimed to reproduce using our fluid dynamics simulation is
the formation of Karman vortices in the flow of fluids around an obstacle. With this test we
aimed to check visually whether the Navier-Stokes equation has been correctly implanted,
since the temperature of the fluid at all points is considered fixed: Ty. Therefore, for this
test, the density in the simulated volume is constant.

In these simulations, the length of the simulated volume was considered as 2.2 m,
the width of the simulated volume as 0.41 m and in the middle of the simulated coordinate
space a circular obstacle with a radius of 0.05 m is placed. The coordinates of the center
of this obstacle was taken at (0.2 m, 0.2 m). The density of the fluid was taken as unity
(1 kg/m?), the viscosity is 0.001 kg/s, and no gravitational field is considered. For input
(the left region of the space in Figure A1) we considered that the velocity in the y direction
is 0, and the velocity in the x direction has a parabolic profile with a maximum value of
1.5 m/s. On the horizontal walls and on the boundary of the obstacle we consider no-slip
conditions, thus the velocity is fixed to 0. For the output (right-sight region) we have also
imposed for the y direction velocity to be zero, and the pressure at the output is also fixed
to 0. Otherwise, there are free boundary conditions for the pressure. The temperature is
fixed at Tp = 300 K at input and on the horizontal walls.

The velocity vector spaces obtained from the simulations are shown in Figure A1 for
four time moments, as indicated on the left side of the images. One can observe that the
simulation successfully reproduces the expected Karman vortices.

Appendix A.3. Test for the 2D Fluid Dynamics Simulations—Heat Induced Mushroom Cloud

In this second test we aimed to implement the density and temperature evolution of a
heated gas sphere in a gravitational field. It is expected that the shape of the heated gas
will follow the known dynamics of a mushroom cloud in a nuclear explosion.

In the performed simulations, the density at Ty was chosen as unity (1 kg/m?), the am-
bient temperature Ty is 300 K, the a parameter in Equation (3) is « = 0.001 K1, the thermal
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diffusion constant D is 0.3 m?/s, the initially heated sphere temperature is 600 K, the fluid
viscosity is taken as y = 0.05 kg/s, the gravitational acceleration is g, = —9.81 m/s?, and
the size of the simulated volume is 30 m? in both the x and y directions.

At the bottom and walls of the simulated space, the velocity is fixed to 0. At the upper
boundary we fix the x component of the velocity to v, = 0. For the pressure, the value of
g po -1 is fixed for the upper boundary, and free boundary conditions are applied to all
the other boundaries. For temperature, free boundary condition is applied at the upper
boundary if the y direction component of the velocity is positive, otherwise the temperature
is fixed to Ty = 300 K units on the upper boundary and on the side-walls. The temperature
is fixed to a higher value of 450 K units at the bottom-wall of the simulated area. This is
necessary in order to make the resulting flow visible in the temperature space. Initially,
the velocity in the whole simulated volume is 0 and the volume contains a sphere (disk)
with a radius of 5 m, in which the temperature is 600 K. The center of the sphere is at
the coordinates (0 m, 7 m), the temperature around the sphere is fixed to 300 K, and the
temperature between the center, and the surface of the disk is given by an interpolation
with a sigmoid function.

The time-evolution of the temperature map derived from the simulation is shown
in Figure A2. The effect of thermal diffusion can be observed in the first two frames.
As a result of this diffusion, the initially sharp boundary line between the high and low
temperature regions becomes blurred. The subsequent frames show the displacement
due to convective flow and as a result of this the characteristic mushroom cloud shape
is formed.

t=3.1s

t=3.2s

t=3.3s

t=3.4s

Figure A1. Velocity fields obtained from the simulation of the Karman vortices at four consecutive
time moments.

L [m]

-10 10 0
H [m]

Figure A2. Snapshots of the time evolution of a heated gas sphere. The parameters and details of the
simulation can be found in the text.
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