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Abstract: This work develops a new monolithic finite-element-based strategy for magnetohydrody-
namics (MHD) involving a compressible fluid based on a continuous velocity–pressure formulation.
The entire formulation is within a nodal finite element framework, and is directly in terms of physical
variables. The exact linearization of the variational formulation ensures a quadratic rate of conver-
gence in the vicinity of the solution. Both steady-state and transient formulations are presented for
two- and three-dimensional flows. Several benchmark problems are presented, and comparisons are
carried out against analytical solutions, experimental data, or against other numerical schemes for
MHD. We show a good coarse-mesh accuracy and robustness of the proposed strategy, even at high
Hartmann numbers.

Keywords: compressible MHD; monolithic finite element formulation; inf-sup stability; buoyancy-
driven MHD

1. Introduction

The flow of a conducting fluid in the presence of a magnetic field is termed as mag-
netohydrodynamics (MHD). There are several applications of MHD, including the flow
of liquid metals [1–12], nanofluids [13–18], non-Newtonian fluids [19–23], magneto-gas
dynamics [24–26], astrophysical fluid dynamics [27], and many biomedical devices. Ref-
erences [14,15] use a control-volume-based finite element strategy (CVFEM) in their for-
mulation. References [10–12,24] use edge elements for discretizing the magnetic field.
Ciuca et al. [26] use hybridized discontinuous Galerkin methods for ideal and resistive
MHD, while Eswaran et al. [28] use a finite volume approach.

The salient features of this work are as follows:

• Most of the MHD strategies treat the fluid as incompressible [28,29]. Since compress-
ibility effects play a key role in applications such as magneto-gas dynamics, in this
work, we focus on developing a MHD strategy for compressible fluids. Moreover, we
show that the strategy works very well, even when the fluid is almost incompressible
(with a stiff equation of state); thus, the same strategy can be used even when the fluid
is almost incompressible;

• We develop a monolithic strategy based on the fully coupled equations for the fluid
and the magnetic fields. The inclusion of the coupling terms yields a faster rate of
convergence compared to a staggered strategy, where the fluid and the magnetic field
variables are solved for in a sequential manner;

• The formulation is based on primitive flow variables, such as velocity, density, tem-
perature, pressure, and the magnetic field, which makes the implementation simple.
The treatment of the boundary conditions is also very straightforward, as these are
generally specified in terms of the primitive variables or their duals;

• In contrast to the work in references [1,2,4–8] that use a stabilized formulation, we use
a stable formulation based on an appropriate choice of interpolations for the various
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field variables. We use higher order interpolation functions for the velocity and
magnetic fields, as compared to the pressure, density, and temperature field variables.
This ensures the satisfaction of the inf-sup stability conditions. No stabilizing terms
need to be used, and no parameters need to be adjusted in the proposed formulation;

• The governing equations for the fluid, namely the continuity, Navier–Stokes, energy,
and state equations are considered in their entirety without any approximations, such
as the Boussinesq approximation;

• Joule heating effects have been included in the formulation.

2. Mathematical Formulation
2.1. Governing Equations for MHD Involving a Compressible Fluid

We first present the equations for the magnetic fields, and then the coupled equations
to be solved on the entire domain.

2.1.1. Magnetic Field Equations

The Maxwell equations for electromagnetism under MHD assumptions reduce to the
following set of equations [29]:

µm
∂H
∂t

+∇× E = 0, (1a)

∇ · (µmH) = 0, (1b)

∇× H = j, (1c)

∇ · j = 0, (1d)

where H and E represent the magnetic and electric fields, respectively, µm is the magnetic
permeability, and j is the current density. The above equations are supplemented by Ohm’s
law for a conducting fluid, which is given by

j = σe(E + µmu× H), (2)

where σe and u denote the electrical conductivity and the velocity of the fluid, respectively.
Combining Equations (1) and (2), we obtain the governing differential equation for H as

∇× (∇× H) + σeµm
∂H
∂t

= σeµm∇× (u× H) on Ω, (3)

where Ω represents the fluid domain.

2.1.2. Coupled Equations for Compressible MHD

Let Ω and Γ denote the domain and its boundary, Γt and Γu denote the parts of
boundaries where tractions and velocity are prescribed, respectively, Γθ and Γq represent
portions of Γ where temperature and normal heat flux are prescribed, respectively, and ΓH
and ΓE represent portions of the boundary where H× n and (∇× H)× n are prescribed,
respectively.

We are interested in finding an approximate solution to the following initial-boundary
value problem:

Determine the velocity u, density ρ, pressure p, temperature θ, magnetic field H,
stresses τ, rate of deformation D, and heat flux q on the domain Ω such that

∇× (∇× H) + σeµm
∂H
∂t

= σeµm∇× (u× H), (4a)

∇ · (µm H) = 0, (4b)[
∂(ρu)

∂t
+ ρ(∇u)u + u∇ · (ρu)

]
= ∇ · τ + ρb + µm(∇× H)× H (4c)
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∂ρ

∂t
+∇ · (ρu) = 0, (4d)

Cv

[
∂(ρθ)

∂t
+ ρθ∇ · u + u · (ρ∇θ + θ∇ρ)

]
= −p∇ · u + σ : D−∇ · q + ρQh +

|∇× H|2

σe
, (4e)

p = p̃(ρ, θ), (4f)

where b is the body force per unit mass, σ is the viscous stress, and Cv is the specific heat at
constant volume. For a Newtonian fluid, τ = −p(ρ, θ)I + σ, where σ = λ(tr D)I + 2νD,
with λ and µ denoting the viscosity coefficients. Similarly, we have q = −κ∇θ, where κ
is the thermal conductivity. The last term in Equation (4c) represents the additional body
force, namely the Lorentz force µm(j× H), that acts on the fluid. A term j · E, which
represents Joule heating [30], gets added to the first law of thermodynamics [31] for a fluid
due to magnetic effects. After subtracting the dot product of the momentum equation given
by Equation (4c) with the velocity field u from the first law of thermodynamics [32], and
using the properties of the scalar triple product and Equation (2), we have

j · E− µm[u · (j× H)] = j · [E + µmu× H]

=
j · j
σe

,

which is the last term in Equation (4e). The above governing equations are to be solved
subject to appropriate initial and boundary conditions.

2.2. Variational Formulation

Denoting the variations of H, u, ρ, θ, and p with a subscript δ, the variational state-
ments corresponding to Equation (4) can be written as∫

Ω
σeµm Hδ ·

∂H
∂t

dΩ +
∫

Ω
(∇× Hδ) · (∇× H) dΩ +

∫
Ω
(∇ · Hδ)(∇ · H) dΩ =∫

Ω
σeµm(∇× Hδ) · (u× H) dΩ ∀Hδ, (5a)∫

Ω
uT

δ

[
∂(ρu)

∂t
+ ρ(∇u)u + u∇ · (ρu)

]
dΩ−

∫
Ω
(∇ · uδ)p dΩ +

∫
Ω
[Dc(uδ)]

TCcDc dΩ =∫
Ω

ρuT
δ b dΩ +

∫
Ω

µmuT
δ [(∇× H)× H] dΩ +

∫
Γt

uT
δ t̄ dΓ ∀uδ, (5b)∫

Ω
ρδ

[
∂ρ

∂t
+ ρ∇ · u + u ·∇ρ

]
dΩ = 0 ∀ρδ, (5c)∫

Ω
Cvθδ

[
∂(ρθ)

∂t
+ ρθ∇ · u + u · (ρ∇θ + θ∇ρ)

]
dΩ +

∫
Ω

θδ(p∇ · u− σ : D) dΩ+

∫
Ω

k∇θδ ·∇θ dΩ =
∫

Ω
ρθδQh dΩ−

∫
Γq

θδ q̄n dΓ +
∫

Ω

θδ|∇× H|2

σe
dΩ ∀θδ, (5d)∫

Ω
pδ[p− p̃(ρ, θ)] dΩ = 0 ∀pδ, (5e)

where Cc and Dc denote the material constitutive tensor and rate of deformation tensor
expressed in an engineering form as

Dc =



Dxx
Dyy
Dzz

2Dxy
2Dyz
2Dxz

, Cc =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

,
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q̄n is the normal heat flux prescribed on Γq, and t̄ is the prescribed traction on Γt. Note that
the weak implementation of the state equation given by Equation (5e) is critical in ensuring
that a lower-order interpolation for the pressure can be used in order to satisfy the inf-sup
conditions, which would otherwise be dictated by the interpolations being used for the
density and temperature. Equation (5a) has been derived using a penalty term of the type
(∇ · H)2, as shown in [29]. In addition, the term∫

ΓH
(Hδ× n) · [σeµm(u× H)− (∇× H)] dΓ = −

∫
ΓH

σe(Hδ× n) · E dΓ,

has been excluded from Equation (5a), since, in the problems that we consider here, either
H× n is specified on the boundary, or the surface is purely conducting.

2.3. Time Stepping Strategy

The time discretization on the time interval [tn, tn+1] is carried out by using the
following general trapezoidal rule:

σeµm

(∫
Ω

Hδ ·
Hn+1 − Hn

t∆
dΩ−

∫
Ω
(∇× Hδ) · (u× H)α dΩ

)
+∫

Ω
(∇× Hδ) · (∇× Hα) dΩ +

∫
Ω
(∇ · Hδ)(∇ · Hα) dΩ = 0 ∀Hδ, (6a)

∫
Ω

uδ ·
[
(ρu)n+1 − (ρu)n

t∆
+ [ρ(∇u)u]α + [u∇ · (ρu)]α

]
dΩ +

∫
Ω
[Dc(uδ)]

TCc(Dc)α dΩ−∫
Ω
(∇ · uδ)pα dΩ =

∫
Ω
(ρuT

δ b)α dΩ +
∫

Γ
(uT

δ t̄)α dΓ +
∫

Ω
µmuT

δ [(∇× H)× H]α dΩ ∀uδ, (6b)

∫
Ω

ρδ

[
ρn+1 − ρn

t∆
+ (ρ∇ · u)α + [u · (∇ρ)]α

]
dΩ = 0 ∀ρδ, (6c)

∫
Ω

Cvθδ

[
(ρθ)n+1 − (ρθ)n

t∆
+ (ρθ∇ · u)α + [u · (ρ∇θ + θ∇ρ)]α

]
+
∫

Ω
∇θδ · [k∇θ]α dΩ+∫

Ω
θδ pα
∇ · un+1 +∇ · un

2
dΩ−

∫
Ω

θδ

[
σα :

Dc(un+1) + Dc(un)

2

]
dΩ =

∫
Ω

θδραQh dΩ +
∫

Ω
θδ
|∇× H|2α

σe
dΩ−

∫
Γq

θδ q̄α dΓ ∀θδ, (6d)

where βα = (1− α)βn + αβn+1 for any field variable β.

2.4. Linearization

A Newton–Raphson strategy is developed by linearizing the above equations. Let
(uk, ρk, θk, pk, Hk) and (uk+1, ρk+1, θk+1, pk+1, Hk+1) represent the values of the velocity,
density, temperature, pressure, and magnetic field, respectively, at the k’th and k + 1’th
iterations at time step n + 1. Let (u∆, ρ∆, θ∆, p∆, H∆) denote the increments in the respective
field variables. The chain and product rules are applied to obtain the linearized form of
Equation (6) as follows:

σeµm

∫
Ω

HT
δ H∆ dΩ + αt∆

{∫
Ω
(∇ · Hδ)(∇ · H∆) + (∇× Hδ) · (∇× H∆) dΩ−

σeµm

∫
Ω
(∇× Hδ) · (uk × H∆) dΩ + σeµm

∫
Ω
(∇× Hδ) · (Hk × u∆) dΩ

}
= σeµm

∫
Ω

HT
δ

(
Hn − Hk

)
dΩ + αt∆

{
σeµm

∫
Ω
(∇× Hδ) · (uk × Hk) dΩ−

∫
Ω
[(∇× Hδ) · (∇× Hk)−
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(∇ · H)(∇ · Hk)] dΩ
}
+ (1− α)t∆

{
σeµm

∫
Ω
(∇× Hδ) · (un × Hn) dΩ−∫

Ω
[(∇× Hδ) · (∇× Hn)− (∇ · Hδ)(∇ · Hn)] dΩ

}
∀Hδ, (7a)

∫
Ω

uT
δ ρku∆ dΩ +

∫
Ω

uT
δ ukρ∆ dΩ + αt∆

{∫
Ω

uT
δ [ρ

k(∇uk)u∆ + ρk(∇u∆)uk + uk∇ · (ρku∆)+

∇ · (ρkuk)u∆] dΩ +
∫

Ω
[Dc(uδ)]

TCc[Dc(u∆)] dΩ +
∫

Ω
[Dc(uδ)]

TC′cDc(uk)θ∆ dΩ+∫
Ω

uT
δ [u

k∇ · (ukρ∆) + (∇uk)ukρ∆ − bρ∆] dΩ−
∫

Ω
µmuT

δ [(∇× Hk)× H∆−

Hk × (∇× H∆)] dΩ−
∫

Ω
(∇ · uδ)p∆ dΩ

}
= −

∫
Ω

uT
δ [ρ

kuk − ρnun] + αt∆

{∫
Γt

uT
δ t̄k dΓ+∫

Ω
uT

δ [ρ
kb− ρk(∇uk)uk − uk∇ · (ρkuk) + µm(∇× Hk)× Hk] dΩ−

∫
Ω
[Dc(uδ)]

Tτk
c dΩ

}
+

(1− α)t∆

{∫
Γt

uT
δ t̄n dΓ +

∫
Ω

uT
δ [ρ

nb− ρn(∇un)un − un∇ · (ρnun) + µm(∇× Hn)× Hn] dΩ

−
∫

Ω
[Dc(uδ)]

Tτn
c dΩ

}
∀uδ, (7b)

∫
Ω

ρδρ∆ dΩ + αt∆

[ ∫
Ω

ρδ

[
ρk(∇ · u∆) + (∇ρk) · u∆

]
dΩ +

∫
Ω

ρδ

[
(∇ · uk)ρ∆+

uk · (∇ρ∆)
]

dΩ

]
= −αt∆

∫
Ω

ρδ∇ · (ρkuk) dΩ− (1− α)t∆

∫
Ω

ρδ∇ · (ρnun) dΩ

−
∫

Ω
ρδ

(
ρk − ρn

)
dΩ ∀ρδ, (7c)

t∆

2

∫
Ω

θδ[(αpk + (1− α)pn)∇ · u∆ − [Dc(un)]TCcDc(u∆)− 2α[Dc(uk)]TCcDc(u∆)] dΩ+∫
Ω

Cvθδθkρ∆ dΩ +
∫

Ω
Cvθδρkθ∆ dΩ− αt∆

2

∫
Ω

θδ[Dc(uk)]TC′c[Dc(uk) + Dc(un)]θ∆ dΩ+

αt∆

2

∫
Ω

θδ[∇ · uk +∇ · un]p∆ dΩ + αt∆

{∫
Ω

Cvθδ[ρ
kθk(∇ · u∆) + (ρk∇θk + θk∇ρk) · u∆] dΩ+∫

Ω
Cvθδ[uk.∇θkρ∆ + (∇ · uk)θkρ∆ + θk(uk)T∇ρ∆] dΩ−

∫
Ω

θδQhρ∆ dΩ +
∫

Ω
Cvθδ

[ρk(∇ · uk)θ∆ + (∇ρk · uk)θ∆ + ρk(uk ·∇θ∆)] dΩ +
∫

Ω
∇θδ · [k f∇θ∆ + k′f∇θkθ∆] dΩ−

2
σe

∫
Ω

θδ(∇× Hk) · (∇× H∆) dΩ
}
= αt∆

{∫
Ω

θδ

[
ρkQh +

∣∣∣∇× Hk
∣∣∣2

σe
−

Cv[ρ
kθk(∇ · uk) + uk · (ρk∇θk + θk∇ρk)]

]
dΩ−

∫
Ω

k f∇θδ ·∇θk dΩ−
∫

Γ
θδ q̄k dΓ

}
+(1− α)t∆

{∫
Ω

θδ

[
ρnQh +

|∇× Hn|2

σe
− Cv[ρ

nθn(∇ · un) + un · (ρn∇θn + θn∇ρn)]
]

dΩ−∫
Ω

k f∇θδ ·∇θn dΩ−
∫

Γ
θδ q̄n dΓ

}
− αt∆

2

∫
Ω

θδ[τ
k
c ]

T
[

Dc(uk) + Dc(un)
]

dΩ+

(1− α)t∆

2

∫
Ω

θδ[τ
n
c ]

T
[

Dc(uk) + Dc(un)
]

dΩ−
∫

Ω
cvθδ[ρ

kθk − ρnθn] dΩ ∀θδ, (7d)

αt∆

∫
Ω

pδ

[
p∆ −

∂ p̃
∂ρ

∣∣∣∣
k
ρ∆ −

∂ p̃
∂θ

∣∣∣∣
k
θ∆

]
dΩ = −αt∆

∫
Ω

pδ

[
pk − p̃(ρk, θk)

]
dΩ ∀pδ, (7e)
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where k′f and C′c denote the derivatives of k f and Cc with respect to θ.

2.5. Finite Element Formulation

Let the magnetic field, velocity, density, temperature, pressure fields, and their varia-
tions and increments be interpolated as

H = NĤ, u = Nû, ρ = Nρρ̂, θ = Nθ θ̂, p = N p p̂,

Hδ = NĤδ, uδ = Nûδ, ρδ = Nρρ̂δ, θδ = Nθ θ̂δ, pδ = N p p̂δ,

H∆ = NĤ∆, u∆ = Nû∆, ρ∆ = Nρρ̂∆, θ∆ = Nθ θ̂∆, p∆ = N p p̂∆.

In the case of the 27-noded hexahedral element, the shape functions N for u and H are
the standard triquadratic Lagrange interpolation functions, while the density, temperature,
and pressure fields are interpolated using a trilinear continuous interpolation in order to
obtain a stable discretization. We thus have

Dc(u∆) = Bû∆,

(∇u∆)uk = RBNLû∆,

∇ · u∆ = Bpû∆,

ρk(∇ · u∆) + (∇ρk) · u∆ = Bρ1û∆,

(∇ · uk)ρ∆ + uk · (∇ρ∆) = Bρ2ρ̂∆,

∇θ∆ = Bθ θ̂∆,

∇× H∆ = BH Ĥ∆,

∇ · H∆ = Bp Ĥ∆,

where

B =



N1,x 0 0 N2,x 0 0 . . .
0 N1,y 0 0 N2,y 0 . . .
0 0 N1,z 0 0 N2,z . . .

N1,y N1,x 0 N2,y N2,x 0 . . .
0 N1,z N1,y 0 N2,z N2,y . . .

N1,z 0 N1,x N2,z 0 N2,x . . .

,

Bp =
[
N1,x N1,y N1,z N2,x N2,y N2,z . . .

]
,

R =

uk
x uk

y uk
z 0 0 0 0 0 0

0 0 0 uk
x uk

y uk
z 0 0 0

0 0 0 0 0 0 uk
x uk

y uk
z

,

BNL =



N1,x 0 0 N2,x 0 0 . . .
N1,y 0 0 N2,y 0 0 . . .
N1,z 0 0 N2,z 0 0 . . .

0 N1,x 0 0 N2,x 0 . . .
0 N1,y 0 0 N2,y 0 . . .
0 N1,z 0 0 N2,z 0 . . .
0 0 N1,x 0 0 N2,x . . .
0 0 N1,y 0 0 N2,y . . .
0 0 N1,z 0 0 N2,z . . .


,

BH =

 0 −N1,z N1,y 0 −N2,z N2,y . . .
N1,z 0 −N1,x N2,z 0 −N2,x . . .
−N1,y N1,x 0 −N2,y N2,x 0 . . .

,

Bρ1 =
[
ρk N1,x +

∂ρk

∂x N1 ρk N1,y +
∂ρk

∂y N1 ρk N1,z +
∂ρk

∂z N1 ρk N2,x +
∂ρk

∂x N2 . . .
]
,
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Bρ2 =
[
(∇ · uk)N1 + (uk ·∇)N1 (∇ · uk)N2 + (uk ·∇)N2 . . .

]
,

Bρ = Bθ =

N1,x N2,x . . .
N1,y N2,y . . .
N1,z N2,z . . .

.

The various cross-product terms occurring in the formulation are discretized as follows:

uk× H∆ = uk
matNĤ∆,

Hk× u∆ = Hk
matNû∆,

uk× Hk = −Hk
matu

k,

un× Hn = −Hn
matu

n,

Gk = ∇× Hk,

(∇× Hk)× Hk = −Hk
matG

k,

(∇× Hn)× Hn = −Hn
matG

n,

Hk× (∇× H∆) = Hk
matBH Ĥ∆,

where

uk
mat =

 0 −uk
3 uk

2
uk

3 0 −uk
1

−uk
2 uk

1 0

, un
mat =

 0 −un
3 un

2
un

3 0 −un
1

−un
2 un

1 0

,

Hk
mat =

 0 −Hk
3 Hk

2
Hk

3 0 −Hk
1

−Hk
2 Hk

1 0

, Hn
mat =

 0 −Hn
3 Hn

2
Hn

3 0 −Hn
1

−Hn
2 Hn

1 0

,

Gk
mat =

 0 −Gk
3 Gk

2
Gk

3 0 −Gk
1

−Gk
2 Gk

1 0

.

Using the arbitrariness of the variations, the matrix form of the incremental
Equation (7) can be written as

(M + αt∆Kk)ĥ∆ = αt∆ f k
∆ + (1− α)t∆ f n

∆ + g, (8)

where

M =


MHH 0 0 0 0

0 Muu Muρ 0 0
0 0 Mρρ 0 0
0 Mθu Mθρ Mθθ Mθp
0 0 0 0 0

, K =


KHH KHu 0 0 0
KuH Kuu Kuρ Kuθ Kup

0 Kρu Kρρ 0 0
KθH Kθu Kθρ Kθθ Kθp

0 0 Kpρ Kpθ Kpp

,

ĥ∆ =


Ĥ∆
û∆
ρ̂∆
θ̂∆
p̂∆

, f k
∆ =


f H
f u
f ρ

f θ
f p


k

, f n
∆ =


f H
f u
f ρ

f θ
0


n

, g =


gH
gu
gρ

gθ
0

,

with

MHH =
∫

Ω
σeµmNT N dΩ,

Muu =
∫

Ω
ρk NT N dΩ,
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Muρ =
∫

Ω
NTuk Nρ dΩ,

Mρρ =
∫

Ω
NT

ρ Nρ dΩ,

Mθu =
t∆

2

∫
Ω
[(1− α)pn − αpk]NT

θ Bp dΩ− t∆

2

∫
Ω

NT
θ DT

c (u
n)CcB dΩ+

αt∆

∫
Ω

NT
θ DT

c (u
k)CcB dΩ,

Mθρ =
∫

Ω
Cvθk NT

θ Nρ dΩ,

Mθθ =
∫

Ω
ρkCvNT

θ Nθ dΩ− αt∆

2

∫
Ω

NT
θ DT

c (u
k)C′c

[
Dc(un)− Dc(uk)

]
Nθ dΩ,

Mθp =
αt∆

2

∫
Ω

NT
θ

[
∇ · un −∇ · uk

]
N p dΩ,

KHH =
∫

Ω
[BT

H BH + BT
p Bp] dΩ− σeµm

∫
Ω

BT
Huk

matN dΩ,

KHu = σeµm

∫
Ω

BT
H Hk

matN dΩ,

KuH =
∫

Ω
µmNT

(
Hk

matBH −Gk
matN

)
dΩ,

Kuu =
∫

Ω
ρk NT

[
(∇uk)N + RBNL

]
dΩ +

∫
Ω

BTCcB dΩ

+
∫

Ω

[
NTuk

[
(∇ρk)T N + ρkBp

]
+
[
(∇ρk) · uk + ρk(∇ · uk)

]
NT N

]
dΩ,

Kuρ =
∫

Ω
NT
[
(∇uk)uk − b

]
Nρ dΩ +

∫
Ω

NT
[
uk(uk)T Bρ + (∇ · uk)uk Nρ

]
dΩ,

Kuθ =
∫

Ω
BTC′cDc(uk)Nθ dΩ,

Kup = −
∫

Ω
BT

p N p dΩ,

Kρu =
∫

Ω
NT

ρ Bρ1 dΩ,

Kρρ =
∫

Ω
NT

ρ Bρ2 dΩ,

KθH = − 2
σe

∫
Ω

NT
θ (G

k)T BH dΩ,

Kθu =
∫

Ω
CvNT

θ

[[
θk∇ρk + ρk∇θk

]T
N + ρkθkBp

]
dΩ

+
∫

Ω
NT

θ [p
kBp − 2DT

c (u
k)CcB] dΩ,

Kθρ =
∫

Ω
CvNT

θ

[
θk(uk)T Bρ + θk(∇ · uk)Nρ + uk · (∇θk)Nρ

]
dΩ−

∫
Ω

QhNT
θ Nρ dΩ,

Kθθ =
∫

Ω
CvNT

θ [ρ
k(uk)T Bθ + (∇ρk) · uk + ρk(∇ · uk)]Nθ dΩ

+
∫

Ω
[k f BT

θ Bθ + k′f BT
θ∇θk Nθ − NT

θ DT
c (u

k)C′cDc(uk)Nθ ] dΩ,

Kθp =
∫

Ω
(∇ · uk)NT

θ N p dΩ,

Kpρ = −
∫

Ω

∂ p̃
∂ρ

∣∣∣∣
k
NT

p Nρ dΩ,

Kpθ = −
∫

Ω

∂ p̃
∂θ

∣∣∣∣
k
NT

p Nθ dΩ,

Kpp =
∫

Ω
NT

p N p dΩ,
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f k
H = −

∫
Ω
[BT

H(∇× Hk) + BT
p (∇ · Hk)] dΩ− σeµm

∫
Ω

BT
H Hk

matu
k dΩ,

f k
u =

∫
Ω

{
NT
[
ρkb− ρk(∇uk)uk −

[
(∇ρk) · uk + (∇ · uk)ρk

]
uk − µm Hk

matG
k
]

− BTτk
c

}
dΩ +

∫
Γ

NT t̄k dΓ,

f k
ρ = −

∫
Ω

NT
ρ

[
ρk(∇ · uk) + uk · (∇ρk)

]
dΩ,

f k
θ =

∫
Ω

{
ρk NT

θ Qh − k f BT
θ∇θk − Cv

[
(θk∇ρk + ρk∇θk) · uk + ρkθk(∇ · uk)

]
NT

θ

+ (τk
c)

T [Dc(uk)]NT
θ

}
dΩ−

∫
Γq

NT
θ q̄k dΓ +

∫
Ω

(Gk)T(Gk)

σe
Nθ dΩ,

f k
p = −

∫
Ω

[
pk − p̃(ρk, θk)

]
NT

p dΩ,

f n
H = −

∫
Ω
[BT

H(∇× Hn) + BT
p (∇ · Hn)] dΩ− σeµm

∫
Ω

BT
H Hn

matu
n dΩ,

f n
u =

∫
Ω

{
NT [ρnb− ρn(∇un)un − [(∇ρn) · un + (∇ · un)ρn]un − µm Hn

matG
n]

− BTτn
c

}
dΩ +

∫
Γ

NT t̄n dΓ,

f n
ρ = −

∫
Ω

NT
ρ

[
ρn(∇ · un) + un · (∇ρn)

]
dΩ,

f n
θ =

∫
Ω

{
ρnNT

θ Qh − k f BT
θ∇θn − Cv

[
(θn∇ρn + ρn∇θn) · un + ρnθn(∇ · un)

]
NT

θ +

(τn
c )

T [Dc(un)]NT
θ

}
dΩ−

∫
Γq

NT
θ q̄n dΓ +

∫
Ω

(Gn)T(Gn)

σe
Nθ dΩ,

gH = −σeµm

∫
Ω

NT(Hk − Hn) dΩ,

gu = −
∫

Ω
NT [ρkuk − ρnun] dΩ,

gρ = −
∫

Ω
NT

ρ (ρ
k − ρn) dΩ,

gθ = −
∫

Ω
Cv

[
ρkθk − ρnθn

]
NT

θ dΩ +
t∆

2

∫
Ω

NT
θ [(1− α)τn

c − ατk
c ][Dc(uk)− Dc(un)] dΩ.

The corresponding steady-state solution can be obtained directly without time step-
ping by solving

Kkĥ∆ = f k
∆, (9)

2.6. Two-Dimensional Formulation

In the case of two-dimensional flows in the x-y plane, only (∇× H)z is non-zero, and
is given by

(∇× H)z =
∂H
∂y
− ∂H

∂x
.

The velocity, magnetic field, rate of deformation tensor, and constitutive tensor are
given by

u =

[
ux
uy

]
, H =

[
Hx
Hy

]
, Dc =

 Dxx
Dyy

2Dxy

, Cc =

λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

,
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whereas the other matrices are as follows:

B =

N1,x 0 N2,x 0 . . .
0 N1,y 0 N2,y . . .

N1,y N1,x N2,y N2,x . . .

,

Bp =
[
N1,x N1,y N2,x N2,y . . .

]
,

R =

[
uk

x uk
y 0 0

0 0 uk
x uk

y

]
,

BNL =


N1,x 0 N2,x 0 . . .
N1,y 0 N2,y 0 . . .

0 N1,x 0 N2,x . . .
0 N1,y 0 N2,y . . .

,

Bρ1 =
[
ρk N1,x +

∂ρk

∂x N1 ρk N1,y +
∂ρk

∂y N1 ρk N2,x +
∂ρk

∂x N2 ρk N2,y +
∂ρk

∂y N2 . . .
]
,

Bρ2 =
[
(∇ · uk)N1 + (uk ·∇)N1 (∇ · uk)N2 + (uk ·∇)N2 . . .

]
,

Bθ =

[
N1,x N2,x . .
N1,y N2,y . .

]
,

BH =
[
−N1,y N1,x −N2,y N2,x . . .

]
.

The cross-product terms in the two-dimensional formulation are as follows:

H∆ × uk = −[uk
x uk

y]SĤ∆,

Hk × u∆ = [Hk
x Hk

y]Sû∆,

uk × Hk = [uk
x uk

y]

[
Hk

y
−Hk

x

]
,

(∇× Hk)× Hk = −(∇× Hk)z

[
Hk

y
−Hk

x

]
,

Hk × (∇× H∆) =

[
Hk

y
−Hk

x

]
BH Ĥ∆,

u∆ × (∇× Hk) = (∇× Hk)zSû∆,

(∇× Hk)× H∆ = −(∇× Hk)zSĤ∆,

where

S =

[
0 N1 0 N2 . . . 0 N9
−N1 0 −N2 0 . . . −N9 0

]
.

Transient and steady-state solutions are obtained from Equations (8) and (9),
respectively, where the relevant matrices are now given by

KuH =
∫

Ω
µmNT

{
(∇× Hk)zS +

[
Hk

y
−Hk

x

]
BH

}
dΩ,

KθH = − 2
σe

∫
Ω
(∇× Hk)zNT

θ BH dΩ,

KHu = σeµm

∫
Ω

BT
H

[
Hk

x Hk
y

]
S dΩ,

KHH =
∫

Ω
[BT

H BH + BT
p Bp] dΩ− σeµm

∫
Ω

BT
H

[
uk

x uk
y

]
S dΩ,
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f k
H = −

∫
Ω
[(∇× Hk)zBT

H + BT
p (∇ · Hk)] dΩ + σeµm

∫
Ω

BT
H

[
uk

x
uk

y

]T[
Hk

y
−Hk

x

]
dΩ,

f k
u =

∫
Ω

{
NT

[
ρkb− ρk(∇uk)uk −

[
(∇ρk) · uk + (∇ · uk)ρk

]
uk − µm(∇× Hk)z

[
Hk

y
−Hk

x

]]
−

BTτk
c

}
dΩ +

∫
Γ

NT t̄k dΓ,

f k
θ =

∫
Ω

{
ρk NT

θ Qh − k f BT
θ∇θk − Cv

[
(θk∇ρk + ρk∇θk) · uk + ρkθk(∇ · uk)

]
NT

θ +

(τk
c)

T [Dc(uk)]NT
θ

}
dΩ−

∫
Γq

NT
θ q̄k dΓ +

∫
Ω

∣∣∣(∇× Hk)z

∣∣∣2
σe

Nθ dΩ.

3. Numerical Examples

We now demonstrate the robust performance of the developed strategy by means of
several two and three-dimensional examples.

3.1. 2D Lid-Driven Cavity Problem in the Presence of a Magnetic Field

The domain of the problem is a square of dimension h = 1 m. The schematic for this
problem is shown in Figure 1.

Figure 1. Schematic for the 2D lid-driven cavity problem.

At time t = 0 , the top surface moves with a velocity u0 = 1 m/s. A uniform
magnetic field is applied throughout the domain at all times, such that H = 2ey A/m. The
magnetic field component Hx is prescribed to be zero at the top and bottom surfaces at all
times. The properties of the conducting fluid used for this example are µr = 7.9577× 107,
σe = 0.01 (Ω-m)−1, µ = 1.0 kg/ms, ρ = 1000 kg/m3 corresponding to Re = 1000, Rem = 1
and Ha = 20, where

Re =
ρu0h

µ
, Rem = µmσeu0h, Ha =

√
σe

µ
B0h,

B0 = µmHy, µm = µrµ0, µ0 = 4π × 10−7.

Three different uniform meshes of nine-noded quadrilateral elements have been used
to mesh the geometry, as shown in Table 1, to study the convergence of the solution with
respect to mesh refinement. Ten loadsteps have been used for conducting the steady-state
analyses. At every loadstep, convergence is achieved within a maximum of six iterations
for all of the meshes considered. In the transient case, convergence is achieved within five
iterations at each time step. The trapezoidal rule parameter α in the transient analysis is
chosen as 0.5. The solution obtained using a 120× 120 mesh and a time step of 0.125 s is
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used as the reference solution. In Table 1, the error norm Esteady is calculated on the basis
of the computed steady-state velocity component ux along the midplane x = 0.5 as

Esteady =
√

∑|ureference − u|2x=0.5,

where the summation is over the number of nodal points along the midplane. For the
transient case, we have calculated the error as the average of the above-mentioned error
measure over the first 5 seconds. From Figure 2, the rate of convergence of the error is
found to be approximately equal to 1.360 and 1.084 for the steady and transient cases,
respectively.

Table 1. Convergence of the solution with respect to mesh and timestep refinement in the 2D
lid-driven cavity problem in the presence of a magnetic field.

Mesh Level Elements t∆ Esteady Etransient

i 20× 20 1 s 0.1478 0.1276
ii 40× 40 0.5 s 0.0668 0.0561
iii 80× 80 0.25 s 0.0224 0.0284

1.3 1.4 1.5 1.6 1.7 1.8 1.9
-1.7

-1.5

-1.3

-1.1

-0.9

(a)

1.3 1.4 1.5 1.6 1.7 1.8 1.9
-1.7

-1.5

-1.3

-1.1

-0.9

(b)

Figure 2. (a) Convergence of the steady-state solution with respect to mesh refinement. (b) Conver-
gence of the transient solution with respect to mesh and timestep refinement.

Figure 3 presents the variation of the velocity components ux and uy as a function of y
at the midplane x = 0.5 m, whereas Figure 4 presents the streamlines corresponding to the
steady-state solution.
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0
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(a)

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. Variation of (a) ux and (b) uy along the mid plane x = 0.5 m.

Figure 4. Streamlines corresponding to the steady-state solution of the 2D lid-driven cavity problem.

3.2. Hartman–Poiseuille Flow

This is one of the standard benchmark problems used in the literature. A conducting
fluid flows between two parallel plates under the influence of a pressure gradient given by
−ρG, and a magnetic field perpendicular to the two plates H = (Bo/µm)ey. The analytical
solution for an incompressible fluid is given by [33].
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ux = V
(

1− cosh(Ha η)

cosh(Ha)

)
, uy = 0, uz = 0, p = −ρGx− µH2

x
2

,

Hx =
BoRem sinh(Ha η)

µm Ha cosh(Ha)
−
(

1 +
E

BoV

)
BoRemη

µm
, Hy =

Bo

µm
, Hz = 0,

(10)

where Rem = µmσeVh, Ha = Boh
√

σe/µ and η = y/h.
Depending on whether the walls are insulating or conducting, the constants V and E

in Equation (10) are given by

V =
ρG Ha

σeB2
o tanh(Ha)

, E =
ρG
σBo

(
1− Ha

tanh(Ha)

)
(Insulating walls),

V =
ρG

σeB2
o

, E = 0 (Perfectly conducting walls).

Since the above analytical solution is for an incompressible fluid, we use water
as the fluid, with the equation of state as given in [34]. The data used are the same
as in [5,29], namely µr = 9.2878, σe = 7.14 × 105 (Ω-m)−1, µ = 1.5 × 10−4 kg/ms,
ρG = 4.85 × 10−5 N/m3, Bo = 1.4494× 10−5 Wb/m2, which correspond to Ha = 5.

We use the following boundary conditions in our simulation, which correspond to the
perfectly insulating case: At y = ±0.5, we have u = 0, Hx = 0, and T = 293.15 K, whereas
at x = 0, 1, the traction corresponding to a uniform pressure, and Hy = B0/µm, are imposed.
We use a 2× 64 element mesh for Ha = 1, 2, 5, 10, 20 and 100. Figure 5 shows almost an
exact match of the numerical results obtained with the analytical solution. Convergence
is achieved within the first four iterations for all of the Hartmann numbers. The same
problem has been solved by Nizar [6] using a mesh of 1600 nodes, by Shadid et al. [1]
using a 200× 200 element mesh for Ha = 20, and by Eswaran et al. [28] using a mesh of
5151 nodes, whereas, in the present formulation, only a 645 node mesh is used.

-0.5 -0.25 0 0.25 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a)

-0.5 -0.25 0 0.25 0.5
-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

(b)

Figure 5. Comparison of the numerical and analytical solutions along the mid plane x = 0.5 m for
Hartman–Poiseuille flow: (a) ux (b) Hx.

3.3. Two-Dimensional Buoyancy-Driven Flow Problem

We consider the case of buoyancy-driven flow inside a rectangular cavity with an
aspect ratio of H/L = 0.25. The schematic for this problem is shown in Figure 6.
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Figure 6. Schematic for the two-dimensional buoyancy-driven flow problem.

The vertical walls are at constant temperature Th and Tc, whereas the horizontal walls
are thermally insulated. The magnetic field B0 acts along the y-direction. The analytical
solution for the non-dimensional velocity along the x-direction along the center vertical
plane is [35,36]

U =
sinh(Ha y)

2 sinh(Ha /2)
− y, (11)

where

U =
Ha2

Gr

(
ux H

ν

)
,

Gr =
gβ

ν2
(∆T)H4

L
,

Ha =

√
σe

µ
B0H.

The flow properties used for this problem are Th = 30 ◦C, Tc = 10 ◦C, Cv = 10 J/kg-K,
µ = 10−3 kg/m-s, k f = 1 W/m-K, β = 207× 10−6 K−1, ρ = 998.2 kg/m3, µr = 7.9577×
103, σe = 10 (Ω-m)−1, and g = 1.552083478× 10−4 m/s2, which correspond to Pr = 0.01,
Gr = 2× 104, and Ha = 1000 (B0 = 20 Tesla). Lower Hartmann numbers are simulated
using a corresponding lower value for B0.

The mesh specifications for the different Hartmann numbers considered are given
in Table 2.

Table 2. Mesh specifications for the two-dimensional buoyancy-driven flow problem.

Ha No. of No. of No. of
Elements Nodes Degrees of Freedom

1 40× 20 3321 15,101
10 40× 20 3321 15,101
100 100× 75 30,351 142,176

1000 200× 200 160,801 759,201

Figure 7 presents a comparison between the analytical and numerical results for a large
range of Ha values (1–1000). Eswaran et al. [28] used a graded mesh with 25,351 nodes for
Ha = 10, whereas, in the present case, we use a coarse uniform mesh with 3321 nodes to
obtain a solution that is in very good agreement with the analytical solution. Figures 8 and 9
present, respectively, the isotherms and streamlines for Ha = 1, Ha = 10, and Ha = 100.
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-0.25 -0.125 0 0.125 0.25

-0.5

-0.25

0

0.25

0.5

Figure 7. Comparison of the numerical and analytical solutions for the non-dimensional velocity U
along the center plane x = 0 for the two-dimensional buoyancy-driven flow problem.

(a)

(b)

(c)

Figure 8. Isotherms for the two-dimensional buoyancy-driven flow problem at Gr = 2 × 104,
Ra = 2× 102. (a) Ha = 1; (b) Ha = 10; (c) Ha = 100.
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(a)

(b)

(c)

Figure 9. Streamlines for the two-dimensional buoyancy-driven flow problem at Gr = 2 × 104,
Ra = 2× 102. (a) Ha = 1; (b) Ha = 10; (c) Ha = 100.

3.4. 3D Natural Convection Problem in the Presence of a Magnetic Field

This problem is based on experiments performed by Okada et al. [37]. Gallium as
a working substance is kept in a 30 mm× 30 mm× 30 mm cubical cavity. A temperature
difference (Th − Tc) is applied across the fluid, and a magnetic field B0 is applied in a
direction parallel to the temperature difference as shown in Figure 10.

x

y

z

B0 B0

Th Tc

Figure 10. Schematic for the three-dimensional natural convection problem in the presence of a
magnetic field.

The flow parameters used are Th = 308.15 K, Tc = 278.15 K, µ = 10−3 kg/m-s,
ν = 10−6 m2/s, β = 207 × 10−6 K−1, Cv = 756 J/kg-K, κ f = 31.5 W/m2-K, µr =

7.9577× 103, σe = 3.85× 106 (Ω-m)−1, Pr = 0.024. The values of g and B0 for different
values of Ha are given in Table 3, where

Gr =
gβ(Th − Tc)D3

ν2 , Gr∗ =
gβ

ν2κ f

QnetD4

A
, Ha =

√
σe

µ
B0D,

Nu =
QnetD

Aκ f (Th − Tc)
, B0 = µm Hx, µm = µrµ0, µ0 = 4π × 10−7.
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Qnet is the net rate of heat transfer (W), D is the side of the cube (30 mm), and A is
the cross-sectional area (900 mm2). The values are chosen such that the modified Grashoff
number Gr∗ varies from 106 to 4.24× 106 for different Ha as in [37]. Meng et al. [38] have
solved this problem numerically for buoyant MHD flows at high Ha.

Table 3. Properties used for different Ha in the 3D natural convection problem.

Ha B0 (Tesla) g (m/s2)

0 0 9.81
92 0.049423808 20
134 0.074135713 20
460 0.247119042 20

We use a graded mesh of 23,273 nodes and 2592 27-noded hexahedral elements for
all Ha values to demonstrate the good coarse-mesh accuracy of the present formulation.
Figure 11 shows a very good agreement for the Nusselt number at various Gr∗ and Ha.

1 2 3 4 5 6

Gr
* 10

6

1

1.5

2

2.5

3

N
u

Figure 11. Comparison of the numerical results with the experimental results of Okada et al. [37] and
computational results of Meng et al. [38] for Nusselt number variation with Gr∗ at different Ha for
the 3D natural convection problem.

4. Discussion

An appropriate choice of the interpolation functions for the various field variables is
critical in ensuring the stability of the resulting numerical scheme. The weak implementa-
tion of the state equation used in this work ensures that a lower order interpolation can be
used for the pressure, density, and temperature fields compared to the interpolation for
the velocity and magnetic fields. The resulting strategy yields stable solutions for all of the
field variables without the need for any stabilizing terms in the formulation, or without
the need to adjust any parameters, even with coarse meshes. The monolithic nature of the
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strategy and the exact linearization of the variational formulation ensure a faster rate of
convergence compared to a staggered approach.

Based on the numerical solutions presented, it can be said that the present formulation
shows a very good coarse-mesh accuracy, and is robust and efficient even at very high
Hartmann numbers.
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