
fluids

Article

The Coupled Volume of Fluid and Brinkman Penalization
Methods for Simulation of Incompressible Multiphase Flows

Evgenii L. Sharaborin , Oleg A. Rogozin and Aslan R. Kasimov *

����������
�������

Citation: Sharaborin, E.L.; Rogozin,

O.A.; Kasimov, A.R. The Coupled

Volume of Fluid and Brinkman

Penalization Methods for Simulation

of Incompressible Multiphase Flows.

Fluids 2021, 6, 334. https://doi.org/

10.3390/fluids6090334

Academic Editors: Federico Piscaglia

and Jérôme Hélie

Received: 2 August 2021

Accepted: 14 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; Evgenii.Sharaborin@skoltech.ru (E.L.S.);
O.Rogozin@skoltech.ru (O.A.R.)
* Correspondence: a.kasimov@skoltech.ru

Abstract: In this work, we contribute to the development of numerical algorithms for the direct
simulation of three-dimensional incompressible multiphase flows in the presence of multiple fluids
and solids. The volume of fluid method is used for interface tracking, and the Brinkman penalization
method is used to treat solids; the latter is assumed to be perfectly superhydrophobic or perfectly
superhydrophilic, to have an arbitrary shape, and to move with a prescribed velocity. The proposed
algorithm is implemented in the open-source software Basilisk and is validated on a number of test
cases, such as the Stokes flow between a periodic array of cylinders, vortex decay problem, and
multiphase flow around moving solids.

Keywords: direct numerical simulation; incompressible multiphase flows; Brinkman penalization;
volume of fluid method; continuum surface force; adaptive mesh refinement; finite volume method

1. Introduction

In this paper, we develop a numerical approach to the simulation of three-dimensional
incompressible multiphase flows involving multiple fluid phases as well as solid inclusions
or boundaries of arbitrary shapes. The proposed algorithm is implemented in the open-
source environment Basilisk [1] and is validated on several fluid dynamics problems
demonstrating its capabilities for solving challenging multiphase multiscale flow problems.

Multiphase flows are of importance to many areas of applied science and engineer-
ing. Sprays and jets from nozzles are a common occurrence in mechanical, chemical,
and aerospace engineering [2–5]. Chemically reacting flows in multiphase systems are
important for combustion applications [6], microreactors [7], and energy storage technolo-
gies [8,9]. The motion of bubbles, droplets, and particles in viscous flows are important in
the oil and gas industry [10–12], biology, and medicine [13–17]. The design of microfluidic
devices requires the understanding of multiphase flows in small channels of complex
shapes [14,18–21]. Numerous manufacturing applications also relate to multiphase flows
involving, for example, the formation of bubbles during composite manufacturing [22].
Detailed numerical simulation in problems involving multiphase flows is associated with
extra challenges compared to single-phase flows due to the need to accurately resolve vari-
ous features associated with interfaces, which often requires sophisticated algorithms and,
in the presence of multiscale dynamics, substantial computational resources [21,23]. The
reader can find general and extensive discussions of the theory, computational techniques,
and applications of multiphase flows in recent and classical books, such as [23–28].

In multiphase flows, the fluid–fluid interface is generally a dynamic unknown sur-
face that is to be determined as part of the solution. One can describe such flows by
writing governing systems of equations for each fluid region separated by the interface
and supplementing them by kinematic and dynamic interface conditions. Such equations
coupled via the interface conditions can then be discretized and solved numerically. This
direct approach is generally quite challenging to implement as it requires one to track the
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evolution of the interface and to carefully handle topological changes associated with the
break-up or merger of domains with different fluids.

The present work uses a different formulation that provides a simple and efficient
way to handle problems with the interface identification. The formulation is based on
the introduction of a scalar field that serves as an indicator function for each fluid phase
and allows one to track the interface motion by solving an appropriate evolution equation
for the function. For example, one can define function ϕ(x, t) that has a value pf 1 in
the first fluid and a value of 0 in the second fluid, or ϕ(x, t) could have different signs
on different sides of the interface and be zero on the interface. Many methods based on
such ideas have been designed to solve for the interface evolution, including the front
tracking method [29–31], the boundary integral method [32], the phase field method [33,34],
the volume of fluid method (VOF) [35,36], and the level set method [37,38].

Our formulation is based on the VOF method, which was originally proposed by Hirt
and Nichols in 1981 [35] and has subsequently been improved in many works, for exam-
ple [39–41]. There exist two versions of the method: the geometric VOF [41,42] wherein
the distribution of ϕ is found geometrically by, e.g., advecting a plane interface with a
predefined velocity u, and the algebraic VOF [43] wherein ϕ is represented by a function,
such as a polynomial or trigonometric function. The geometric VOF is more widely used
due to its advantages in terms of mass conservation, robustness to topological changes,
such as a merger or break-up, and relative ease of extension to high dimensional Carte-
sian grids [44]. However, it should be noted that the geometric VOF method is harder to
implement in parallel.

The surface tension of a fluid interface is treated by the so-called “continuum surface
force” (CSF) model, originally proposed by Brackbill et al. [45]. In this model, the surface
tension is represented as a body force highly concentrated in the vicinity of the interface.
Other related models can be found in the literature [46,47]. The CSF model is easily coupled
with various fixed (Eulerian) mesh formulations for interfacial flows, in particular with the
VOF [45,48], level set [49,50], and front-tracking methods [3,30,51]. Recent improvements
of CSF are associated with the reduction of spurious currents using the balanced force
algorithm [46,52] and with improving the interface curvature evaluation [53,54]. We also
mention a related continuum surface stress method [55–57] that represents the surface ten-
sion as the divergence of the capillary pressure tensor. The main advantage of this method
over CSF is that it naturally takes into account tangential stresses, such as Marangoni
stresses (which are not considered in the present work).

The presence of solids in multiphase flows is associated with many computational
challenges especially if the solids are of a complex shape and are not stationary. When
considering only mesh-based schemes for such multiphase flows, there are two approaches
to represent the geometry of the solids: (1) based on body-fitted methods, wherein the
mesh boundary is aligned with the surface of the solids or (2) the immersed boundary (IB)
methods, wherein the boundary conditions are incorporated in the governing equations,
and the solid region becomes part of the computational domain. The first of these options
allows for an easy formulation of the boundary conditions. However, when bodies expe-
rience large deformations or move fast, a grid has to be reconstructed frequently, which
leads to large overhead. Moreover, during the frequent reconstructions, one must avoid the
appearance of geometrical singularities and small angles in order to obtain high-quality
meshes. Although the automatic generation of body-fitted grids has been developed [58,59],
the task remains challenging and labor-intensive [60], especially when bodies move. Such
methods are also difficult to generalize to high-order schemes, so most body-fitted methods
are low-order.

In contrast, the IB methods [61] allow for high-order schemes, arbitrary geometries,
and moving solids. The first IB method was proposed by Peskin in 1977 [62] to simulate
the interaction of cardiac mechanics and blood flow. The main feature of the method is a
non-body conformal Cartesian grid in which a new approach is formulated to consider
the effects of the immersed boundary on the flow. Specifically, the fluid is modeled on



Fluids 2021, 6, 334 3 of 30

a fixed Cartesian grid, but the boundary is modeled on a curvilinear Lagrangian mesh,
which moves freely across the fixed mesh. In this technique, a grid is not body-fitted.
The immersed boundary is provided by an additional surface grid that cuts across the
Cartesian grid. The non-conformity of the wall and the grid leads to the modification of
the Navier–Stokes equations [63] by incorporating an artificial force term that models the
effects of the boundary in such a way that guarantees boundary conditions by slightly
adjusting the fluid velocity field near the solid surface using various kernel functions [61].

One of the IB methods is the Brinkman penalization method (BPM), which was
originally developed by Arquis and Caltagirone [64] for the numerical simulation of
isothermal obstacles in incompressible single-phase flows. The general idea of the BPM is
based on the work of Brinkman [65] in which solids are considered porous media with very
small permeability, η −→ 0, and fluids as media with large permeability, η −→ ∞. In BPM,
the permeability is taken as a penalization parameter. One of the advantages of BPM is
the availability of a convergence proof and error estimates depending on the penalization
parameter, which have been thoroughly studied by Angot et al. [66]. Furthermore, the
enforcement of boundary conditions on the solid requires no modifications to a numerical
scheme near the solid surfaces. It is therefore relatively easy to design an efficient and
robust parallel code [67].

In the present work, interfaces are tracked by the VOF method [39], and solids are
considered by BPM. The algorithm is implemented in the open-source software Basilisk [1],
which uses efficient adaptive meshes. The BPM and VOF methods can be implemented
for fixed or adaptive grids. The adaptive mesh refinement reveals the best capabilities of
the BPM and VOF methods when the mesh compression ratio (the actual number of cells
relative to the number of cells at maximum refinement) is larger than 30% [68].

In [69,70], the authors also consider coupling of VOF and BPM. In [69], non-zero
contact angles on the surface of stationary solids are analyzed using fixed meshes, while
in [70], the solids are treated with adaptive Cartesian meshes under perfectly wetting
conditions. Our work considers fixed as well as moving solids using adaptive meshes;
perfectly wetting and perfectly non-wetting surfaces are assumed.

The remainder of the manuscript is organized as follows. In Section 2, we introduce
the governing equations together with the main ideas behind the numerical approach.
The detailed description of the numerical algorithm is presented in Section 3. In Section 4,
we discuss a number of simulation results, including validation tests of the method by
solving several multiphase flow problems. Conclusions are presented in Section 5.

2. Governing Equations

The governing equations are based on the Navier–Stokes equations for incompressible
Newtonian fluids adapted to treat multiphase flows in a system with complex topology
involving multiple fluids and solid inclusions. The solids are assumed to move with a
prescribed velocity. The solid surface is considered to be either perfectly superhydrophilic
or perfectly superhydrophobic.

The computational domain Ω is assumed to contain two fluids in subdomains
Ω fi

=
⋃

k Ω fi ,k, i = 1, 2, and stationary or moving solids in subdomains Ωs =
⋃

k Ωs,k.
Each subdomain can be a multiply connected region with an arbitrary shape, as illustrated
in Figure 1. The fluids are assumed to be immiscible and to have different densities ρi
and viscosities µi, i = 1, 2. The no-slip boundary condition is set on the surface of solids
such that

u(x, t) = Us(x, t), x ∈ ∂Ωs, (1)

where the solid velocity field Us(x, t) is assumed prescribed.



Fluids 2021, 6, 334 4 of 30

Ωs,1

Ωs,2

Ωs,3

Ωf2,3

Ωf2,1

Ωf2,2

Ωf1,2

Ωf1,1

Figure 1. Schematics of the computational domain containing fluids 1 (blue) and 2 (white) in Ω f1,k
and Ω f2,k, respectively, and solids in Ωs,k (gray).

The Navier–Stokes equations for multiphase flow can be reformulated as a single
system for the velocity field u in the whole domain. The effect of surface tension is then
included in the momentum equation as a volumetric force fσ concentrated on the fluid
interfaces. The presence of solids is captured by the penalization force fB [66,71] that acts
inside solids and also enables imposing the boundary condition (1). Then, the fluid motion
is governed by the continuity and modified Navier–Stokes equations:

∇ · u = 0, (2)

∂ρu
∂t

+∇ · (ρu⊗ u) = −∇p +∇ · τ + fσ + ρg + fB, (3)

where p is pressure, τ = µ
(
∇u +∇uT) is the viscous stress tensor, and g is the gravita-

tional acceleration. The local average density ρ and dynamic viscosity µ of the fluids are
calculated via the local volume fraction ϕ(x, t) of fluid 1 using a linear interpolation:

ρ = ρ1 ϕ + ρ2(1− ϕ),

µ = µ1 ϕ + µ2(1− ϕ),
(4)

where subscripts 1 and 2 refer to the primary and secondary fluid phases. The parameters
ρi, µi are assumed constant. The volume fraction ϕ is governed by the advection equation

∂ϕ

∂t
+ u · ∇ϕ = 0. (5)

2.1. Surface Tension Force fσ

The surface tension force is incorporated into the momentum Equation (3) as a source
term fσ that is highly concentrated in the vicinity of the interface. This continuum surface
force (CSF) approach was proposed in [45] and is widely used for the simulation of flows
with free interfaces. The main advantage of the CSF is the one-shot calculation throughout
the computational domain and the relatively straightforward implementation. The surface
tension force fσ in Equation (3) is given by:

fσ(x, t) =
ρ

〈ρ〉σκ∇ϕ, (6)
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where 〈ρ〉 = (ρ1 + ρ2)/2 is the average density of the two fluid phases, σ is the coefficient
of surface tension, and κ is the total curvature of the interface obtained using κ = −∇ · n,
where n = ∇ϕ/|∇ϕ| is the unit normal to the interface.

To model perfectly non-wetting (perfectly superhydrophobic) or perfectly wetting (per-
fectly superhydrophilic) surfaces, the volume fraction of fluid 1 inside solids is given by:

ϕ(x ∈ Ωs, t) =

{
0, if non-wetting surface,
1, if perfectly-wetting surface.

(7)

2.2. The Penalization Term fB

The presence of the solid phase is reflected in the modified Navier–Stokes equation by
the Brinkman penalization term fB, and the approach is called the Brinkman penalization
method (BPM) [66,72]. The method considers solids as porous media with a vanishing
permeability. The source term fB in the governing equations enforces the desired velocity
u = Us inside the solids.

For the Dirichlet boundary condition from Equation (1), the term fB in Equation (3) is
set as

fB = −ρ
χ

η
(u−Us), (8)

where η > 0 is a penalization coefficient having the dimension of time, and factor χ is a
mask field defined as

χ(x, t) =

{
1, x ∈ Ωs,
0, x ∈ Ω f .

(9)

Angot et al. [66] theoretically proved that as η −→ 0, solutions of the penalized
Equations (2) and (3) converge to the solutions of the original Navier–Stokes equations
with correct boundary conditions. The upper bound on the global errors of the normal and
tangential components of velocity were shown to satisfy the estimates

∥∥un − uη,n
∥∥ ≤ C1η,∥∥uτ − uη,τ

∥∥ ≤ C2
√

η,
(10)

where C1 and C2 are constants that depend only on the problem setting. These estimates
indicate that the normal component of the velocity converges to the target value faster
than the tangential one. Note, however, that even though taking smaller values of η gives
better results, there is a practical limitation of the method associated with the presence of
discretization errors. As we show in Section 4.2, the error

∥∥u− uη

∥∥ reaches a plateau when
η → 0. The error is seen to decrease as η tends to 0 until the viscous and penalization terms
become of the same order of the magnitude inside the solid, i.e., ν∆u ≈ u/η. After that,
the plateau is reached (see Figure 8). In terms of the characteristic velocity u0 and thickness
δ, the size of the Brinkman layer can be estimated from the balance νu0/δ2 ≈ u0/η that
gives δ =

√
ην. This size must be resolved numerically with at least m = 1, 2 mesh

cells [71,73]. To ensure this, one can take the penalization coefficient as

η =
(mh)2

ν
. (11)

The BPM requires a specification of viscosity and density in the whole domain, even
inside solids. The density ρ3 of the solid can be taken as a real physical value, but the
viscosity of the solid, µ3, has no physical meaning. Nevertheless, it was observed in nu-
merical experiments that taking large values of µ3 improves the efficiency of computations.
Here, µ3 was chosen (somewhat arbitrarily), assuming that the kinematic viscosities of
the primary heavy fluid (fluid 1) and the solid are the same, which makes the kinematic
viscosities continuous across the fluid–solid interface: µ3 = µ1ρ3/ρ1. Note that taking a µ3
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value that is too small leads to a slow convergence of the solution. One should also avoid
taking a µ3 too large. Either way, the average viscosity and density are found from

µ = (1− χ)[µ1 ϕ + µ2(1− ϕ)] + χµ3, (12)

ρ = (1− χ)[ρ1 ϕ + ρ2(1− ϕ)] + χρ3. (13)

These definitions ensure that: ρ = ρ3, µ = µ3 inside solids (χ = 1 and any ϕ);
ρ = ρ1, µ = µ1 inside fluid 1 (χ = 0 and ϕ = 1); and ρ = ρ2, µ = µ2 inside fluid 2 (χ = 0
and ϕ = 0).

3. Computational Algorithms

The computational domain Ω is spatially discretized using square (cubic in 3D) finite
volumes forming a hierarchical structure; the so-called quadtree (octree in 3D) [74] is
schematically shown in Figure 2a. Variables are defined either at the cell centers or on
their faces, as shown in Figure 2b. The incompressible Navier–Stokes solver in Basilisk
uses a standard staggered grid, where the pressure p is specified only at the cell center,
but the velocity is specified both at the cell centers as u and the centers of the cell faces as
u f . Similarly, the solid volume fractions are specified at the cell centers as χ and at the face
centers as χ f . Both χ and χ f are determined using the distance functions at the vertices.
The density ρ and volume fraction ϕ of fluid 1 are also defined at the cell centers, while
viscosity µ, acceleration a f , and specific volume α f = 1/ρ(ϕ f , χ f ) are defined at the cell
faces, where ρ is computed using Equation (13), and the face-centered value ϕ f is linearly
interpolated using two adjacent cells.

We develop the numerical algorithm for the solution of the main governing system
by splitting various physical processes and treating them separately either explicitly or
implicitly. The algorithm consists of six main steps, which are explained in detail below:
(1) the volume of fluid step, in which the volume fraction ϕ is updated; (2) the advection
step for momentum in Equation (3), in which the velocity field u is updated using the
Bell–Colella–Glaz scheme [75]; (3) the implicit update of the viscous and Brinkman pe-
nalization terms as well as of u; (4) the updates of the surface tension and gravity terms
together with the face velocity u f ; (5) the Chorin projection step is taken [76], in which the
incompressibility condition is imposed and the pressure field p is found; and (6) the mesh
adaptation step, where the mesh is refined in the regions with large gradients or coarsened
in smooth regions.

(a) (b)

Figure 2. Structure of the adaptive computational mesh and variable definitions. (a) The quadtree
discretization. (b) The staggered grid with some variables defined at the cell centers while others
at the cell boundaries. Pressure p, velocity u, volume fraction ϕ of fluid 1, volume fraction χ of the
solid, and density ρ are defined at the cell centers (red circles). Other variables, such as velocity u f ,
viscosity µ, acceleration a, and volume fraction of solids χ f are specified on the faces of cells (crosses)
(note that some variables can be defined both at the centers and the faces).



Fluids 2021, 6, 334 7 of 30

3.1. Step 1: Volume of Fluid (VOF)

The VOF is a sharp interface method that evolves fluid interfaces using the tracer field
ϕ satisfying the advection (Equation (5)). When advecting ϕ from the time level n− 1/2 to
n + 1/2 using a conservative, non-diffusive geometric VOF method [39,42], we obtain:

ϕn+1/2 = ϕn−1/2 + ∆t∇ ·
(

ϕnun
f ,c

)
, (14)

where un
f ,c is the corrected velocity field defined on the cell faces. The face-velocity correc-

tion is required in order to adjust the flow so that the fluid does not penetrate into the solid
by more than two cells. We use the following correction of u f to obtain un

f ,c:

un
f ,c = (1− In

χ f
)un

f + In
χ f

Un
f ,s, (15)

where Un
f ,s = Ūs is the solid velocity obtained by averaging the cell-centered velocity

Us, and In
χ f

is the face-centered indicator function computed from the face-centered solid
volume fraction χn

f . The indicator function Iχ f is 1 inside the pure fluid domain (χ f = 0),
and 0 even if the cell contains a small volume of the solid body (χ f > 0). Such a formulation
does not strictly respect the mass conservation. Nevertheless, in the verification tests in
Sections 4.3 and 4.4, we demonstrate that the mass loss is negligible (<5× 10−4% for fine
mesh and <10−2% for coarse mesh). In the first time step, u0

f is taken as the average value

of the cell-centered velocity u0. In the multi-dimensional VOF advection scheme, the field
ϕ is advected along each dimension in series using a 1-D scheme.

The VOF method allows one to simulate multiphase flows with complex topological
changes using sharp interface representation. However, its implementation is not without
challenges. It requires an accurate calculation of the interface normal and the curvature,
which involves calculating second derivatives in space (see subsequent steps of the al-
gorithm below). One may face numerical artifacts, such as discretization-induced flow,
and hence the absence of convergence with grid refinement [53,56]. Consequently, most
approaches do not estimate the curvature directly from the VOF function but instead use a
smoothed VOF function via convolution, discrete quadrature [77], and others.

One approach to addressing these problems is based on the construction of a height
function H for the calculation of interface normals and curvatures [53]. For each interface
cell, fluid “heights” are calculated by summing the fluid volume in the direction of the
largest normal component nx, ny, or nz. This summation is performed on a 7× 3× 3 stencil
around all interface cells with the size h. Note that in 2D, H is a vector, and in 3D, H is a
tensor. For example, if for some interface cell the largest normal is directed along z, then
the height H for a cell I, J, K can be found from

HI+i,J+j,K =
3

∑
k=−3

ϕi,j,kh, i, j = −1, 0, 1. (16)

The curvature κ and the gradient∇ϕ in Equation (6) are then calculated as:

κ = ∇x,y ·
(
ξ∇x,y H

)
,

∇ϕ =

(
ϕi,j,k − ϕi−1,j,k

h
,

ϕi,j,k − ϕi,j−1,k

h
,

ϕi,j,k − ϕi,j,k−1

h

)
,

(17)

where ξ = 1/
√

1 + H2
x + H2

y , and the nabla operators with x, y indices indicate the diver-
gence or gradient only along the indicated directions.

When the HF stencil crosses a highly curved interface more than once, the standard
height-function method stops working. Then the HF method is locally switched to the
parabola-fitted curvature method [52]. The idea behind this method is to fit the interface
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points with a parabola in 2D and a paraboloid in 3D and differentiating the resulting
analytical function to estimate the curvature.

3.2. Step 2: Advection

At this stage, the Bell–Colella–Glaz (BCG) scheme [75] is applied, which is second-
order in time and space. The viscous and Brinkman penalization terms from Equation (8)
are omitted. For simplicity, the method is described here for the two-dimensional case.

Let G = −α f∇p+ σκ∇ϕ/〈ρ〉+ g and u = (u, v). The BCG method estimates the face
velocity at the half time step un+1/2

f and then advects the cell-centered velocity field u as a

passive tracer. The face velocity un+1/2
f ,p in the intermediate timestep n + 1/2 is extrapolated

along characteristics using the cell velocity un and the term Gn. The velocity u f and
auxiliary fields G f at the faces are estimated by averaging the left and right neighbors for
their x components and, correspondingly, bottom and top neighbors for their y components.
Such averages are denoted by an overbar: f̄ f = (f+ + f−)/2.

Thus, the face velocity un+1/2
f ,p at the intermediate temporal layer n + 1/2 for the x

component is given by

un+1/2
f ,p = un+1/2

S +
∆t
2

Ḡn
f ,x +

Sh
2
(1− |r̄x|)

(
∂u
∂x

)n

S
− ∆tvS

2

(
∂u
∂y

)n

S
, (18)

where h is the cell size, r̄x = ūn
f ∆t/h is the CFL number, S = sign (ūn

f ) is responsible for
the direction of the flux, and the index S denotes which neighboring variable is used. Since
this extrapolation does not guarantee incompressibility, the Chorin projection step is taken
(see Section 3.5), which subtracts the non-solenoidal component from the velocity field
un+1/2

f ,p and gives the velocity at the half step un+1/2
f . The x component of the velocity un+1

a
is updated as:

un+1
a = un − ∑

d=x,y
∆t

F+
d − F−d

h
, (19)

where the index a indicates advection, F+
d , F−d are fluxes along direction d, with ()+ indi-

cating right or top face values and ()− left or bottom face values. For example, Fx can be
obtained by a procedure similar to Equation (18):

Fx = un+1/2
f

(
un

S +
∆t
2

Ḡn
f ,x +

Sh
2
(1− |rx|)

(
∂u
∂x

)n

S
− ∆tv̄

2

(
∂v
∂y

)n

S

)
, (20)

where rx = u f ∆t/h is the CFL number, S = sign
(

un+1/2
f

)
is a direction, and v̄ is averaged

from face values as v̄ =
(

v fi,j
+ v fi,j+1

)
/2.

The sum of the pressure gradient, surface tension, and body acceleration, i.e., Gn, is
used in the calculation of cell-centered variable ua,∗ as follows:

un+1
a,∗ = un+1

a + Gn∆t. (21)

Note, that in Equation (20), Gn is used for more accurate computation of fluxes at
cell faces.

The explicit integration gives a restriction on the time step: max
Ω

(|ui|∆t/hi) < 1,

i = (x, y).

3.3. Step 3: Viscous Force and Brinkman Penalization

At this step, we solve the momentum equation with only the viscous and Brinkman
penalization terms. Since the stiff viscous term imposes a strong time-step limitation
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(∆t ∝ h2), and the Brinkman penalization term is also stiff, these two terms are integrated
with an implicit scheme as follows:

un+1
v − un+1

a,∗
∆t

=
1

ρn+1/2∇ · µ
n+1/2

(
∇un+1

v +∇
(

un+1
v

)T
)

− χn+1

η

(
un+1

v −Un+1
s

)
, (22)

where un+1
v is the cell-centered velocity, the penalization coefficient η is computed by

Equation (11), and χn+1/2 is the cell-centered volume fraction of solids. The density ρn+1/2

and viscosities µn+1/2 are computed using Equations (12) and (13), in which instead of
the volume fraction ϕ, the smoothed volume fraction ϕ̃ is used. The smoothing is done
by linearly interpolating values from the nearest cell-centered neighbors. The viscous
term has the standard second order central-difference discretization in space. A similar
equation without contribution of fB is solved by the multigrid method with Jacobi iterations
in [78,79].

3.4. Step 4: Surface Tension and Gravity

The cell-centered velocity un+1
v is based on an old value of Gn, which is computed

from the sum of body acceleration gn, surface tension acceleration σκn−1/2∇ϕn−1/2/〈ρ〉,
and the pressure gradient∇pn on the old time layer n. The following steps update the G
field in order to then subtract the old Gn∆t: un+1

v,∗ = un+1
v −Gn∆t and then add the new

Gn+1∆t. Therefore, we first update all accelerations an+1/2
f = gn+1 + σκn+1/2∇ϕn+1/2/〈ρ〉

and calculate the face velocity un+1
f ,∗ interpolating between neighboring cells and adding the

new acceleration: un+1
f ,∗ = ūn+1

v,∗ + an+1/2
f ∆t. The resultant velocity field is not solenoidal,

and therefore, the Chorin projection is applied (the next step).

3.5. Step 5: Chorin Projection

The velocity and pressure fields are strongly coupled. The direct integration of
Equation (3) does not guarantee the incompressibility of the fluids; that is, the interpolated
un+1

f ,∗ derived from un+1
v does not satisfy the incompressibility condition. To obtain a

divergence-free velocity field un+1
f , the Chorin projection step is used [76]. It is based on

the Helmholtz decomposition whereby the velocity vector field is split into a solenoidal
(∇ · u = 0) and a curl-free (∇× u = 0) components. The projection begins with solving
the pressure Poisson equation

∇ · αn+1/2
f ∇pn+1 =

∇ · u f ,∗
∆t

. (23)

Subsequently, the non-solenoidal part of the velocity is subtracted as

un+1
f = u f ,∗ − ∆tαn+1/2

f ∇pn+1. (24)

This guarantees that∇ · un+1
f = 0 up to a given threshold in the Poisson equation.

After the computation of a new pressure field pn+1, it becomes possible to compute Gn+1,
first on the faces, then in the centers of the cells using interpolation. Finally, un+1 is
computed as un+1 = un+1

v,∗ + Gn+1∆t.
The last step of the integration cycle is the grid adaptation [74,80] based on, for exam-

ple, the volume fraction ϕ of fluid 1, volume fraction χ of the solid, or velocity u. The grid
is refined or coarsened following the standard wavelet-based adaptation criterion [81].

One final note of this section concerns the choice of the integration time step. There
are two limiting factors in the time step ∆t: the convection with the maximum flow velocity
|umax|, which comes from the advection in Equation (5), and the capillary waves with
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the capillary phase speed cσ =
√

0.5σk/〈ρ〉 [45,82], where 〈ρ〉 = (ρ1 + ρ2)/2, and k is
the wavenumber. The maximum possible wavenumber in a finite difference scheme is
kmax = π/h, which corresponds to the minimum wavelength λmin = 2h. Hence, the time
step is chosen from the minimum estimates:

∆t < ∆tCFL = min

(
h
|u f |

)
, ∆t < ∆tσ =

h
2cσ

=

√
h3〈ρ〉
2σπ

. (25)

Summarizing the steps above, we have the following final algorithm.
We note here that steps 3 and 12 of Algorithm 1 are new and have previously not been

implemented in Basilisk. Step 3 addresses the problem of fluid penetration into the solid,
and step 12 accounts for the presence of solids implicitly (in numerical integration) rather
than explicitly as in SSM.

Algorithm 1 The algorithm of multiphase modeling in Basilisk

Require: Set initial and boundary conditions for u, ϕ, χ, and χ f . Notation: G = −∇p + a f .
1: while t < tmax (time integration loop) do
2: Set time step ∆t based on the CFL condition and surface tension restriction (Equation (25)).
3: Correct face velocity un

f ,∗ =
(

1− In
χ f

)
un

f + In
χ f

Un
f ,s.

4: Find volume fraction ϕn+1/2 using the VOF method in Equation (14).
5: Calculate fluid properties ρn+1/2, αn+1/2

f and µn+1/2
f from ϕn+1/2 using Equations (13) and (12).

6: advection step:
7: Predict un+1/2

f ,p using Equation (18).

8: Correct un+1/2
f ,p to obtain divergence free un+1/2

f ,∗ (Chorin’s projection in Equations (23) and (24)).

9: Calculate un+1
a using the Bell–Colella–Glaz scheme (Equation (19)).

10: viscous step:
11: Calculate un+1

a,∗ = un+1
a + Gn∆t.

12: BPM: find un+1
v based on χn+1 using Equation (22).

13: Calculate un+1
v,∗ = un+1

v −Gn∆t.
14: Calculate acceleration an+1/2

f using Equation (6) and velocity un+1
f ,∗ = ūn+1

v,∗ + an+1/2
f ∆t.

15: Correct un+1
f ,∗ to obtain divergence free un+1

f ,∗∗ and pressure pn+1 (Chorin’s projection in Equations (23) and (24)).

16: Calculate Gn+1
f on faces and then interpolate to cells Gn+1.

17: Update un+1 = un+1
v,∗ + Gn+1∆t using the new acceleration a f and pressure pn+1.

18: Adapt mesh.
19: end while

4. Numerical Simulations

In this section, we present the results of several simulations that are used to assess
the validity and accuracy of the proposed algorithm. First, we model the two-dimensional
Stokes flow of a single-phase fluid past a periodic array of identical cylinders. We investi-
gate the convergence of the drag force to the theoretical solution and also compare the BPM
with several other numerical methods. Second, we study the decaying vortex problem for
which an analytical solution exists. Third is a multiphase case, in which we investigate the
multiphase flow of a bulk viscous fluid with embedded droplets of a different fluid past
a periodic array of cylinders. This problem has no analytical solution and is used for the
purpose of verifying mass conservation. Fourth is the case involving a moving solid. We
demonstrate the robustness of the proposed method with a situation in which a cylindrical
solid covered with a layer of one viscous fluid starts moving inside another viscous fluid,
which, at some point, ruptures the layer covering the solid. We have also verified that
the algorithm satisfies the Galilean invariance by simulating the motion of a cylinder or a
sphere along the interface between two fluids.
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4.1. Viscous Flow Past a Periodic Array of Cylinders

Here, we solve numerically a problem that was studied theoretically in [83]. Consider
an infinite square array of cylinders of radius r immersed in an incompressible viscous fluid
with density ρ = 1 and viscosity µ = 1. The cylinders are assumed stationary. The spacing
between them is measured by the distance L between the centers of the nearest neighbor
cylinders. Since the system is periodic, we consider a square box with size L, as shown in
Figure 3. Then the distance between the surfaces of the adjacent cylinders is L− 2r, and the
solid volume fraction is equal to ϕs = πr2/L2. The fluid motion is assumed to begin from
rest under a uniform body force ρa directed from left to right. The fluid flow reaches a
steady state when the drag force becomes equal to the body force. The mean flow velocity
in the x direction is denoted by Û. We assume that the Reynolds number Re = ρÛL/µ is
small so that the Stokes flow approximation holds.

a

rL

L

Figure 3. A schematic depiction of the problem studied in [83]. The unit periodic cell is a square with
size L containing a cylinder of radius r in the center of the square. The fluid around the cylinder is
set in motion by acceleration a directed to the right.

The steady-state problem was solved in [83], and we compare our simulation results
to that work. In [83], the authors solved the creeping flow equations with the no-slip
condition at the surface of the solids and periodic boundary conditions. They obtained
an approximate solution and used it to calculate the dimensionless drag force f on a
cylinder as

f =
F

µÛ
= r

∫ 2π

0
(ω sin θ − p cos θ)dθ, (26)

where F is the drag force per unit length, p is the pressure, ω is the vorticity, and the
integration is taken over the cylinder boundary with polar angle θ. This force f strongly
depends on the solid volume fraction ϕs, increasing with the radius of the cylinders, and it
was shown to be given by

f = −8π(r/L)2(2a1 + b1)

2 ln (r/L) + 1
, (27)

where a1 and b1 are certain coefficients from the series expansion of the solution, which
are obtained numerically and which depend on ϕs. Asymptotic solutions for two extreme
cases can be explicitly derived for: (i) dilute arrays ϕs � 1 and (ii) concentrated arrays
ϕs −→ ϕmax:

f =





4π
(

ln ϕs
−1/2 − 0.738 + ϕs − 0.877ϕ2

s + 2.038ϕ3
s + O(ϕ4

s )
)−1

, ϕs � 1,

9π
2
√

2

[
1−

(
ϕs

ϕmax

)1/2
]−5/2

, ϕmax − ϕs � 1,

where ϕmax is the volume fraction of the particles when the cylinders touch each other.
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Values of f for different solid fractions are listed in Table 1. In the same table, we
compare the relative error E = ( fnum − f )/ f in drag force obtained by the Brinkman
penalization method with two other methods: the simple splitting method (SSM) and
the embedded boundary method (EBM), both available in Basilisk software. Here, fnum
is the force computed from the numerical simulations. In the simple splitting method
(SSM) [84,85], the cell-centered velocity update is given by u = χUs + (1− χ)u∗, where u∗ is
the velocity field calculated without accounting for the presence of solids. In the embedded
boundary method (EBM) [86,87], the auxiliary forcing term is not explicitly computed as in
the IB methods, but instead, the values of the state vector inside the solid body are set so
that the fluxes through the solid surface vanish.

The simulation results are compared with the predictions of [83] in Table 1. The grid
with Jmax = 10 is used, and the penalization coefficient is η = 10−6. Since the dimensionless
drag force f has a singularity when ϕs tends to ϕmax, the numerical error E grows with
the increasing ϕs. The SSM shows poor convergence, especially for the narrow-gap cases,
and the discrepancy between the analytical and numerical solutions diverges rapidly. The
EBM is in good agreement over a wide range of porosity. The BPM is seen to have better
accuracy at ϕs ≤ 0.7. Overall, the EBM and BPM are comparable in their accuracy in this
case. However, the BPM is easier to extend to multiphase flow problems than EBM.

Table 1. The dimensionless drag force f versus the solid volume fraction ϕs = πr2/L2 [83]. The relative error in the drag
force E = ( fnum − f )/ f for the simple splitting (SSM), embedded boundary (EBM), and Brinkman penalization methods
(BPM). The same maximum level of refinement Jmax = 10 is used for all three methods. The BPM is used with penalization
coefficient η = 10−6.

ϕs 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.75

f 15.56 24.83 51.53 102.90 217.89 532.55 1.763× 103 1.352× 104 1.263× 105

E (SSM) 0.33 0.31 0.34 0.4 0.48 0.59 0.75 0.93 0.99
E (EBM) 0.042 0.023 0.0011 0.013 0.021 0.021 0.06 0.041 0.037
E (BPM) 0.0023 0.0026 0.0029 0.0034 0.0043 0.005 0.0062 0.0046 0.14

To demonstrate the convergence of E = ( fnum − f )/ f as η decreases, we fixed the
maximum level of refinement at Jmax = 9 and varied η, as shown in Figure 4. The con-
vergence depends on the number of cells m = δ/h per Brinkman layer δ =

√
ην (see

Equation (11)). It can be seen that the increase of m leads to the deterioration of accuracy.
As mentioned before, the Brinkman term in the momentum equation models a solid as a
porous medium with small permeability, the latter corresponding to small values of η. Thus,
η should be taken as small as possible. The decrease of m, and consequently of η, leads to
the decrease of the error. However, at m� 1, when the Brinkman layer is under-resolved,
the error oscillates with η, indicating a lack of convergence. The values m = 1 or m = 2
appear to be optimal in the sense that they are small enough, and yet, the error decreases
monotonically. In Figure 5, we display the grid convergence of the error E as h → 0 for
different levels of resolution of the Brinkman layer. The rate of convergence is seen to be
about 0.9 when m ≥ 1, while at a smaller m, the monotonicity or even convergence is lost.

To summarize, convergence of the method can be guaranteed provided that: (1) fine
features are properly resolved by using sufficiently large levels of refinement Jmax; (2) the
number of cells in the Brinkman layer is m ≥ 1 but not too large; and (3) the penalization
coefficient η satisfies the estimate η ≈ (mh)2/ν.
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Figure 4. The plot of relative error E = ( fnum − f )/ f versus the solid volume fraction ϕs for the
fixed level of refinement Jmax = 9 and different penalization coefficients η. The value m denotes the
number of cells needed to resolve the Brinkman layer in Equation (11).
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Figure 5. The relative error E = ( fnum − f )/ f versus the minimum mesh size h = L/2Jmax with
Jmax = 8, 9, 10, and 11 for the fixed solid volume fraction ϕs = 0.3 and different values of m = δ/h,
which is the ratio of the Brinkman layer thickness δ to mesh size h.

4.2. Decaying Vortex Problem

The previous test validated the steady-state predictions. To investigate dynamical
consistency, we consider the problem of a two-dimensional decaying vortex for which an
analytical solution is known. Specifically, the two-dimensional Navier–Stokes equations are
solved exactly by the following velocity components: u, v, and pressure p [88] representing
a periodic array of vortices decaying exponentially in time:

u(x, y, t) = − cos πx sin πy exp
(
−2π2t/ Re

)
,

v(x, y, t) = sin πx cos πy exp
(
−2π2t/ Re

)
,

p(x, y, t) = −1
4
(cos 2πx + cos 2πy) exp

(
−4π2t/ Re

)
,

(28)
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Here, the fluid density is taken as 1, while the characteristic velocity and length are
both taken as 1. The Reynolds number Re is then the reciprocal of the kinematic viscosity
Re = 1/ν.

We take as the computational domain a square of size L0 = 4: Ω = [−2, 2]2, as shown
in Figure 6. We split the domain into two parts: an inner square Ω f of size 2 and a frame Ωs
around the inner square, which is used as a penalization region [89,90]. Therefore, the mask
value χ inside Ω f is 0, while in Ωs, it is 1. The velocity inside the frame Ωs is fixed and
given by Equation (28), while the velocity in Ω f is predicted numerically, starting with the
analytical solution in Equation (28) at t = 0, and its consistency with the exact solution in
Equation (28) at time t = 0.3 is verified. Some other parameters used in the simulation are:
the CFL number Umax∆t/h = 0.3, and the tolerance for the Poisson solver is 10−8.

Ω f 

Ω s 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|u
|

Figure 6. Schematics of the computational domain in the decaying vortex problem. In Ωs, velocity
and pressure fields are prescribed according to Equation (28). The solution in region Ω f is predicted
numerically. The initial field of velocity magnitude is shown by the color.

We point out here an aspect of the present computation that is important in general.
One must pay careful attention to the selection of fields according to which the grid is
adapted giving a higher priority to the fields that reflect the main physical features of
the flow. In the case at hand, adaptation on both the velocity u and the frame mask χ
was used during the first time step of the computations. Subsequently, the adaptation
was performed only on the velocity field u. This decision was based on the following
observations: (1) the velocity field u captures the main physical characteristics of the
flow; (2) adaptation on sharp masks leads to the maximum refinement for any adaptation
threshold ε on interfaces even for smooth physical fields (u, ω, p) and, therefore, results
in excessive use of computational resources without necessarily improving the accuracy
of computations.

Ideally, during simulations, the maximum level of refinement Jmax should not be
reached; otherwise, this would indicate the general lack of resolution and the need for
more refinement. The current level of refinement in all cells should be less than Jmax.
The adaptation algorithm should automatically adjust the mesh in the required regions
for a specified threshold ε. In practice, however, adaptation is often done on masks or
other interfaces (χ, ϕ, etc.), which typically have sharp boundaries that require maximum
adaptation, and thus, the maximum level of refinement is always reached [79]. Then,
unless specifically tracked, one may miss flow regions away from the masks in which Jmax
is also reached and where there is therefore a lack of resolution. One must be careful to
avoid such situations.

In what follows, we choose the maximum level of refinement as Jmax = 13. We
observe that this number is never reached in practice, so J < Jmax. Recall, our adaptation is
done based on u, except for the first time step, when it is done additionally on the mask
η. The grid size h remains in the range from L0/211 = 2−9 to L0/26 = 2−4. To monitor
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the resolution, we plot the dependence of the number of active cells on ε in Figure 7.
The number of active cells is seen to be inversely proportional to the adaptation threshold,
Nactive ∝ ε−1. According to ([91], Equation 3.9), the number of active cells is related to the
order of the numerical scheme as

Nactive ≤ C1ε−n/s,

where s is the discretization order, n is the dimensionality of the problem (n = 2 in the
present case), and C1 is a constant depending on the problem but not on the numerical
scheme. From this relation, we derive that the discretization order is s = 2, which is
consistent with the order of the numerical scheme.

100μ 2 5 0.001 2 5 0.01 2 5 0.1

2

5

10k

2

5

100k

2

5

1M

2
BPM
~ ε -1 

ε

N
 act

iv
e 

Figure 7. The log-log plot of the number of active cells Nactive depending on the relative adaptation
threshold ε at time t = 0.3. The dependence is well approximated by Nactive ∝ ε−1 consistent with
the estimate Nactive ∝ ε−n/s [91] if one takes the order of the scheme s = 2 (the dimension of the
problem is n = 2).

The convergence with respect to the penalization coefficient η and adaptation thresh-
old ε is shown in Figure 8. It is observed that the numerical error decreases with η
approximately as η4/5. Note that this order is between η1/2 and η seen in Equation (10).
The convergence rate lies between these functions because both normal and tangential
components of the speed exist on the interface of the penalty area Ωs. The error is seen to
reach a plateau as η becomes very small, and the Brinkman layer is no longer resolved.
A similar observation of plateau is found in [92], where the BPM is used to simulate com-
pressible flows. The reason behind this phenomenon is that the Brinkman layer is not
resolved properly and that m = 0 along the plateau. Convergence is also seen with the
decrease of ε.
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m=0

m=1

m≥1

m=0
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m≥1

Figure 8. Convergence test for the vortex problem. The error E = |u− u∗|/u0 as a function of the
penalization coefficient η at time t = 0.3 and Reynolds number Re = 30. Here, u∗ is the theoretical
velocity field given in Equation (28), and u0 = exp

(
−2π2t/ Re

)
is the reference velocity. The plot is

given for different adaptation thresholds log10 ε = −1,−2,−3,−4. In all cases, the maximum level of
refinement is set to Jmax = 13, and the current level of refinement satisfies J < Jmax.

4.3. Mass Conservation

In BPM, the solid phase is modeled as a porous medium with the porosity controlled
by the penalization coefficient η. Therefore, the fluid phase can penetrate the porous
solid leading to an apparent mass loss of the fluid. Of course, one should minimize this
mass loss as much as possible. In order to evaluate the severity of the problem and to
verify the conservation properties of the present method, we consider the following test
problem. A bubble of radius r1 is placed initially next to two identical fixed solid cylinders
of radius r2, as shown in Figure 9. The fluids are assumed to be at rest initially. The flow
is initiated by gravity g = gı̂ directed from left to right. Because of the left–right periodic
boundary conditions, the bubble passes between the obstacles multiple times (more than
15). The bubble undergoes severe deformations in the process, especially in the case of the
large bubbles, as shown in Figure 9. The purpose of this test is to verify conservation of the
mass of the bubble after many such cycles.

Important dimensionless parameters that control the dynamics of the bubble in this
problem are the capillary number Ca = µ1U/σ, the Reynolds number Re = ULρ1/µ1,
and the Froude number Fr = U/

√
gL, with U denoting the mean velocity of the flow, L

the domain size, σ the surface tension coefficient, and ρ1, µ1 the density and viscosity of
the carrier fluid, respectively. We nondimensionalize the variables as follows:

x∗ =
x
L

, u∗ =
u
U

, t∗ =
tU
L

, µi,∗ =
µi

µ1 Re
, ρi,∗ =

ρi
ρ1

, σ∗ =
1

Re Ca
, g∗ =

1
Fr2 ,

where the domain size is L = 5 mm, and the velocity is U = 0.25 m/s. Then the rescaled
domain is a square with a unit side. The mesh adaptation occurs based on the volume
fractions ϕ, χ, and velocity components ui with the corresponding adaptation thresholds
10−3, 10−3, and 10−2. Other parameters are given in Table 2. The system corresponds to an
air bubble in water as a carrier fluid.
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Table 2. Physical properties of the fluids and numerical parameters used in the simulation of the bubble passing between
two cylinders. Here, Jmax is the maximum level of refinement, and εp is the tolerance of the Poisson solver.

Name Re Ca Fr σ (mNm−1) g (m2s−1) µ (Pa s) ρ (kg m−3) Jmax εp

Water 1250 3.42 × 10−3 1.13 73 9.8 1 × 10−3 1000 7, 8, 9, 10 1 × 10−8

Air 1.86 × 10−5 1
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Figure 9. Air bubble passing between two fixed cylinders . Snapshots at different times t are shown. The cylinders of radius r2 = 0.125
are spaced D = 0.5 units apart between their centers. The bubble is placed initially at distance D0 = 0.5 from the centerline between
the cylinders. The bubble radius is: (a) r1 = 0.2; (b) r1 = 0.1; (c) r1 = 0.05.
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where the domain size is L = 5mm, the velocity is U = 0.25m/s. Then the rescaled domain
is a square with unit side. The mesh adaptation occurs based on the volume fractions ϕ,
χ, and velocity components ui with the corresponding adaptation thresholds 10−3, 10−3,
10−2. Other parameters are given in Table 2. The system corresponds to an air bubble in
water as a carrier fluid.

Figure 9. Air bubble passing between two fixed cylinders. Snapshots at different times t are shown. The cylinders of radius
r2 = 0.125 are spaced D = 0.5 units apart between their centers. The bubble is initially placed at distance D0 = 0.5 from the
centerline between the cylinders. The bubble radius is: (a) r1 = 0.2; (b) r1 = 0.1; (c) r1 = 0.05.

Figure 10a displays the mean velocity of the flow, Umean, as a function of time for
the bubbles of different size. The steady-state mean velocity is seen to be smaller for the
larger bubbles as expected due to their stronger interaction with the cylinders. Figure 10b
displays the values of the relative error E =

(
Vg −Vg,0

)
/Vg,0 of the bubble mass as a

function of time. As mentioned above, some error in the mass conservation is expected
due to the Brinkman penalization term. In addition, the approximation errors of the
overall algorithm, such as of the Poisson solver, will also contribute. However, we note
that the error in the mass conservation is consistently at a value of the tolerance of the
Poisson solver and does not increase appreciably with time during the simulation. If the
bubble radius is smaller than the gap, we observe an initial monotonic increase of the error,
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which eventually saturates after multiple passages through the gap. In contrast, for the
larger bubbles, we notice a sudden jump in the error during the first passage between the
cylinders at around time t = 1.4, Figure 10b. The large error is evidently due to the stronger
interaction between the bubble and the obstacles. Importantly, these larger errors decrease
back to the pre-interaction levels once the bubble squeezes between the obstacles. This
indicates that even though some fluid mass may be entering the solid during the strong
interaction, it is eventually recovered.
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Figure 10. (a) The mean flow velocity in the domain, Umean, as a function of time for the bubble
passing between two obstacles. (b) The relative error E =

(
Vg −Vg,0

)
/Vg,0 in the bubble volume (or

mass) as a function of time, where Vg is the current gas volume, and Vg,0 is the initial gas volume.
Both graphs are shown for the bubble radii r1 = 0.05, 0.1, and 0.2. The maximum level of refinement
is Jmax = 10.

In Figure 11, we show the mean velocity and the mass conservation error as func-
tions of time for the hardest case of a large bubble with a radius of r1 = 0.2 when the
level of refinement is varied. The important observation is that there is convergence as
Jmax increases. The level of error is generally small, and Jmax = 10 is at the level of
Poisson solver’s tolerance.
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Figure 11. Convergence with the level of refinement for the case with a bubble of radius r1 = 0.2.
(a) The mean velocity in the domain, Umean, as a function of time for different maximum levels of
refinement. (b) The relative error E =

(
Vg −Vg,0

)
/Vg,0 in the bubble volume as a function of time.

4.4. Multiphase Flows around Moving Solids

In this section, we consider a two-phase system consisting of a composite droplet
moving in a carrier fluid. The computational domain is a square with side L = 1 with
periodic boundary conditions on the left and right and symmetry boundary conditions on
the bottom and top. The composite droplet consists of a solid particle of radius Rs = 0.0625
embedded inside a fluid shell with the outer radius Rb = 2Rs, as shown in Figure 12a.
The hydrophobic surface of the solid is modeled by ϕ = 0 inside the solid, see Equation (7).
Initially, the fluid and the droplet have zero velocity, but the solid particle has a prescribed
constant velocity Us = 1 · ı̂ in the x direction. The Reynolds and capillary numbers are
taken as Re = ρ1UsL/µ1 = 100 and Ca = µ1Us/σ = 0.01. The densities and viscosities of
both fluids are chosen to be the same and equal to ρ1 = ρ2 = 1 and µ1 = µ2 = µ = 1/ Re,
respectively. The surface tension is equal to σ = 1/(Re Ca). As the particle moves, it causes
the fluids to move as well, and our goal is to simulate the resultant motion.

The numerical simulations are carried out using various treatments of the interaction
between the fluids and the solid. We use Jmax = 9 as the level of resolution. Figure 12
displays the results. As the solid moves to the right, the fluid shell moves with it but lags
behind due to inertia and the drag with the surrounding fluid. The shell turns into a thin
film on the front side of the solid, which can subsequently rupture, and the resultant drop
surrounding the solid can detach from it. The simulations using different treatments of
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the interaction between the solid and the fluid yield different scenarios for the process,
and these are explained below.

The method proposed in this work is compared with the simple splitting method
(SSM, see Section 4.1). Recall that in SSM, the cell-centered velocity update is given by
u = χUs + (1− χ)u∗, where u∗ is the velocity field calculated without accounting for
the presence of solids. Figure 12a shows the results based on the application of SSM
without this correction. A close look at the solid surface shows that the shell fluid gradually
penetrates into the interior of the solid. A similar artifact is seen on the back side of the
solid as well, but this time fluid 2 gets out of the solid region at time t = 0.4 (recall that
inside the solid, ϕ = 0 indicates the presence of the fictitious fluid 2).
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t = 0(a) t = 0.4 t = 1.65 t = 2.25

t = 1.5(b) t = 1.6 t = 1.65 t = 2.25

t = 1.65(c) t = 1.68 t = 3.6 t = 13.6

t = 1.5(d) t = 1.65 t = 2.25 t = 15.6

Figure 12. Motion of a solid cylinder (gray) covered by a fluid shell (blue) in a surrounding fluid (white). Left-right periodicity and
top-bottom symmetry are assumed as boundary conditions. Simulations with different numerical methods: (a) – SSM without velocity
correction; (b) – SSM with linear face velocity correction (29); (c) – BPM without velocity correction; and (d) – BPM with nonlinear
correction (15). The results are shown at different times t. The insets highlight the relative location of the interfaces, where dark blue
indicates the interface of fluid 1 and black indicates the solid boundary.

The penetration problems can be generally handled by various correctors of the face
velocity u f . For example, the usage of the linear corrector

u f =
(

1− χ f

)
u f ,∗ + χ f U f ,s (29)

in SSM gives topologically different results as shown in Fig. 12b where at some point
the particle ruptures the fluid shell. No significant penetration into the solid is seen for
the duration of the interaction. It should be noted that the application of SSM for this
problem results in poor convergence of the Poisson solver and subsequently at large
times the overall error can be substantial (see the supplementary materials Movie S1).

Figure 12. Motion of a solid cylinder (gray) covered by a fluid shell (blue) in a surrounding fluid (white). Left–right
periodicity and top–bottom symmetry are assumed as boundary conditions. Simulations with different numerical methods:
(a) SSM without velocity correction; (b) SSM with linear face velocity correction (Equation (29)); (c) BPM without velocity
correction; and (d) BPM with nonlinear correction (Equation (15)). The results are shown at different times t. The insets
highlight the relative location of the interfaces, where dark blue indicates the interface of fluid 1 and black indicates the
solid boundary.
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The penetration problems can be generally handled by various correctors of the face
velocity u f . For example, the usage of the linear corrector

u f =
(

1− χ f

)
u f ,∗ + χ f U f ,s (29)

in SSM gives topologically different results, as shown in Figure 12b, where at some point
the particle ruptures the fluid shell. No significant penetration into the solid is seen for the
duration of the interaction. It should be noted that the application of SSM for this problem
results in poor convergence of the Poisson solver, and subsequently, at large times, the
overall error can be substantial (see the Supplementary Materials Movie S1).

In Figure 12c, we show the results based on BPM without the correction of u f . It is seen
that the shell breaks symmetrically (see t = 1.68) in contrast to Figure 12b. Additionally,
the film ruptures at a later time compared to the SSM with the corrector from Equation(29).
Importantly, now the drop that forms behind the solid does not detach due to the fluid
penetration effect. The penetration region continues to increase with time (compare the
results at time t = 3.6 and t = 13.6).

The simulation results based on BPM with the nonlinear (due to the indicator function
Iχ f ) corrector in Equation (15) are shown in Figure 12d. No appreciable penetration effect
is observed until the simulated time t = 15.6 at least (see also the Supplementary Materials
Movie S2). The mass-conservation error is also generally small. It depends primarily
on the accuracy of the Poisson solver and the level of refinement Jmax. To quantify the
mass conservation properties, we introduce the relative volume error E = |Vd −Vd,0|/Vd,0,
where Vd,0, Vd are fluid volumes at t = 0 and t > 0, respectively. This value for BPM is
E = 0.01% for t = 15.6 compared to 1% for SSM or 0.7% for SSM with the face-velocity
correction for the simulation time t = 2.25.

There is also a qualitatively different feature in Figure 12d that must be mentioned.
The BPM with the nonlinear correction preserves the fluid shell intact. There is no rupture
of the thin film on the front side, and eventually, there is a steady-state translation of
the solid with the deformed fluid layer on it. We point out in this regard that in order
to accurately and physically model the rupture of the thin film correctly, the underlying
mathematical formulation has to incorporate the physics of the contact angle as well as
the effects of disjoining pressure when the film thickness becomes too small. Since they
are not part of our model, it is natural that the simulation algorithm does not lead to the
film break-up. The problems of the contact line motion and of thin-film break-up have of
course received much attention in the past (e.g., [93,94]). Their incorporation in the present
algorithm is the subject of future work.

The final simulation of this problem of a composite droplet considers a situation
in which the solid is covered with a very thin layer of fluid 2 that separates the solid
from the thicker shell of fluid 1, forming a kind of a lubrication layer with a thickness of
δ = 0.05Rs (see Figure 13). Note that the lubrication layer here and in other simulations
below contains 1 or 2 grid points (i.e., δ ≈ k · h, with k = O(1)) so that they are not required
to be fully resolved. This simulation is done with the same method as in Figure 12d, which
is BPM with a nonlinear corrector, and is aimed at eliminating the effects associated with
the apparent contact angles. We observe that this case differs from the previous one in
that the shell fluid now easily detaches from the lubricated solid similar to the case in
Figure 12b. Unlike the latter, however, the rupture remains more symmetric, even though
the symmetry is lost with time (see also the video of the process in the Supplementary
Materials (Movie S3)).

We make one additional remark concerning the BPM with the linear corrector in
Equation (29) for which we do not show any simulation results. Such a method gives the
result without rupture; however, the fluid penetration into the solid over more than one
computational cell is observed at sufficiently large times t > 2.
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t = 0.21 t = 0.23 t = 0.28 t = 0.36

Figure 13. Motion of a solid cylinder (gray) covered by a fluid shell (blue) in a surrounding fluid (white). There is a lubrication layer
with the thickness of δ = 0.05Rs between the fluid 1 and the solid. Left–right periodicity and top–bottom symmetry are assumed as
boundary conditions. BPM with the nonlinear correction in Equation (15) is used. The results are shown at different times t. The insets
highlight the relative location of the interfaces, where the dark blue indicates the interface of fluid 1 and the black indicates the
solid boundary.

In order to further demonstrate the capabilities of the proposed BPM, we simulate
a 2D mixer wherein many solids move in a medium consisting of two fluid phases—the
carrier fluid with drops of another fluid moving in it. In Figure 14a, the schematics of
the initial state are shown. The domain size is L0 = 1, and again, periodic boundary
conditions are used. The initial radii of the drops and solid particles are Rb = Rs = 0.0625.
Initially, the centers of the four solids are placed uniformly along the y-axis at xs = 0.1.
One of a series of nine drops is arranged at a distance of xb = 0.4 and yb = 0.5, as shown
in the same figure. The drops are placed in a rectangular order at a distance Lb = 0.25
in both vertical and horizontal directions. Velocities of the solid particles are directed
along the x-axis in alternating orders with speed |Us| = 1. For simplicity, we assume both
fluids have unit density and the same viscosity equal to µ = 1/ Re. The surface tension
is σ = 1/(Re Ca). Three different capillary numbers Ca = 0.01, 0.1, and 1 are used in
the simulations to account for the surface tension contribution ranging from dominant to
negligible. The solids are assumed to be perfectly wetting.

The results are presented in Figure 14b–d at time t = 1.39 after two passes of the top
solid across the boundary. In Figure 14b, the simulation is run for Ca = 0.01, and some
bubbles are found to merge. Increasing Ca, which is the same as decreasing the surface
tension, leads to the formation of elongated bubbles with no coalescence (Figure 14d). A
possible qualitative explanation of the latter may be that at large Ca, when the surface
tension is small, the bubbles are essentially “enslaved” by the bulk liquid flow and simply
follow along that flow. The interaction between bubbles is weak, and hence, coalescence
or break-up do not occur easily. In contrast, at large surface tension, the bubbles are more
“rigid”, and they transfer the forces from different parts of the surrounding liquid, which
leads to their stronger interaction with each other, which, in turn, facilitates coalescence or
break-up.
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Figure 14. Mixing of a two-fluid medium by moving solids. Dark circles denote solid particles moving along x with a prescribed
velocity. White circles indicate droplets of one fluid inside the carrier’s second fluid, which is colored blue. The Reynolds number is
Re = 100, and different values of the capillary number are considered. (a) Initial condition. The other figures correspond to t = 1.39
and different Ca: (b) Ca = 0.01; (c) Ca = 0.1; (d) Ca = 1. Time t = 1.39 corresponds to two passes of the top solid over the domain.

4.5. On Galilean Invariance

In this section, we verify that the proposed algorithm respects the Galilean invariance.
For this purpose, we consider the motion of a cylinder or a sphere along an interface
between two adjacent fluid layers. We first consider the two-dimensional case in detail and
then show an example in three dimensions.

The computational domain is a square Ω = [−0.5, 0.5]2, and periodic boundary
conditions on the right/left sides and symmetry conditions for top/bottom boundaries are
used. We carry out the simulations with two different initial conditions: a fixed cylinder
with moving fluids and a moving cylinder with fluids at rest. The radius of the cylinder
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is Rs = 0.0625. In both cases, the initial difference in speeds is |U| = 1, and the velocity
is directed along x. In the case of a moving cylinder, it begins its motion to the left from
xs = 0.3125. In the stationary case, the cylinder is fixed at xs = −0.3125.

The surface of the solid is assumed to be hydrophobic to the fluid below. Then inside
the solid, the fictitious volume fraction field is ϕ = 0. To avoid a sharp corner at the
initial position of the contact point where the two fluids and the solid meet, we perform a
smoothing operation that deforms the shape of the interface locally near the singular region
to make it smoothly touch the solid surface. The smoothing is done using the so-called
bounded blending operation, which can generate smooth transitions between two or more
surfaces [95]. The result of smoothing is shown in Figure 15a.

In Figure 15b, the numerical results for the moving and fixed cases are compared at
time t = 2xs/U = 0.625 when the solid positions coincide. This figure shows that the
solid surface appears to be partially wet (for example, the apparent contact angle on the
back side (i.e., to the right) is about 120◦). At the same time, the front side of the moving
solid remains non-wetting. Clearly, this behavior misrepresents the real physics of the
fluid–solid contact. Such serious discrepancies in the interface position near the solid
contact region (and therefore everywhere else) arise due to the various features of the
numerical algorithm, such as the flux corrections and the time splitting. As an additional
(and likely related) difficulty, we observe no convergence of the contact-point positions
with mesh refinement for the levels of refinement Jmax = 9, 10, or 11 (see Figure 15c).

(a)

Us

Us

Us

Rs

xs

Fixed cylinder Moving cylinder

(b)

(c)

Figure 15. The test for Galilean invariance with a problem of a solid cylinder moving along the
interface between two fluids. Figure (a) shows the initial conditions for a fixed cylinder (left) and
moving cylinder (right). The arrows indicate the velocity direction in the fixed cylinder case and the
cylinder direction for a moving cylinder case. Only a half of the computational domain is shown.
Fluid 1 is blue, fluid 2 is white (above the interface and formally inside the solid), and solid is gray.
In (b), the comparison of the fluid–fluid interface at t = 0.625 for a moving (blue) and fixed (red)
cylinder are shown with the resolution level Jmax = 10. In (c), we test the convergence of the interface
between the fluids in the case of a moving solid: Jmax = 9 (blue line); Jmax = 10 (green line); and
Jmax = 11 (pink line).

In order to remedy the problem of the apparent contact angles in Figure 15b, we
resort to the same approach as was taken in producing Figure 13. That is, we model the
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hydrophobic surfaces with a thin lubrication layer around the solid. The film thickness is
taken as δ = 0.05Rs. The results are shown in Figure 16 at three times corresponding to
the first three coincidences of the moving and fixed solids (recall, the motion is left–right
periodic with the domain length 1, and the cylinder velocity is also 1). In all three time
frames, the new algorithm is seen to respect the Galilean invariance with excellent accuracy.
See also the Supplementary Movie S4.

(a)

(b)

(c)

Figure 16. The same as in Figure 15 except for the presence of a thin film of fluid 2, with a thickness
of δ = 0.05Rs on the solid surface. The level of refinement used is Jmax = 8. The results are shown at
times: (a) t = 0.625; (b) t = 1.625; (c) t = 2.625 for a moving (blue) and fixed (red) cylinder. Notice
that the blue and red curves are nearly coincident in all cases.

All of the simulations above considered two-dimensional problems for simplicity.
The algorithm is, however, developed for general three-dimensional problems. Next,
we demonstrate the application of the method to the problem of a sphere moving along
the interface between two fluids, which is an extension of the previous result to three
dimensions. The simulation was carried out in a domain Ω = [−0.5, 0.5]3, and the results
are shown in Figure 17. The figure displays the solid and fluid interfaces at time t = 0.2.
Additionally, the color levels and isocontours on the interface indicate the norm of the
relative velocity |u−Us|. We can see that the form of the isolines is practically the same for
both the moving and stationary sphere, which confirms the Galilean invariance in this case
as well. The video of the three-dimensional simulation is in the Supplementary Movie S5.
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Moving sphere

Fixed sphere
(a)

(b)

Figure 17. Galilean invariance test in three dimensions. (a) The case of a moving sphere and fixed
fluids (left) and a fixed sphere and moving fluids (right) at time t = 0.625. The interface between the
fluids is shown. The color and isolines indicate the norm of the relative velocity |u−Us|. (b) shows
the XY-plane slices through the sphere in (a), with the blue curve corresponding to the moving
sphere and the red to the fixed sphere. The level of refinement used was Jmax = 7 so that the mesh is
rather coarse compared to the previous two-dimensional case but still shows very good accuracy.

5. Conclusions

In this work, we have contributed to the development of an algorithm for the sim-
ulation of multiphase flows consisting of several incompressible fluids and solid objects,
the latter either stationary or moving with a prescribed velocity. The solids are assumed to
be either perfectly superhydrophilic or perfectly superhydrophobic so that no contact-angle
effects are considered. The core of the algorithm consists of the Brinkman penalization
method to handle the solids, the volume of fluid method to handle the fluid interfaces,
and the continuous surface force to model surface tension phenomena.

The algorithm is implemented in the open source solver Basilisk [1,52] and is validated
with a number of test cases. Simulations in Basilisk use adaptive Cartesian meshes that are
highly efficient in capturing multiscale features of complex flows, such as the multiphase
flows considered in this work. In particular, the algorithm is tested on the problems of
Stokes flow past a periodic array of cylinders and of a decaying vortex flow for which there
exist analytical solutions. The convergence of the method is demonstrated not only with
an increasing grid resolution but also with a decreasing penalization coefficient η.

In addition, we have calculated the flow of a carrier fluid with bubbles and with
several stationary or moving obstacles. The mass conservation property of the algorithm
and its ability to handle the motion of a solid in a two-phase fluid is verified with a problem
of a bubble squeezing between two solid obstacles and a problem of a solid breaking
out of a surrounding fluid shell. Another case that we have simulated involves mixing
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multicomponent fluids by means of moving solids. This problem demonstrates the ability
of the algorithm to handle complex deforming interfaces and interactions between different
fluids and solid obstacles. Lastly, we have verified that the algorithm satisfies the Galilean
invariance. This test is carried out with a solid cylinder or sphere moving along an interface
separating two different fluids.

Thus, we have demonstrated that the algorithm can accurately and efficiently handle a
wide range of complex multiphase flow problems. Nevertheless, we point out some of the
underlying assumptions that must be relaxed in order to extend the range of problems that
can be simulated. One of the main assumptions is that the solid phase motion is assumed
prescribed. Obviously, in practice, this is often not the case, and the fluid and solid motions
are fully coupled. Another assumption is that of the incompressibility of all the fluid
phases involved. Even though this is not such a strong limitation in many applications,
the treatment of, say, bubbly liquids may require relaxing the incompressibility assumption
about the gas.

Important additional physics that can be incorporated into the modeling and in the
algorithm is that of the finite contact angle. As presented, the algorithm assumes that the
solids are either perfectly superhydrophobic or perfectly superhydrophylic. The numerical
treatment of these cases is also not without difficulties, especially when a solid moves
in a two-phase medium. Our simulations with a composite droplet (a solid particle
within a fluid shell) moving in an external fluid have shown that many numerical artifacts
arising with different approaches to the treatment of the interaction between the solid
and the fluids can be eliminated with an approach that allows for a thin (1–2 mesh cells)
lubrication layer on the solid surface. Implementing this idea allows for the treatment of
both stationary and moving solids with a physically correct and accurate representation
of the interaction between the solid and fluids. The solution involving the lubrication
layer avoids overlapping different sharp transition layers coming from the fluid–fluid and
fluid–solid interfaces contributing to the robustness of the method.

Supplementary Materials: The following movies are available online at https://www.mdpi.com/
article/10.3390/fluids6090334/s1, Movie S1: SSM_no_correction_jmax=9.mp4, Movie S2: BPM_ non-
linear_correction_jmax=9.mp4, Movie S3: BPM_nonlinear_correction_with_shell_r=1.05_jmax=9.mp4,
Movie S4: 2D_Galilean_invariance_jmax=8.mp4, Movie S5: 3D_Galilean_invariance_jmax=7.mp4.
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