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Abstract: In a high viscosity, polymeric fluid initially at rest, the release of elastic energy produces
vorticity in the form of coherent motions (vortex rings). Such behavior may enhance mixing in the low
Reynolds number flows encountered in microfluidic applications. In this work, we develop a theory
for such flows by linearizing the governing equations of motion. The linear theory predicts that when
elastic energy is released in a symmetric manner, a wave of vorticity is produced with two distinct
periods of wave motion: (1) a period of wave expansion and growth extending over a transition time
scale, followed by (2) a period of wave translation and viscous decay. The vortex wave speeds are
predicted to be proportional to the square root of the initial fluid tension, and the fluid tension itself
scales as the viscosity. Besides verifying the predictions of the linearized theory, numerical solutions
of the equations of motion for the velocity field, obtained using a pseudo-spectral method, show
that the flow is composed of right- and left-traveling columnar vortex pairs, called vortex waves
for short. Wave speeds obtained from the numerical simulations are within 1.5% of those from the
linear theory when the assumption of linearity holds. Vortex waves are found to decay on a time
scale of the order of the vortex size divided by the solution viscosity, in reasonable agreement with
the analytical solution of the linearized model for damped vortex waves. When the viscoelastic fluid
is governed by a nonlinear spring model, as represented by the Peterlin function, wave speeds are
found to be larger than the predictions of the linear theory for small polymer extension lengths.

Keywords: vortex waves; vorticity; elastic waves; polymeric fluid; viscoelastic fluid; vortex transla-
tion; vortex expansion; FENE-P model; Peterlin function

1. Introduction

Recently [1], it was shown theoretically and through numerical simulations that
coherent vortex motions can be generated by the release of elastic energy in a viscoelastic,
polymeric fluid initially at rest. That work was motivated by exploring novel mechanisms
for the enhancement of mixing in low Reynolds number flows, including microflows, as
well as the possibility of understanding the mechanisms underlying the generation of
chaotic fluid motions [2,3] in such flows. Elastic stress gradients in viscoelastic flows of
dilute polymer solutions were shown to generate torques on fluid elements, which in turn
generate coherent vortex motions (e.g., vortex rings). In the situation where the initial
elastic stress field was spatially symmetric, two vortex rings were shown to form and move
in opposite directions before being dissipated by viscous effects. In addition, the strength
of the vortex motions followed the trends predicted by the theory. However, important
aspects of the kinematics and dynamics associated with these coherent vortical structures
were not explored in [1]. In particular, the speed of translation of these vortices was not
investigated. In this work, we show that the release of elastic energy generates vorticity
that propagates as a wave, whose speed is governed by the initial stress field in the fluid.
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Only recently have viscoelastic stresses been considered as a source of fluid torques [4,5].
In that work, it was shown that torques arising from viscoelastic stresses can act to reduce
the strength of hairpin vortices in high Reynolds number turbulent flows. It was shown
that viscoelastic forces generate torque in a direction opposite that of drag-producing
vortices, reducing the rotational energy of these structures. The current effort explores the
nature of such forces at low Reynolds numbers and in flow situations that do not involve
complex fluid motions that may arise from instabilities. Instead, we explore ways in which
viscoelastic stresses can produce vorticity in a polymeric fluid as opposed to ways in which
these stresses can affect the flow. Vorticity produced in this way can be understood by
considering a force per unit volume, given by the divergence of the total stress in the
fluid, the latter composed of both Newtonian and elastic components. Since this force is
not conservative and therefore has a non-zero curl, vorticity can be produced by such a
stress field of the proper spatial form. It follows that polymeric stress gradients can give
rise to fluid torques and therefore also to vorticity. As discussed in Handler et al. [1], the
formation of coherent vorticity in this manner can be understood using an analogy of a
stretched piece of rubber being suddenly cut.

The release of elastic energy and its subsequent conversion to fluid motion has been
considered by Min et al. [6] as a possible explanation of the long-standing problem con-
cerning the mechanism by which polymer addition reduces drag in turbulent flows [7–16].
They show, through direct numerical simulations of turbulence, that drag reduction occurs
when the polymer relaxation time is large. In this case, kinetic energy near a no-slip wall
is absorbed by polymers and is thus stored as elastic energy. Subsequently, these fluid
elements with stored elastic energy are transported upward, away from the near-wall re-
gion, where their elastic energy is transformed into kinetic energy. A schematic illustrating
this mechanism can be found in their paper [6]. In related work, De Gennes [17] contends
that elastic rarefaction and shock waves may play a role in drag reduction. In both of
these works, the classic Kolmogorov cascade is thought to be modified to some extent by
the existence of elasticity. These new ideas emphasize the direct effects of elasticity and
energy dynamics, complementing the classical theories [10] that emphasize the increase in
effective viscosity due to polymer addition.

We are further motivated by fundamental developments in microflows, which are
driven by a wide variety of important applications, such as those in biotechnology [18,19],
bio-sensor development [20], and in the design of micro-electro-mechanical systems
(MEMS) [21,22]. Many of these applications are concerned with flows in which the
Reynolds numbers are small and the Peclet numbers are large (Re � 1, and Pe � 1).
Low Reynolds numbers ensure that inertial instabilities are absent, while large Peclet
numbers imply that diffusion rates among species are slow. Under these conditions, mix-
ing is difficult or impossible to achieve. Therefore, if mixing is the desired goal, novel
approaches [23–47] must be employed to enhance transport. A detailed review of the
underlying physics associated with these flows is given by Squires and Quake [48] and
Stone et al. [49]. They emphasize that as the length scale of these devices is reduced,
the physical processes that were applicable at larger scales are reduced in importance,
as other processes (e.g., capillarity, buoyancy, and electro-chemical processes) come into
play. In particular, it might be expected that the effects of fluid elasticity would not be
of importance in such low Reynolds number flows. However, instabilities due solely to
fluid elasticity have been found in a wide variety of flows [50–66]. A detailed review of the
relationship between the current work and [23–47,50–66] can be found in the Introduction
of [1]. More recent experiments [2,3] have discovered chaotic flows of a viscoelastic fluid
within microchannels.

The goal of the present work is to show that coherent vortex motions created in the
manner described above are in fact a manifestation of a wave of vorticity, which we called
a vortex wave. We start from the equations of motion for an incompressible fluid coupled to
the FENE-P model [67,68], a widely used model for polymer dynamics. These equations
are linearized about a state of rest and constant polymer stress. The resulting linearized
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system is shown to give rise to a damped wave equation for the vorticity field, which
predicts that the wave speed is proportional to the square root of the initial elastic stress in
the fluid, which in turn scales with viscosity. Predictions from the linearized theory are
compared to direct numerical simulations, from which the entire velocity and vorticity
field is obtained.

The remainder of this paper contains the following sections: 2. Vorticity Generation
in a Viscoelastic Fluid, 3. Linearized Equations for Vortex Waves, 4. Numerical Methods,
5. Flow Visualization and Kinematics, 6. Linearized Wave Equation and the Undamped
Solution, 7. Viscous Effects, 8. Vortex Wave Speed, and 9. Summary and Discussion. In
Section 2, we describe the general equations of motion for an incompressible fluid, along
with the FENE-P model, which governs the polymer dynamics. In addition, the mechanism
by which vorticity can be generated in a viscoelastic fluid is presented. A linearization
of these equations is performed in Section 3. This results in a damped wave equation for
the vorticity, which predicts the existence of a vortex wave whose speed is proportional to
the square root of the initial tension in the fluid. The content of Section 3 is subsequently
referred to as the linearized theory. In Sections 4 and 5, the numerical methods used to
perform a series of simulations are discussed, followed by a description of the vortex
kinematics. We use the term numerical simulation to refer to the numerical solution of the
full three-dimensional nonlinear equations of fluid motion using pseudo-spectral methods,
which we also refer to as a direct numerical simulation (DNS). Flow visualization reveals the
existence of two columnar vortex pairs (vortex waves) that propagate in opposite directions.
An analysis of the kinematics shows that the vortex wave manifests itself first by a period
of expansion followed by a period of translation, a result that agrees well with an analytical
model of an undamped wave given in Section 6. Here, the term analytical model or model
refers to a simplified version of the linearized equations derived in Section 3. In Section 7,
an analytical model that includes the effects of viscosity is shown to predict the decay of
the vortex wave in reasonable agreement with numerical simulations. Section 8 focusses on
the effects of wave amplitude, initial fluid tension, and the maximum polymer extensional
length on the speed of the vortex wave. Here, it is shown, for waves of low amplitude and
also governed by a linear spring model, that wave speeds determined from the numerical
simulations are in excellent agreement with speeds predicted from the theory developed in
Section 3. When the full FENE-P model is used, it is found that wave speeds are higher
than for linear springs when the maximum extensional polymer length is small. Finally, in
the Summary and Discussion section, we discuss the possible applications of vortex waves
in promoting mixing in highly viscous flows.

2. Vorticity Generation in a Viscoelastic Fluid

The velocity field is governed by the momentum equation and the equation of conti-
nuity for an incompressible fluid given by

ρ
DV
Dt

= −∇P +∇·T (1)

and
∇·V = 0, (2)

where D/Dt =∂/∂t + V·∇V is the material derivative; V = (u, v, w) = (u1, u2, u3) is the
fluid velocity with components in the x, y, z or x1, x2, x3 directions; P is the pressure; T
is the stress tensor; and ρ is the density. The right-handed x, y, z coordinate system is
used interchangeably with the terms streamwise, vertical or wall normal, and spanwise,
respectively. For a dilute polymer solution, the stress is decomposed into a Newtonian
component, τn, and a polymeric component, τp, as follows:

T = τn + τp , (3)
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where τn = 2µ0βS, µ0 is the solution viscosity, β is the ratio of the solvent viscosity to the
solution viscosity, and S is the rate-of-strain tensor. A widely used model for the polymeric
stress of a so-called FENE-P fluid [67,68] is given by

τp =
µ0(1− β)

λ
[ f (R)C− I] , (4)

where λ is the polymer relaxation time; C is the conformation tensor defined as the
average over all possible molecular configurations of the product of the end-to-end vectors
associated with the polymer molecular length; R =

√
tr(C); I is the unit tensor; and

f (R) =
(

L2 − 3
)
/
(

L2 − R2) is the Peterlin function, where L is the maximum allowable
molecular extension. In the equations above, and in all subsequent ones, C, L, and R are
made nondimensional by the rest length, or square of the length as appropriate, of the
polymer molecule.

In the FENE-P model, which is derived using a kinetic theory approach, the solvent
is viewed as being populated with polymer molecules, each of which is thought of as
a dumbbell consisting of two massless spheres connected by a spring. The solvent can
stretch the dumbbells via viscous forces, which then react back on the fluid. When the
Peterlin function is employed, the dumbbells are prevented from stretching to infinite
lengths, which can be thought of as a nonlinear spring model. The FENE-P model has
proven effective in recent years in exploring complex phenomena, such as the effect of
polymer additives in fully turbulent flows, although some unrealistic aspects of the model
have been discussed in recent work [69]. In this context, direct numerical simulations
(DNS) [11–15] of such flows have been confirmed by experimental observations [7–9].

The evolution of the conformation tensor C is governed by

DC
Dt

= C·∇V + (∇V)T ·C− 1
λ
[ f (R)C− I] + Dp∇2C , (5)

where Dp is the polymer diffusivity. The first two terms on the right-hand side of
Equation (5) represent the stretching and reorientation of polymer molecules by flow
gradients, which are balanced by the third term, the spring relaxation term. The balance
between stretching and relaxation implies that with no stretching, the polymers will relax
back to their equilibrium length.

The details of how coherent vorticity can be generated in a viscoelastic fluid has been
discussed previously [1]; therefore, here, we only summarize those results. The vorticity
transport equation can be obtained by first taking the curl of Equation (1) while taking into
account the decomposition given by Equation (3). For an incompressible fluid of constant
density, the evolution equation for the vorticity Ω becomes

DΩ

Dt
= (Ω·∇)V + ν0β∇2Ω + ρ−1∇× (∇·τp) , (6)

where the first term on the left side is the material derivative of the vorticity; on the right
side, the first term represents the stretching and tilting of vorticity by velocity gradients;
the second term represents diffusion of vorticity by viscosity; and the third term represents
the generation of vorticity by polymeric stresses. Here, ν0 = µ0/ρ is the kinematic viscosity
of the solution. According to Equation (6), the last term can be interpreted as a source of
vorticity caused by the force per unit volume, ∇·τp. This term represents a net torque on
fluid elements, creating local spin. For a fluid that is initially at rest (V = 0), each term in
Equation (6) can be evaluated at time t = 0, which gives

∂ Ωm

∂t

∣∣∣∣
t=0

= α f
∂2Cji

∂xj∂xk
εmki , (7)

where
α = ν0(1− β)/λ, (8)
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and both f and Cji are to be evaluated at time t = 0. To arrive at Equation (7), the maximal
allowable polymer length L is assumed to be such that L2 � tr(C) so that f is a constant.
The derivation of Equation (7) is given in Appendix A. For simplicity and other reasons
given below, we emphasize the results in which f = 1, the case in which the polymeric
spring can be considered linear. However, we also explore in a more limited way the case
in which the full Peterlin model is employed. Equation (7) indicates that it is the gradients
of the initial polymeric stress field that are directly responsible for vorticity production. It
was shown [1] that when such stress gradients exist initially, coherent vorticity in the form
of a pair of vortex rings is produced.

3. Linearized Equations for Vortex Waves

Insight can be gained concerning the connection between the elasticity inherent in the
fluid and the existence of vortex waves by linearizing Equations (1)–(6). Here, we employ
a familiar linearization procedure, borrowed from acoustics, where it is used to derive the
wave equation from the nonlinear compressible form of the equations of motion [70]. For
our purpose, we express the components of the velocity; vorticity; and the conformation
tensor (Vi, Ωi, Cji) and the pressure, P, as follows:

Vi = V0
i + ui, (9)

Ωi = Ω0
i + ωi, (10)

Cji = C0
ji + cji, (11)

P = P0 + p, (12)

where V0
i , Ω0

i , C0
ji, and P0 are the average or mean values of the corresponding variables

defined in a suitable manner (e.g., time or ensemble averaged), which are assumed to
be spatially and temporally constant. The corresponding fluctuations are ui, ωi, cji, and
p. To arrive at a set of linearized equations, all fluctuating quantities are assumed small
compared to their suitably defined mean values. In the above expressions, Ω0

i ≡ ∂kV0
q εikq,

and ωi ≡ ∂kuqεikq, where in these expressions and hereafter, repeated indices imply
summation. In addition, since we are interested in flows starting from rest, V0

i = 0 and
Ω0

i = 0. Introducing Equations (9)–(12) into the governing Equations (1)–(6), neglecting
all higher order terms and assuming f is constant as discussed above, equations for the
perturbations are obtained as follows:

.
ui = −ρ−1∂i p + α f ∂jcji + ν0β∇2ui, (13)

.
ωm = α f ∂k∂jcjiεmki + ν0β∇2ωm, (14)

∂iui = 0, (15)

.
cji = C0

jk ∂kui + C0
ik ∂kuj −

f
λ

cji, (16)

where here and subsequently, a dot over a variable represents partial differentiation with
respect to time and ∇2 = ∂2

j = ∂j∂j. An additional equation for the evolution of the mean
value of the conformation tensor is also obtained as follows:

.
C

0
ji = −λ−1

[
f C0

ji − δji

]
. (17)

From Equation (17), it follows that when λ/τ � 1, so that the polymer relaxation time
is large relative to a characteristic flow time scale, τ, it can be assumed that C0

ji is essentially
independent of time. Anticipating the existence of waves that travel at speed c, the flow
time scale should be set to τ ∼ d

c , where d is the distance traveled by the wave during a
given experiment or simulation. Under these circumstances, this scaling shows that the
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initial polymer stresses do not decay to any appreciable degree, an assumption that is
implicit in Equations (13)–(16).

To obtain the governing equation for the vorticity fluctuations, ωm, we differentiate
Equation (14) with respect to time yielding

..
ωm= α f ∂k∂j

.
cjiεmki + ν0β∇2 .

ωm (18)

Equation (16) for the fluctuations of the conformation tensor can then be substituted
into the first term on the right-hand side of Equation (18) giving

..
ωm = α f ∂k∂j

(
C0

jq ∂q ui

)
εmki + α f ∂k∂j

(
C0

iq ∂q uj

)
εmki + ν0β∇2 .

ωm− α f 2
/λ∂k∂jcjiεmki. (19)

This equation can be simplified by noting that the second term on the right-hand side
is zero owing to the incompressibility condition (Equation (15)). Further simplification can
be obtained by using Equation (14) and ωm ≡ ∂kuiεmki to obtain

..
ωm =

(
α f C0

jq +
f/λν0β δjq

)
∂j∂qωm + ν0β∇2 .

ωm − f/λ
.

ωm. (20)

In this work, we are especially interested in waves traveling only in one direction, say
x1. In this case, Equation (20) becomes

..
ωm = C2 ∂2ωm

∂x2
1

+ ν0β ∇2 .
ωm − f/λ

.
ωm, (21)

where C =
√

α f C0
11 +

f/λν0β. The last two terms on the right-hand side of Equation (21) can
be identified as damping terms. If these two terms are neglected, Equation (21) reduces to

..
ωm = C2 ∂2ωm

∂x2
1

, (22)

which is the wave equation for the propagation of the vorticity with speed C. For situations
in which f/λν0β � α f C0

11, which is the case in the situations we investigate through
numerical simulations, the vortex wave speed can be accurately approximated by

C =
√

α f C0
11 (23)

This indicates (see Equation (4)) that the wave speed is proportional to the square
root of the initial tensile stress in the fluid divided by density, which is analogous to the
wave speed in a stretched string [70]. However, in contrast to a string, the wave speed
also depends on the solution viscosity and the relaxation time through α, as defined by
Equation (8).

4. Numerical Methods

To test certain aspects of the theory of vortex wave generation, a series of direct
numerical simulations were performed. For this purpose, Equations (1)–(5) were solved
using a pseudo-spectral code [71] in a channel geometry in which all field variables are
expanded in Fourier modes in the horizontal (x− z) plane and in Chebyshev modes in the
vertical (y) direction. Spectral methods exhibit exponential convergence [72] and have been
used with success in simulating fully developed turbulent flows [73]. The computational
domain lengths were Lx = 4π, Ly = 2 and Lz = π in the x, y, and z directions, respectively,
where these lengths have been made non-dimensional by the channel half-height, ly. The
coordinate system and geometry associated with this domain are shown in Figure 1A.
In these simulations, vortex waves travel in the x-direction, with the y and z. directions
perpendicular to this direction. There were 128 × 65 × 64 grid nodes in the x, y, and
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z directions, respectively. All relevant symbols used in this paper are listed in Table A1 in
Appendix B.

Figure 1. (A) Snapshot of two columnar vortex pairs traveling in opposite directions obtained from a direct numerical
simulation. The flow is shown at t = 1.4 where t = tν0/a2 is a non-dimensional time. The domain lengths in the x, y,
and z directions, normalized by the channel half-height, were Lx = 4π, Ly = 2 and Lz = π . The entire domain is
shown in the image. The vortex wave system is generated at x = ±a , where A = a/ly = 0.25. The image shown is from a
simulation in which C0

11 = 104, f = 1 , and N = 10−2 . The vortex system is visualized using an iso-surface of the vertical
vorticity, Ωy = 3× 10−3 where Ωy = Ωya2/ν0 . Velocity vectors on the central plane are also shown, where velocity is made
non-dimensional by ν0/a . In all figures, the same non-dimensional variables are used, along with x = x/a to define the
non-dimensional x coordinate. In this image, all coordinates are made non-dimensional in the same way; (B) Schematic (not
drawn to scale) showing the location of the region of stress deficit relative to the computational domain. The x− z plane is
shown in which the region of stress deficit is located within a box whose sides are of length 2A where A = a/ly = 0.25. The
center of the box is located at the exact center of the computational domain. Arrows indicate the direction of translation of
the vortices produced by the release of elastic energy, and red arrows indicate the sense of vortex rotation. The y-direction is
directed outward perpendicular to the plane of the paper. Refer to Table A1 in Appendix B for further definitions of these
length scales.
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In terms of physical dimensions, the domain lengths in the x and z directions were
lx = 4π cm and lz = π cm, and in the y-direction, the half-height was ly = 1 cm. The corre-
sponding distances between grid nodes were ∆x = 9.82 ×10−4 m and ∆z = 2.45 ×10−4 m,
respectively. In the y-direction, the use of Chebyshev polynomials results in a nonuni-
form grid. The smallest grid resolution occurs at the boundaries of the computational
domain where ∆y = 1.2× 10−5 m, and at the center of the domain, the resolution was
∆y = 4.91× 10−4 m. The grid resolution is therefore sub-millimeter in all three directions.
The kinematic viscosity of the solution was ν0 = 10−4 m2/s, which is consistent with
typical values used in experiments [3]. The code used in this work was thoroughly tested
against analytic solutions for steady and unsteady viscoelastic laminar channel flow. In
addition, the code gave good agreement with recent experiments [71] for heat transfer in
a dilute polymer solution, and simulations of vortex rings using this algorithm were in
agreement with theoretical predictions [1]. Furthermore, we examined the fields generated
in these simulations and found no evidence of grid-scale oscillations, thereby assuring that
our simulations were well resolved.

In these simulations, the fluid, which is initially at rest, is in a state of uniaxial tension,
which can be specified by allowing the conformation tensor at t = 0 to be C11 = C0

11,
where C0

11 is a positive constant. A wave system can be generated by allowing the initial
conformation field to possess spatial gradients. This can be accomplished by perturbing
the stress field by letting C11 = C0

11 − ε, with ε > 0 and < C0
11, which effectively creates a

stress deficit in the fluid. The perturbation exists only in a small region of the domain such
that ε = ε0 where ε0 is a constant for α2 ≥ x ≥ α1 and α2 ≥ z ≥ α1 and ε = 0 outside this
region. Note that the perturbation varies only in the horizontal (x− z) plane and thus has
no dependence on the vertical coordinate, y. For the other components of the conformation,
we set the initial values of C22 and C33 equal to constants and Cji = 0 for i 6= j. The location
of the stress deficit relative to the computational domain is illustrated in Figure 1B.

The perturbation described above is capable of generating an imbalance in stress,
which causes fluid particles to accelerate locally. For example, near x = α2, the stress deficit
will drive flow in the positive x direction, whereas the fluid near x = α1 will be driven in
the opposite direction. This force field has the same effect as a spatially localized impulsive
body force, which can readily be shown to create vorticity [74,75] (see also Figure 1 of [1]).
This scenario can also be thought of as the release of elastic energy from a stretched
rubber band that has been suddenly cut. Furthermore, the vorticity transport equation
(Equation (6)) shows that torques on fluid elements can be produced by gradients in the
elastic stress field, and for a fluid initially at rest, the rate at which vorticity is generated
initially has a particularly simple form given by Equation (7). Since the perturbation in
stress varies only in the horizontal plane, C11 does not vary in the vertical (x2) coordinate.
In this case, Equation (7) indicates that only vertical vorticity can be generated as follows:

∂ Ω2

∂t

∣∣∣∣
t=0

= α f
∂2C11

∂x1 ∂x3
. (24)

On the top and bottom walls of the channel, shear-free conditions, ∂V1/∂x2 =
∂V3/∂x2 = V2 = 0,

were imposed on the velocity field and no flux [76] conditions, ∂Cji/∂x2 = 0, were applied to the
conformation. In all simulations described here, the ratio of the solvent viscosity to the solution
viscosity was set to β = 0.5, the polymer relaxation time was set such that λ/τ � 1, and the
Schmidt number for the polymer was Scp = v0/Dp = 6. With this choice of relaxation time and
Schmidt number, we ensure that that the effects of polymeric diffusion are small. The nature of
the forcing described above, together with the boundary conditions, give rise to two columnar
vortex pairs, one traveling to the left and one to the right. Each vortex thus produced will have
only vertical vorticity, Ω2. We note that even though this flow is strictly two dimensional, we
used a three-dimensional code for reasons of convenience.
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5. Flow Visualization and Kinematics

A visualization of the velocity and vorticity of the flow associated with a vortex wave
obtained from the numerical simulations is shown in Figure 1A. As described above, elastic
energy was released into the fluid by creating a deficit of tensile stress situated at the
center of the computational domain in a small region given by 2π + A ≥ x ≥ 2π − A and
π/2 + A ≥ z ≥ π/2− A. Here, the non-dimensional x and z coordinates are given by
x = x/ly and z = z/ly, where A = a/ly = 0.25. As expected, this energy release creates
two columnar vortex pairs with only vertical vorticity, which travel in opposite directions.
Corresponding to the case shown in Figure 1, the space–time (x − t) coordinates of the
maximum vertical vorticity of the left-traveling vortex pair is shown in Figure 2A. We
determined that lateral (z) motion of the pair is negligible, indicating that the vortex pair
travels almost entirely in the x-direction. We note that the vortex path shown in Figure 2A
and a blow-up in Figure 2B exhibit two regions: a period of expansion, followed by one
of translation. During expansion, the position of the maximum vorticity remains fixed in
space, whereas during translation, its position changes.

Figure 2. Space–time diagrams (A,B) of the path of maximum vertical vorticity associated with the
left-traveling vortex pair shown in Figure 1A. In (A,B), simulation results are given by filled triangles,
and a linear curve fit (R2

cd = 0.9993) is given by filled circles. In (B), regions of expansion and
translation are shown. In (C), the transition time T∗ = Tν0/a2 is shown (×) designates linear theory
and filled triangles are used for the simulation results as a function of C0

11 for cases in which f = 1
and N = 10−2.

For each numerical simulation performed in this work, we performed a linear curve
fit of the x− t path of the vorticity maximum during the translation period. In each case,
the coefficient of determination (R2

cd) fell in the range 0.986–0.999, indicating that a linear
model is an excellent approximation for the vortex paths. We therefore use the slope, dx/dt,
of the linear curve fit as the definition of the vortex speed in all simulations. Figure 2A
shows an example of such a curve fit.

6. Linearized Wave Equation and the Undamped Solution
6.1. Linearized Wave Equation

While the results of the DNS simulations shown in Section 5 should be sufficient to
verify the wave-like behavior of the vortices under consideration, it is useful to obtain
further insight by examining the solutions of the linearized wave equation. In fact, it is
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shown that these simplified models give reasonable correspondence to the full simulations
under conditions for which linearity is well approximated, and polymer relaxation times are
large. In these models, we assume that the wave speed is given by the results of Section 3.

Consistent with the idea of using linearized model problems to gain further understand-
ing of the results obtained from the DNS simulations, we consider a simplified version of
Equation (21) given by

..
φ− C2 ∂2

1 φ− ν0β
(

∂2
1

.
φ + ∂2

3
.
φ
)
= 0, (25)

where for simplicity, the scalar field, φ, has been substituted for ω2. This describes a field
that propagates in one direction, x1, which is entirely justified by the results obtained
from the full equations of motion shown in Figure 2. The inclusion of viscous damping
in two (x1, x3) directions is motivated by the fact that the vortices observed in the simula-
tions shown in Figure 1 are themselves two dimensional and should be expected to diffuse
in the horizontal (x1 − x3) plane. We excluded the term f/τ

.
ωm in Equation (25) since we are

interested in the situation with large polymer relaxation times, and we found in the cases
of interest that this term has only a small effect on the decay of the vortex wave magnitude.
The waves are assumed to propagate in an effectively infinite medium so no boundary
conditions, except for radiation conditions, are required. We further note that damped
wave equations have been investigated in the context of acoustics [77,78].

6.2. Analytical Solution for Undamped Waves

A salient aspect of the results shown in Figure 2A,B is the existence of a period of
expansion followed by one of translation. Here, we show that this is entirely consistent
with the solution of the undamped wave equation (Equation (25) without the damping
terms) given by

∂2φ

∂x2 −
1

C2
∂2φ

∂t2 = − Q
C2 {δ(x− a)− δ(x + a)}δ(t). (26)

In this inhomogeneous form of the wave equation, the source term on the right-
hand side represents the initial conditions: the impulsive source is quiescent before being
activated at time t = 0. The initial conditions for the model problem are that the initial field
be zero, since the fluid is initially at rest, and that its time rate of change should be obtained
from Equation (24): φ(t = 0) = 0 and

∂φ

∂t

∣∣∣∣
t=0

= Q {δ(x− a)− δ(x + a)}, (27)

where Q represents the amplitude of the disturbance. The delta functions appearing in
Equation (27) represent a model for the sharp gradients in the stress field, as described in
Section 4, which result in the impulsive forces discussed in earlier work (see Figure 1 of [1]).
The source strength, Q, in Equation (26) can be thought of as the amplitude of a force per
unit mass whose spatial gradients give rise to vorticity.

The solution for the vorticity, φ, may be found by applying two Fourier transforms,
one temporal and the other spatial, to both sides of Equation (26). After applying the
appropriate inverse transforms, this procedure leads to the causal expression:

φ(x, t) =
Q

2πC
u(t)

∫ ∞

−∞

1
p
[cos p(x− a)− cos p(x + a)] sin(pCt)dp, (28)

where u(t) is the Heaviside unit step function. Bearing in mind the identity∫ ∞

−∞
cos(bs)ds = 2πδ(b), (29)

it is evident that Equation (28) is consistent with the initial condition in Equation (27).
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From an elementary identity, the products of the trigonometric functions in the inte-
grands of Equation (28) may be expressed as the sum of two sine functions:

cos p(x± a) sin pCt =
1
2
[sin p(x± a + Ct)− sin p(x± a− Ct)], (30)

and the integrals themselves then take the form∫ ∞

−∞

sin pX
p

dp = π sgn(X), (31)

where sgn(X) is the signum function, with values of +1 and −1, respectively, for X > 0 and
X < 0. It follows that

φ(x, t) =
Q
4C

u(t)[sgn(x− a + Ct)− sgn(x− a− Ct)− sgn(x + a + Ct) + sgn(x + a− Ct)]. (32)

A schematic representation of this solution is given in Figure 3. As indicated in
Figure 3B, at times such that t � a/C, the field φ appears in the vicinity of x = −a
and x = a as two spatially narrow boxcar functions, which are designated as α and β,
respectively. It is important to note in Figure 3B that the left and right sides of each boxcar
travel in opposite directions with speed C, which results in spatially expanding fields,
not translation. At time t = a/C shown in Figure 3C, the fields have expanded to the
maximum extent, and finally in Figure 3D, for t > a/C, the fields α and β propagate with a
speed C to the left and right, respectively, since the sides of the boxcars propagate in the
same direction. We designate the time separating expansion and translation as T = a/C.
The existence of a time period of wave expansion followed by a period of wave translation
agrees qualitatively with the results of Figure 2A,B. We should point out that the undamped
solution given here shows that the vortices travel with constant amplitudes. However, in
the numerical simulations, the viscosity is not zero, and this naturally has a smoothing
effect that results in a peak in the wave amplitude. It is the space–time path of this peak
that is shown in Figure 2A,B. The effects of viscosity, as predicted by the linearized theory,
are described below.

Figure 3. Cont.
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Figure 3. Schematic representations of the wave field φ at three different times (B–D) generated from
an undamped wave model given the forcing function ψ see (A). The time periods corresponding
to (B–D) are, respectively, a

C � t > 0, t = a
C and t > a

C . The field φ is an exact solution of the
one-dimensional wave equation with initial conditions given by Equation (27). The wave field
has two components α and β, which are shown during the expansion period (B,C) and during the
translation period (D). Note that in (D), the left and right sides of the boxcars travel in the same
direction. Here, x = a is the point of origin of the field, and C is the wave speed.

7. Viscous Effects

Here, we consider the effects of viscosity on the evolution of vortex waves. Recall

that a good approximation for the wave speed is C =
√

αfC0
11, in which α = ν0(1− β)/λ.

Thus, the wave speed itself is viscosity dependent. In addition, the viscosity of the fluids
typically used in microfluidics [3] are high, resulting in low Reynolds numbers. In this
section, we first present results from the numerical simulation for the evolution of the
vorticity magnitude, followed by the development of analytical solutions of the linearized
wave equation with damping in one and two dimensions.

7.1. Temporal Evolution of the Vorticity Magnitude from Numerical Simulations

The temporal evolution of the magnitude of the maximum vertical vorticity following
a typical vortex wave is shown in Figure 4. These results were obtained from the numerical
simulation described in Figure 1. Since the fluid is modeled as a solution having viscosity
ν0, it is expected that the wave energy will decay after being released. This is in fact what
is observed in Figure 4A, which shows a rapid rise in vorticity followed by decay. In
Figure 4B, the time taken for the vorticity to reach a maximum is compared to the transition
time, T = a/C. This shows that the maximum vorticity appears at a time somewhat before
the transition time, which indicates the growth of wave energy lies entirely within the time
scale T.

7.2. One-Dimensional Analytical Solution of the Linearized Wave Equation with Viscosity

To gain further insight into the results of the numerical simulations discussed above,
an analytical solution of Equation (25) is now developed in which the effect of viscous
damping on the evolution of the vortices is taken into account. Following the formalism of
the undamped case in Equation (26), the one-dimensional version of Equation (25) with
damping included may be written in the inhomogeneous form

∂2φ

∂x2 −
1

C2
∂2φ

∂t2 + χ
∂3φ

∂t∂x2 = − Q
C2 [δ(x− a)− δ(x + a)]δ(t), (33)
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where, on the left, the coefficient of the third-order derivative, representing damping, is

χ =
ν0β

C2 (34)

It is important to note that the damping coefficient, χ, is in general non-zero, thus
giving rise to a smoothing of the vortex field, but χ is itself independent of the viscosity as,
according to Equation (23), the vortex speed, C, scales as the square root of the viscosity,
from which it follows that ν0 cancels out of Equation (34). This situation is the reverse
of that associated with acoustic propagation in a viscous fluid: Stokes’ equation [77] for
the acoustic field has exactly the same structure as that on the left of Equation (33), but
the acoustic analogs of C and χ are, respectively, independent of and proportional to the
viscosity. According to Equation (33), even though χ is invariant with ν0, the viscosity will
affect the travel time and the shape of a vortex, since C2 in the second term on the left scales
with ν0.

Figure 4. Temporal evolution (A) of the maximum vertical vorticity Ωy for the simulation shown in
Figure 1. In (B), the time at which the vorticity peaks (filled triangles) is compared to the transition
time T∗ = Tν0/a2 obtained from the linear theory (×).

As with the undamped case, the solution for the vortex field may be obtained by
applying a pair of Fourier transforms to Equation (33), one temporal and one spatial, as
detailed in Appendix C. This procedure leads to a wave number integral for the field:

φ(x, t) = −i
Q
π

C2u(t)
∫ ∞

−∞
sin(pa)e−p2χC2t/2 sin(Rt)

R
eipxdp, (35)

where u(t) is the Heaviside unit step function and

R =
1
2

√
4p2C2 − χ2C4 p4. (36)

Bearing in mind the delta function identity in Equation (29), it is readily shown that,
at the origin of time, t = 0, the time derivative of the field in Equation (35) is identical to
the second of the initial conditions in Equation (27). In fact, everywhere in the medium,
apart from x = ±a, the vortex field itself in Equation (35) and all of its time derivatives
are identically zero at t = 0; that is to say, the field is maximally flat, or infinitely flat, at
the instant the source is activated. Such behavior is also exhibited by Stokes’ equation
for acoustic propagation in a viscous fluid [77] and by the time-dependent diffusion
equation [77]. Thus, in all three cases, the field satisfies causality in the strict sense: it
is zero at negative times with no instantaneous arrivals anywhere in the fluid medium
surrounding the source.
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The function R in Equation (36) is real when |p| < q and imaginary when |p| > q, where

q =
2

χC
. (37)

For all practical values of χ, the contribution to the integral in Equation (35) from the
imaginary components of R is negligible, and for R real, an excellent approximation is

R ≈ |p|C. (38)

Under these conditions, the integral in Equation (35) may be approximated in terms
of the error function, erf(.), as shown in Appendix C:

φ ≈ 1
2 sgn

(
1− 2t

qa + x
)

er f
(

qa
2
√

2t

∣∣∣1− 2t
qa + x

∣∣∣)
− 1

2 sgn
(

1− 2t
qa − x

)
er f
(

qa
2
√

2t

∣∣∣1− 2t
qa − x

∣∣∣)
− 1

2 sgn
(

1 + 2t
qa + x

)
er f
(

qa
2
√

2t

∣∣∣1 + 2t
qa + x

∣∣∣)
+ 1

2 sgn
(

1 + 2t
qa − x

)
er f
(

qa
2
√

2t

∣∣∣1 + 2t
qa − x

∣∣∣),

(39)

where sgn(.) is the signum function taking values of +1 and −1, respectively, for posi-
tive and negative arguments. A simple normalization scheme has been introduced in
Equation (39), whereby

t = t/χ and x = x/a. (40)

The factor of 1
2 in each of the four terms in Equation (39) ensures that, in the absence

of damping, when χ = 0, the peak value of the normalized vortex field is φ = 1. It is worth
noting that when χ = 0, the error functions in Equation (39) are all unity, and the field
reduces to precisely the same rectangular boxcar form as that of the undamped solution in
Equation (32). The normalization scheme in Equation (40) can also be applied to the exact
integral solution in Equation (35), in which case the normalized vorticity field becomes

φ = 4
π

∫ 1
0 cos[pqa(x− 1)]

sin(R t)
R

e−2p2tdp+ 4
π

∫ ∞
1 cos[pqa(x− 1)]

sin h(S t)
S

e−2p2tdp

− 4
π

∫ 1
0 cos[pqa(x + 1)]

sin(R t)
R

e−2p2tdp− 4
π

∫ ∞
1 cos[pqa(x + 1)]

sin h(S t)
S

e−2p2tdp,
(41)

where
R = 2

√
p2 − p4, S =

√
p4 − p2 and p =

p
q

. (42)

An advantage of the normalization in Equations (39) and (41) is that the wave speed C
in which the viscosity ν0 is embedded, the damping coefficient χ, and the source positions
at |x| = a, all collapse into the single parameter, a = 2a

χC , which, through the presence of
C, varies as the inverse square root of the viscosity. Bearing in mind that the normalizing
terms χ and a in the denominators of Equation (40) are independent of ν0, it is evident
that the effects of viscosity on the normalized vortex field in Equations (39) and (40) are
represented solely by the dimensionless parameter qa. Therefore, with a fixed receiver
position, x, a family of curves for φ as a function of t may be generated in which each
curve corresponds to a particular value of qa, with lower values of qa representing higher
viscosities. Two such families of curves, for x = 0.5 and x = 2, are shown in Figure 5 (N.B.
the logarithmic time scale).
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Figure 5. Temporal evolution of the vorticity for a one-dimensional damped wave showing the transition
from a weakly damped (qa = 1000) to a strongly damped (qa = 10) wave obtained from the approximate
solution to Equation (39). The wave amplitude is shown for (A) x/a = 0.5 and (B) x/a = 2.
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These curves were computed by numerical evaluation of the integrals in Equation (40),
but the error function approximation in Equation (39) could have been used since it returns
almost identical results for viscosities represented by the condition qa ≥ 10. For smaller
values of qa, corresponding to inordinately high viscosities, the error function approxi-
mation in Equation (39) becomes increasingly inaccurate, and instead, the exact integral
formulation in Equation (41) is recommended. Three effects of increasing the viscosity
are illustrated by the vorticity fields shown in Figure 5: the travel time is progressively
reduced, consistent with the scaling of the wave speed as the square root of the viscosity;
the rectangular boxcar shape characteristic of low viscosities becomes more rounded; and
the maximum level of the normalized vortex field is reduced.

7.3. Two-Dimensional Analytical Solution of the Linearized Wave Equation with Viscosity

It was found through comparison of the simulations with the analytical model de-
scribed above that wave damping in one dimension gives wave amplitudes that decay
more slowly than indicated by the numerical simulations. To gain further insight into
the viscous decay of the vortex, the wave equation in Equation (25), may be written in
inhomogeneous form as

∂2φ

∂x2 −
1

C2
∂2φ

∂t2 + χ
∂

∂t

{
∂2φ

∂x2 +
∂2φ

∂z2

}
= − Q

C2 [δ(x− a)− δ(x + a)]δ(z)δ(t), (43)

where
χ =

ν0β

C2 . (44)

Note that damping terms in x and z are added (third term on the left-hand side of
Equation (43)). The solution to Equation (43) is given in Appendix D.

Here, we are particularly interested in the rate of decay of the vorticity, which is
evident in Figure 4 for t > a

C = T. It is reasonable to approximate this decay as an
exponential of the form e−σt to model the evolution of both the vorticity obtained from
the numerical simulations and the analytical solution, Equation (A25), which has been
evaluated numerically. The results for the numerical simulations shown in Figure 4 and the
model (Equation (43)) are σ = 0.766 and 0.732 where σ = σa2/ν0, where the coefficients
of determination (R2

cd) for the exponential model were 0.99 and 0.98, respectively. The
satisfactory agreement for the decay rates indicates that the decay in the vorticity of the
vortex wave can be accounted for reasonably well by viscous diffusion in two dimensions.
It is also notable that the decay time, τd, for the vortex wave is τd ∼ O

(
a2/ν0

)
, as expected

from dimensional considerations, since the size of the vortex is on the order of a.

8. Vortex Wave Speed

Here, numerical simulations are used to determine the effects of wave amplitude, the
initial elastic stress in the fluid, and the maximum polymer extension length on the speed
of vortex waves. The results below show excellent agreement between the linearized theory
discussed in Section 3 and provide strong evidence for the existence of vortex waves.

8.1. Effect of Wave Amplitude on Wave Speed

The full equations of motion (1)–(6) contain nonlinearities, such as advection, vortex
stretching and tilting, and polymer stretching, which are fully represented in all numerical
simulations presented in this work. The effects of these nonlinearities on wave motion
can be important for waves of high amplitude [70]. For example, acoustic waves can
be characterized by the ratio ∆p/p0, where ∆p is the amplitude of the wave and p0
is the ambient atmospheric pressure. When an acoustic wave passes a given location,
the perturbation in the pressure, ∆p, is normally observed by acoustic sensors. When
∆p/p0 << 1, acoustic waves have a well-known speed given by c0 =

√
γp0/ρ0, where γ is

the ratio of specific heats and ρ0 is the ambient air density. However, acoustic waves of high
amplitude (e.g., shock waves) can have speeds higher than c0. Moreover, high amplitude
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nonlinear waves can exhibit other effects, such as wave steepening, and dispersion (e.g.,
ocean waves).

It is therefore of interest to determine the effects of wave amplitude on the propagation
of vortex waves. This was achieved by performing numerical simulations in which the
fluid properties were fixed and using the linear spring model, f (R) = 1, while varying the
amplitude parameter N = ε0/C0

11, the ratio of the initial stress deficit to the background
stress, by more than an order of magnitude. Here, N can thought of as analogous to
∆p/p0 for acoustic waves. Here, we define (see Section 3) the theoretical wave speed

by C =
√

α f C0
11 +

f/λν0β.
The results shown in Figure 6 indicate that the wave speed is virtually unaffected by

the wave amplitude. In addition, the difference between the wave speeds obtained from
the simulations shown in Figure 6 and the theoretical linear wave speed was <1.5% in all
cases. This indicates that, over a significant range of wave amplitude, a linear wave model
is a good approximation for the observed dynamics.

Figure 6. Dependence of the vortex wave speed C = Ca/ν0 on the amplitude parameter N for
which C0

11 = 2.4 ×103 and f = 1. Here and in subsequent figures, the theoretical wave speed is

given by =
√

αC0
11 +

ν0 β/λ. Linear theory is designated by ×, and simulation results are given by
filled triangles.

8.2. Effect of the Initial Elastic Stress on Wave Speed

The dependence of wave speed on C0
11 for the linear spring model f (R) = 1 is shown in

Figure 7. In these simulations, all fluid properties were fixed and N = 10−2, thus ensuring
linearity. These results show clearly that the wave speeds predicted by the linearized model
are in excellent agreement with the numerical simulations. In fact, the difference between
the wave speeds obtained from the simulations shown in Figure 7 and the theoretical linear
wave speeds was <1.1% in all cases. As further evidence for the accuracy of the linearized
theory of vortex waves, we show in Figure 2C the relation between the transition time,
T = a/C, and C0

11 for both simulations and theory. The agreement is again quite reasonable
and further justifies the model given in Section 6.2. Furthermore, it indicates that for the
kind of initial conditions we imposed on the flow, a reasonable estimate of the vortex wave
speed can be obtained from T and the length scale a.
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Figure 7. Dependence of the vortex wave speed C = Ca/ν0 on C0
11 for f = 1 and N = 10−2. Linear

theory is designated by ×, and simulation results are given by filled triangles.

8.3. Effect of the Maximum Polymer Extensional Length on Wave Speed

It is also of interest to determine the effect of a nonlinear spring on vortex wave speed
by allowing the spring constant in the polymer model to be determined by the Peterlin
function f (R) =

(
L2 − 3

)
/
(

L2 − R2). Here, we note that f → 1 as the maximal allowable
polymer extensional length (L) becomes large compared to R2 = tr(C). In this limit, it is
expected that the wave speed should approach the linear theory limit. To test this, wave
speeds were determined as L was varied over two orders of magnitude, with all other fluid
and polymer properties fixed, and with R2 ∼ 2× 103 during the course of the simulations.
The results shown in Figure 8 indicate that at the largest value of L, wave speeds approach
nearly the theoretical speed for linear waves. However, as L decreases, the Peterlin function
increases, corresponding to an increasingly stiff spring. The effect of this is to increase
vortex wave speed, an expected result that is clearly indicated in Figure 8. It should also
be noted that in every case, the vortex wave speed is greater than the linear theory wave
speed for these nonlinear springs.

Figure 8. Dependence of the vortex wave speed C = Ca/ν0 on the maximum polymer extensional
length, L, using the full Peterlin model. Here, C0

11 = 2× 103 and N = 10−2. Linear theory is designated
by ×, and simulation results are given by filled triangles.
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9. Summary and Discussion

Recent work [1] has shown that the release of elastic energy in a viscoelastic fluid can
produce coherent vorticity, which is generated by torque-producing elastic stress gradients.
However, in that work, the kinematics of the motion of the coherent vortical structures
was not fully explored. In this work, we show that the release of elastic energy generates
vorticity that propagates as a wave, whose speed is governed by the initial stress field in the
fluid. A linearized version of the equations of motion for an incompressible fluid, which
includes the FENE-P model for polymer dynamics, shows that waves of vorticity should
be generated upon release of stored elastic energy. For large polymer relaxation times and

for a linear spring model ( f = 1), the vortex wave speed is shown to be C ∝
√

C0
11, where

C0
11 is the initial longitudinal polymer conformation, proportional to the initial tension in

the fluid. Furthermore, the theory shows that the wave should be affected by the fluid
viscosity. Insight was obtained by using an undamped model for the case in which energy
is released in a spatially symmetric manner. This shows that the temporal evolution of
the wave takes place in two parts: (1) a period of expansion in which the field grows in
spatial extent but does not propagate, followed by (2) a field which propagates at speed
C. The period of expansion is shown to take place during a time = a/C, where a is the
spatial location at which energy is released, and also represents the length scale or size
of the wave. In addition, an analytical solution to the linearized equations with viscous
damping was used to determine a viscous decay time scale.

Analogous to physical experiments, a series of direct numerical simulations (DNS)
were performed for a range of parameters that could be compared with the theory. For
low amplitude waves that are governed by a linear spring model, the DNS gave results
very much in accord with the linearized theory: (1) wave speeds obtained from DNS
were within 1.5% of the theory, and (2) the time scale associated with the period of wave
expansion matched DNS results. In addition, an analytical solution of the wave equation
with viscous damping was used to determine a viscous decay time scale. This time scale
was in good agreement with DNS results.

An additional motivation for undertaking this work is associated with the problem
of promoting mixing in low Reynolds flows, such as those associated with microfluidics.
As such, coherent vortex motions may be useful for the enhancement of transport in
low Reynolds number, high Peclet number flows in micro-devices. The possibility of
experimentally verifying the phenomena described in this work is also being pursued.
For example, recent experiments [79] in which an extensional flow of a dilute polymer
solution using a convergent–divergent flow field revealed chaotic flow behavior. If stored
elastic energy in such a flow could be released in a controlled manner, then fluid motions
similar to the ones observed in our simulations should be generated. It is also interesting
to observe that vortex waves can easily be made to propagate in any desired direction.
For example, if stored elastic energy placed in C22 is suddenly released, we should expect
the resultant vortex waves to propagate in the vertical direction, perpendicular to walls.
Future work should also consider the effects of an initially asymmetric stress distribution,
as well as the effects of strong, finite amplitude waves.
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Appendix A. Derivation of the Initial Time Rate of Change of the Vorticity

Here, we give further details regarding the derivation of Equation (7), which relates
the initial time rate of change of vorticity to spatial gradients of the elastic stresses. Refer to
the text or Table A1 in Appendix B for the definitions of all symbols not explicitly defined
in this Appendix. Two assumptions are made in this derivation: (1) the fluid velocity V = 0
at time = 0, and (2) the maximal allowable polymer length L is assumed to be such that
L2 � tr(C) so that f is a constant. We note that since the fluid velocity is initially zero
everywhere in the fluid, then the vorticity Ω = ∇× V is also zero at t = 0.

For convenience, we rewrite the evolution equation for the vorticity (Equation (6)):

DΩ

Dt
= (Ω·∇)V + ν0β∇2Ω + ρ−1∇× (∇·τp) . (A1)

The first term on the left-hand side of Equation (A1), which represents the material
derivative of the vorticity, can be written using index notation in Cartesian coordinates
as follows:

DΩm

Dt
=

∂Ωm

∂t
+Vi∂iΩm, (A2)

where ∂i = ∂/∂xi, and repeated indices imply summation. Evaluation of Equation (A2) at
t = 0 and using assumption (1) above gives

D Ωm

Dt

∣∣∣∣
t=0

=
∂ Ωm

∂t

∣∣∣∣
t=0

, (A3)

since the second term on the right-hand side of Equation (A2) vanishes. The first and
second terms on the right-hand side of Equation (A1) also vanish because of assumption (1).
Since the polymer stress is given by

τ
p
ji = α

(
f Cji − δji

)
, (A4)

the third term on the right-hand side of Equation (A1) can be written as

ρ−1∇× (∇·τp) = ∂k[α∂j
(

f Cji
)
]εmkiem, (A5)

where εmki is the permutation symbol, and em is a unit vector. However, since both α and f
are constants, Equation (A1) becomes

∂Ωm

∂t
= α f

∂2Cji

∂xj ∂xk
εmki , (A6)

where both sides are evaluated at t = 0. This corresponds exactly to Equation (7) in the
text. We note that Equation (A6) states that although the initial vorticity is zero, the initial
time rate of change of vorticity is not zero when elastic stress gradients are initially present
in the fluid.
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Appendix B. Table of Symbols

Table A1. This table lists all relevant symbols used in this work. For each symbol, a definition is given followed by a
designation of the symbol as dimensional (e.g., centimeters, seconds) or dimensionless.

Symbol Definition Units

x, y, z
Coordinates: the vortex waves travel in the x-direction, z is

perpendicular to this direction, and y is the vertical direction
(see Figure 1)

Dimensional

x1, x2, x3 Scripted coordinates corresponding to x, y, z Dimensional

lx, ly, lz
Lengths of the computational domain in the x, y, and z

directions. ly is the half-height of the computational domain
in the y-direction

Dimensional

x, y, z Coordinates x,y,z made dimensionless using ly Dimensionless

Lx, Ly, Lz
Computational domain lengths made dimensionless using ly.

Note that this definition leads to Ly = 2. Dimensionless

t Time Dimensional

V, Vi Velocity and components of the velocity Dimensional

Ω, Ωi Vorticity and components of the vorticity Dimensional

C, Cji Polymer conformation tensor and its components
Dimensionless. The conformation tensor is

made dimensionless using the rest length of
the polymer molecule

P Fluid pressure Dimensional

V0
i , ui

Average or mean value of the velocity (e.g., time or ensemble
averaged) and its perturbation Dimensional

Ω0
i , ωi

Average or mean value of the vorticity (e.g., time or ensemble
averaged) and its perturbation Dimensional

C0
ji, cji

Average or mean value of the conformation tensor (e.g., time
or ensemble averaged) and its perturbation Dimensional

P0, p
Average or mean value of the pressure (e.g., time or ensemble

averaged) and its perturbation Dimensional

ν0 Solution viscosity Dimensional

λ Polymer relaxation time Dimensional

β Ratio of the solvent to the solution viscosity Dimensionless

α
Stress parameter.
α = ν0(1− β)/λ

Dimensional

L Maximum possible extensional length made dimensionless
using the polymer rest length Dimensionless

C Vortex wave speed. See definition directly following
Equation (21). Dimensional

a
Length associated with the region in which the fluid tension
experiences a deficit. The region is a square with length 2a on

each side. See Figure 1B.
Dimensional

A A = a/ly
In the simulations and theory, A = 0.25. See Figure 1B. Dimensionless

T The transition time T = a/C. Before this time, the vortex wave
expands without translating. Translation occurs when t > T. Dimensional

T∗ Dimensionless transition time, T∗ = Tν0/a2. Dimensionless

t Dimensionless time.
t = tν0/a2. Dimensionless
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Table A1. Cont.

Symbol Definition Units

C Dimensionless vortex wave speed. C = Ca/ν0. Dimensionless

C0
11

Initial value of the component of the conformation tensor,
which is directly proportional to the fluid tension in the fluid. Dimensionless

f
The Peterlin function. f (R) =

(
L2 − 3

)
/
(

L2 − R2) where
R =

√
tr(C).

Dimensionless

ε0
Amplitude of the polymer conformation deficit, which is

proportional to the stress deficit. Dimensionless

N Amplitude parameter given by N = ε0/C0
11. When N � 1,

the vortex wave can be considered linear.
Dimensionless

Ωy Component of the vorticity in the vertical (y) direction. Dimensional

Ωy Dimensionless vertical vorticity where Ωy = Ωya2/ν0. Dimensionless

τ translational time scale for a
vortex wave

Dimensional

d distance traveled by a vortex wave in time τ Dimensional

Q amplitude of the source of the vortex wave Dimensional

Appendix C. Analytical Solution of the One-Dimensional Damped, Linearized
Vorticity Equation

Equation (33) in the text is the one-dimensional, inhomogeneous equation to be solved
for the scalar vorticity field, φ = φ(x,t):

∂2φ

∂x2 −
1

C2
∂2φ

∂t2 + χ
∂3φ

∂t∂x2 = − Q
C2 [δ(x− a)− δ(x + a)]δ(t), (A7)

Taking the Fourier transform with respect to time returns

∂2φ

∂x2 +
ω2

C2 φ + iωχ
∂2φ

∂x2 = − Q
C2 [δ(x− a)− δ(x + a)], (A8)

where
φ = φ(x, ω) =

∫ ∞

−∞
φ(x, t)e−iωtdt. (A9)

A further Fourier transform, with respect to x, yields(
ω2

C2 − p2 − iωχp2
)

φp = −Q
[
e−ipa − eipa

]
, (A10)

where p is the wavenumber and

φp =
∫ ∞

−∞
φ(x, ω)e−ipxdp. (A11)

From Equation (A10), the solution for the doubly transformed field is

φp =
2iC2 sin(pa)

[ω2 − iωC2χp2 − C2 p2]
, (A12)

which has two poles in the complex ω-plane at

ω = ω± =
iC2χp2

2
± R (A13)
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where
R =

1
2

√
4p2C2 − χ2C4 p4. (A14)

Since p is real, both poles lie in the upper half-plane. Taking the inverse Fourier
transform of Equation (A12) with respect to ω, it follows that, for t < 0, an integration
around a D-contour in the lower half-plane returns zero, indicating that the vortex field
is causal in that there are no arrivals prior to t = 0. For t > 0, from Jordan’s lemma and
Cauchy’s theorem, an integration around a D-contour in the upper half-plane yields

φp = −2iQC2u(t) sin(pa)
sin(Rt)

R
e−p2C2χt/2, (A15)

where u(t) is the Heaviside unit step function. The inverse Fourier transform of Equation (A15)
with respect to p leads to the following wavenumber integral for the field:

φ(x, t) = −i
Q
π

C2u(t)
∫ ∞

−∞
sin(pa)e−p2χC2t/2 sin(Rt)

R
eipxdp, (A16)

which is the solution that is presented in Equation (35) in the text. An extension to
two dimensions may be obtained by following a similar procedure but with two spatial
Fourier transforms applied to the wave equation, which leads to a double wavenumber
integral for the vortex field.

An approximation for the integral in Equation (A16) may be obtained by neglecting
the fourth-order term in the radical in the expression for R in Equation (A14), under
which condition

R ≈ |p|C. (A17)

The expression for the field then becomes

φ ≈ −i Q
π u(t)

∫ ∞
−∞ sin(pa) sin(|p|Ct)

|p|C e−p2C2χt/2eipxdp

= 2Q
πC u(t)

∫ ∞
0 p−1 sin(pa) sin(pCt) sin(px)e−p2C2χt/2dp .

(A18)

The product of the three sine functions in the integrand can be expressed as the sum of
four sine functions of the form

sin p(a± Ct± x), (A19)

where all four combinations of the plus and minus signs are to be taken. This gives rise to
four Fourier sine transforms, which can be found in Tables of Integrals:∫ ∞

0
p−1 sin p(a± Ct± x)e−p2C2χt/2dp =

π

2
sgn(a± Ct± x)er f

(
|a± Ct± x|

C
√

2χt

)
. (A20)

This result leads to the final approximate expression for the vortex field,

φ(x, t) ≈ QC
4

u(t)
[
sgn
(
X−+
)
erf
(∣∣X−+ ∣∣)− sgn

(
X−−
)
erf
(∣∣X−− ∣∣)− sgn

(
X+
+

)
erf
(∣∣X+

+

∣∣)+ sgn
(
X+
−
)
erf
(∣∣X+

−
∣∣)], (A21)

where the superscript and subscript notation has been introduced to define the signs in the
expressions for X, for example,

X+
− =

(a + Ct− x)
C
√

2χt
(A22)

After normalization, the approximate error function solution in Equation (A21) be-
comes identical to that in Equation (39) in the main text.
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Appendix D. Analytical Solution of the Two-Dimensional Damped, Linearized
Vorticity Equation

The solution to Equation (43) in the main text is obtained by applying three Fourier
transforms, one temporal and two spatial, and then to perform the inverse transforms,
which leads to the formulation of the field in terms of a double wave number integral.
Taking the transform variables (wave numbers) in x and z as p and q, respectively, the
solution for the field in double wave number space is

φpq = −2iQu(t) sin pa e−χ(p2+q2)C2t/2 sin Rt
R

, (A23)

where

R =

√
4p2C2 − χ2C4(p2 + q2)

2
/

2 . (A24)

On the left of Equation (A23), we used the convention that a subscript denotes a spatial
Fourier transform, which is of course a function of the transform variable in question (p
or q in the present case). The field itself is obtained by applying the two inverse spatial
Fourier transforms to Equation (A23), yielding

φ(x, z, t) = − iQ
2π2 u(t)

∫ ∞

−∞

∫ ∞

−∞
sin pae−χ(p2+q2)C2t/2 sin Rt

R
eipxeipzdpdq. (A25)

Equation (A25) was evaluated numerically, noting that two regions exist, given by(
p2 + q2

)
<

2p
χC

and (p2 + q2) >
2p
χC

(A26)
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