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Abstract: Nonlinear dynamics of patterns near the threshold of long-wave monotonic Marangoni
instability of conductive state in a heated thin layer of liquid covered by insoluble surfactant is
considered. Pattern selection between roll and square planforms is analyzed. The dependence
of pattern stability on the heat transfer from the free surface of the liquid characterized by Biot
number and the gravity described by Galileo number at different surfactant concentrations is studied.
Using weakly nonlinear analysis, we derive a set of amplitude equations governing the large-scale
roll distortions in the presence of the surface deformation and the surfactant redistribution. These
equations are used for the linear analysis of modulational instability of stationary rolls.

Keywords: Marangoni convection; surfactant; instability

1. Introduction

Marangoni convection is a type of non-equilibrium process, which creates a variety
of spatiotemporal periodic patterns, see [1,2], and is crucial in thin liquid layers, where
the interfacial effects prevail over the bulk effects. The formation of large-scale convective
patterns is a result of long-wavelength instability.

There are two kinds of longwave Marangoni instability, (i) at small Biot number with
temperature as the active, slowly evolving, variable [3], and (ii) at moderate Galileo number
with surface deformation as the active variable [4]. The recent research of Shklyaev et al. [5],
shows that in the interval of wave numbers k = O(Bi1/2), Bi � 1 (Bi is the Biot number
defined later), both those variables are active. In that interval, large-scale monotonic and
oscillatory instability modes exist, which produce stationary patterns and wave patterns,
correspondingly [6].

It is known that when the free surface of the liquid is covered by surface-active agent
(surfactant), the formation of the convective patterns significantly changes. The basic
experiments describing this effect can be found in [7,8], theoretically the behavior of large-
scale patterns under the influence of adsorbed insoluble surfactant is considered in [9].
When the surfactant is added, the linear stability boundaries, the types of bifurcation and
selected patterns depend on the elasticity number and on the Biot number, see [10].

In the present work we investigate the large-scale Marangoni convection in a liquid
layer with insoluble surfactant spread over a deformable free surface, in the interval of
wavenumbers O(Bi1/2). We carry out a weakly nonlinear analysis of patterns on a square
lattice in the Fourier space, which include rolls and squares. We consider the modulation
of rolls by long-wave disturbances near the instability threshold and derive the system of
the amplitude equations. The periodic patterns can be unstable with respect to a spatial
modulation that breaks the spatial periodicity. The modulation of convective patterns
in the neighborhood of the instability threshold is explained by Newell, Whitehead, and
Segel [11,12] as interaction of disturbances with different wavenumbers close to the critical
one. In the case of stationary rolls, which are chosen for the investigation in our paper, the
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asymptotic multiscale analysis leads to the Ginzburg-Landau equation with real coefficients.
However, in the presence of slowly decaying longwave modes related to the conservation
laws, that equation turns out to be insufficient. In [13] it was shown that interaction with
such a mode can significantly influence the stability of patterns. In the problem under
consideration, there are two conservation laws, the conservation of the liquid volume and
the conservation of the total amount of the surfactant. The corresponding modification
of the stability properties of rolls is considered in the present paper. The analysis of that
phenomenon has not been previously carried out for Marangoni patterns in the presence
of a surfactant.

2. Statement of the Problem

We consider an infinite horizontal layer with a mean thickness d0, thermal diffusivity
χ, kinematic viscosity ν, density ρ, dynamic viscosity η = ρν, and thermal conductivity
ΛT . The layer is confined between a rigid substrate and deformable free upper boundary.
The vertical axis z is directed upward. The layer is heated from below with transverse
temperature gradient −a(a > 0). At the upper surface the insoluble surfactant is absorbed.
It is convected by interfacial velocity field and diffuses over the interface but not into the
bulk. Γ0 is the reference value of the surfactant concentration. The surface tension is a linear
function of temperature and surfactant concentration, i.e., σ = σ0− σ1(T− T0)− σ2(Γ− Γ0)
(σ0 is the reference value of surface tension, σ1 = −∂Tσ, σ2 = −∂Γσ).

In [10] we derived the system of long-wave nondimensional amplitude equations for
the local film thickness H(X, Y, τ), the surfactant concentration Γ(X, Y, τ) and perturbation
of the temperature disturbance F(X, Y, τ):

∂τ H = ∇ ·
(

H3

3
∇R +

MH2

2
∇θ +

NH2

2
∇Γ
)
≡ ∇ ·Q1, (1)

H∂τ F = ∇ ·
(

H4

8
∇R +

MH3

6
∇θ +

NH3

6
∇Γ + H∇F

)
+ Q1 · ∇θ − 1

2
(∇H)2 − βθ, (2)

∂τΓ = ∇ ·
[

ΓH
(

H
2
∇R + M∇θ + N∇Γ

)
+ L∇Γ

]
≡ ∇ ·Q2. (3)

Here R = GH − S∇2H is the pressure disturbance and θ = F− H is the temperature
distribution at the free surface, ∇ = (∂X, ∂Y),X, Y and τ are horizontal coordinates and
time is rescaled as

X = εx, Y = εy, τ = ε2t, 0 < ε� 1.

This rescaling of coordinates leads to the rescaling of the wavenumber, k = εK. The
parameter ε� 1 is a ratio between the mean thickness d0 and typical horizontal scale of
disturbances.

The problem includes the following dimensionless parameters: M =
σ1ad2

0
ηχ is the

Marangoni number, N = σ2d0Γ0
ηχ is the elasticity number, L = D0

χ is the Lewis number (D0

is the surfactant diffusivity), G =
gd2

0
νχ is the Galileo number (g is the acceleration due to

gravity), Σ = σ0d0
ηχ is the inverse capillary number, Bi = qd0

ΛT
is the Biot number (q is the heat

transfer coefficient). Here we assume Σ = ε−2S, S = O(1) and Bi = ε2β.
The linear stability analysis of the motionless state was performed in [10]. There

are two instability modes: the monotonic one and the oscillatory one. The instability
boundaries are determined by Equation (5) in [10] for the growth rate Λ(M) in the form:
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Λ3 + c1Λ2 + c2Λ + c3 = 0,

c1 =
(

1
3

)
K2(3 + G + 3L−M + 3N + K2S

)
+ β,

c2 =
(

1
144

)(
K4 {−24[2L(M− 3) + 3(M− 2N)]+

+
(
G + K2S

)
(48 + 48L−M + 12N)}+ 48K2[G + 3(L + N) + K2S

]
β),

c3 =
(

1
144

)(
K6{−72LM +

(
G + K2S)[12N − L(M− 48)]

)}
+

+12K4(4L + N)
(
G + K2S

)
β).

(4)

For the monotonic mode the neutral stability curve is described by the formula

Mm(K) =

(
48 + 12N

L

)(
G + K2S

)(
β + K2)

K2(72 + G + K2S)
. (5)

The critical wave number that corresponds to the minimum of the marginal stability
curve of the monotonic mode does not depend on the surfactant parameters and equals
the value determined in [5]:(

K(m)
c

)2
=

GSβ +
√

72GSβ(G + 72− Sβ)

S(72− Sβ)
. (6)

The threshold value of Marangoni number for the oscillatory mode was also found
in our previous work [10]. Shklyaev et al. in [5] show that without surfactant (N = 0) the
oscillatory instability mode appears for sufficiently large values of β in a limited range of
wave numbers. The oscillatory mode is critical under conditions βS > 17.4 and G < 17.2.

In order to analyze the competition between instability modes, we use the following
property of the oscillatory instability: its appearance changes the meaning of the neutral
curve (5). If there is no oscillatory instability, the Equation (5) indeed determines the mono-
tonic instability boundary: Λ(M, K) < 0 at M < Mm(K) and Λ(M, K) > 0 at M > Mm(K),
therefore

(
∂Λ(M,K)

∂M

)∣∣∣
M=Mm(K)

> 0. However, if there exists an oscillatory instability with

the instability boundary M = Mosc(K) < Mm(K), Equation (5) determines the stabilization
boundary for one of the two unstable monotonic modes, thus

(
∂Λ(M,K)

∂M

)∣∣∣
M=Mm(K)

< 0

(see Figure 5.1 (b) in [14]).
Differentiating (4) with respect to M, we find that at the critical value of monotonic

Marangoni number

∂Λ
∂M

∣∣∣∣
M=Mm

=
K4L2(72 + G + K2S)

D1
(7)

where

D1 = 12
{

K6(4L2 − N + LN
)
S2 − (36[5G− 24] L2 + G[G + 72]N + 36[G− 24]L N) β

+K4S
(
4[2G + 27]L2 + 2[G + 18]LN − N[72 + 2G + Sβ]

)
+K2(4L2[216 + 27G + G2 − 45Sβ

]
+ LN

[
864 + 36G + G2 − 36Sβ

]
−N

[
72G + G2 + 72Sβ + 2GSβ

])}
.

(8)

One can show that even if the oscillatory instability is absent at N = 0, it can appear
for N > Nm, where the value of the elasticity number Nm = Nm(G, β, K) is determined by
the relation D1 = 0.

Without loss of generality we can fix the value of the inverse capillary number equal
to unity, i.e., S = 1, which corresponds to the choice ε ≡ 1√

Σ
. While the elasticity number,

N, can vary in a relatively large interval, the value of the surfactant Lewis number, which is
the ratio of mass diffusivity to thermal diffusivity, has significant limitation. As an example
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of insoluble surfactant we consider C12EO8 produced by Nikko Chemical Co. (Tokyo,
Japan), for its properties see [15,16]. For our calculation in this paper the Lewis number
is taken equal to L = 0.003. The value of the wave number is taken equal to K(m)

c . Then
we obtain Nm as a function on parameters G and β, see Figure 1. For N < Nm the critical
Marangoni number Mm is a threshold of the monotonic instability of the equilibrium state.
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3. Weakly Nonlinear Analysis of Monotonic Mode

We study the nonlinear dynamics of perturbations in the neighborhood of Mm,
M = Mm + δ2M2 (δ is a small parameter of supercriticality). Here we consider spatially
periodic patterns corresponding to a square lattice in the Fourier space.

We expand functions H, F, Γ in powers of the small parameter of supercriticality δ,

H = 1 + δh1 + δ2h2 + δ3h3 + . . . , (9)

F = 1 + δ f1 + δ2 f2 + δ3 f3 + . . . , (10)

Γ = 1 + δγ1 + δ2γ2 + δ3γ3 + . . . , (11)

and rescale the time variable
τ2 = δ2τ. (12)

Substituting these expansions into (1)–(3) and collecting terms with the same order of
parameter δ, we obtain the following system of equations at the leading order:(

1
3

)
∇2R1 +

(
Mm

2

)
∇2( f1 − h1) +

(
N
2

)
∇2γ1 = 0, (13)

(
1
8

)
∇2R1 +

(
Mm

6

)
∇2( f1 − h1) +

(
N
6

)
∇2γ1 +∇2 f1 − β( f1 − h1) = 0, (14)

(
1
2

)
∇2R1 + Mm∇2( f1 − h1) + (N + L)∇2γ1 = 0. (15)

Here the Marangoni number Mm is taken from (5), R1 = Gh1 − S∇2h1. The solution
of this system is presented in the form of squares and rolls:

h1 = A1(τ2)eiKX + A2(τ2)eiKY + c.c., (16)
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f1 = α1

(
A1(τ2)eiKX + A2(τ2)eiKY

)
+ c.c., (17)

γ1 = α2

(
A1(τ2)eiKX + A2(τ2)eiKY

)
+ c.c., (18)

where α1 = − (GK2+K4S−72β)
72(K2+β)

and α2 =
(G+K2S)

6L .
The solution at the second order of the expansion is presented in the form:

h2 = C1(τ2)e2iKX + C2(τ2)e2iKY + C3(τ2)eiK(X−Y) + C4(τ)eiK(X+Y) + c.c., (19)

f2 = F0 + F1(τ2)e2iKX + F2(τ2)e2iKY + F3(τ2)eiK(X−Y) + F4(τ)eiK(X+Y) + c.c., (20)

γ2 = D1(τ2)e2iKX + D2(τ2)e2iKY + D3(τ2)eiK(X−Y) + D4(τ)eiK(X+Y) + c.c.. (21)

Coefficients in (19)–(21) can be determined from the system of equations at the second
order. The elimination of the secular terms in the system of the third order using the
solvability condition yields a set of the Landau equations that govern the evolution of the
complex amplitudes A1 and A2

∂A1

∂τ2
= κ0 A1 + κ1|A1|2 A1 + κ2|A2|2 A1, (22)

∂A2

∂τ2
= κ0 A2 + κ1|A2|2 A2 + κ2|A1|2 A2 (23)

Here

κ0 =
K4L2(72 + G + K2S2)2M2

12(K2D2 − βD3)
, (24)

where

D2 = −N
(
G + K2S

)(
72 + G + K2S

)
+ LN

[
864 + 36G + G2 + 2(18 + G)K2S + K4S2]

+4L2[216 + 27G + G2 + (27 + 2G)K2S + K4S2],
D3 = 36LN

(
−24 + G + K2S

)
+ N

(
G + K2S

)(
72 + G + K2S

)
+ 36L2

(
−24 + 5G + 5K2S

)
.

In the case without surfactant (N = 0) the expression for κ0 is equal to that determined
by Equation (43) in Ref. [17]. The self-interaction coefficient, κ1, as well as the cross-
interaction one, κ2, are real.

We have two kinds of steady state solutions in addition to the trivial solution
(A1 = A2 = 0) corresponding to the motionless state. They describe the rolls (if one
of A1 or A2 is zero) and squares (both A1 and A2 are non-zero). As usual, the pattern
selection is determined by the signs of κ1, κ1− κ2, κ1 + κ2. The line κ1 = 0 divides the region
of parameters into regions of subcritical (κ1 > 0) and supercritical (κ1 < 0) bifurcations of
the roll patterns. The structures can be stable in the supercritical region if κ1 and κ1 + κ2
are negative. Rolls are selected if κ1 − κ2 > 0, in the opposite case the squares are stable.

We consider the influence of the concentration of the surfactant on the pattern selection
at very low values of the elasticity number. As shown in Figure 2, even low concentration
of the surfactant remarkably changes the pattern selection of the structures on the square
lattice in the Fourier space. There are two regions of stationary pattern stability, one shown
in Figure 2a and another one, for small values of β, in Figure 2b. Here the set #1 (red
colored) belongs to the case without surfactant. The set #2 (blue colored) represents the
case with N = 10−6 and the set #3 (black colored) corresponds to the case N = 10−5. The
marks on the Figure show the supercritical stability regions, and they include the number
corresponding to the set number and the letter, “R” for stable rolls and “S” for stable squares.
Here the solid lines are boundaries between supercritical and subcritical bifurcations for
rolls (κ1 = 0). The dashed lines are similar boundaries for squares (κ1 + κ2 = 0), and the
dot-dashed lines, which correspond to the relation κ1 = κ2, separate the regions of the
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stable rolls and stable squares. Figure 2b shows domains at small β. Here the rolls are
mainly selected, for greater values of β the squares are selected. Even a low concentration
of the surfactant diminishes the stability domains. This effect is enhanced with the growth
of the elasticity number.

Fluids 2021, 6, x FOR PEER REVIEW 7 of 15 
 

 

Figure 2. Pattern selection domains for stability on the square lattice. The solid lines are for 1 0κ = , the dashed lines are 

for 1 2 0κ κ+ =  and dot-dashed lines are for 2 1 0κ κ− = . Here the red color set (#1) is for the case without surfactant 

( 0N = ), the blue colored set (#2) is for 610N −=  and the black colored set (#3) is for 510N −= . The stability domains 
are marked, “R” is for rolls, “S” is for squares. Other parameters: 1S =  and 0.003L = . 

Therefore, it was found that the most typical form of patterns is the roll pattern. Note 
that in a rectangular container with one size much longer than another one or in a narrow 
annular container of large radius, that pattern is the only possible kind of patterns. 

In the next section, we investigate the instability of roll patterns with respect to one-
dimensional disturbances breaking the spatial periodicity of patterns (Eckhaus instabil-
ity). 

4. Modulation of Roll Patterns 
4.1. Amplitude Equations 

We consider the roll patterns near the instability threshold, 
2

2 ,mM M Mδ= +  ( ).m cM M K=  (25)

In that region, the motionless state is unstable with respect to disturbances in the 
interval of wavenumbers of the width ( )O δ around cK K= , and their growth rate is 

( )2O δ . 

Following the approach of Newell, Whitehead, and Segel [11,12], we introduce two 
spatial scales: (i) the scale 0X X= corresponding to the basic wavelength of patterns, and 

(ii) the scale 1X Xδ= corresponding to the spatial modulation of patterns due to the su-
perposition of Fourier components within and around the instability region. Also, we re-
scale the time variable: 2

2 .τ δ τ=  
The differential operators are transformed in the following way 

0 1
,X X Xδ∂ = ∂ + ∂  

0 0 0 1 1 1

22 ,XX X X X X X Xδ δ∂ = ∂ + ∂ + ∂  
2

2 .τ τδ∂ = ∂  

Therefore, the solution at the leading order is 

( ) ( )0 0
1 1 2 1 2, , ,c ciK X iK Xh A X e A X eτ τ −∗= +  1 1 1,f hα=  1 2 1hγ α=  (26)

( 1α and 2α  are the same as in the previous section). At the second order the solution is 

( ) ( ) ( )0 02 2
2 0 1 2 1 1 2 1 1 2, , , ,c ciK X iK Xh h X B X e B X eτ τ τ −∗= + +  (27)

Figure 2. Pattern selection domains for stability on the square lattice. The solid lines are for κ1 = 0, the dashed lines are for
κ1 + κ2 = 0 and dot-dashed lines are for κ2 − κ1 = 0. Here the red color set (#1) is for the case without surfactant (N = 0 ),
the blue colored set (#2) is for N = 10−6 and the black colored set (#3) is for N = 10−5. The stability domains are marked,
“R” is for rolls, “S” is for squares. Other parameters: S = 1 and L = 0.003.

Therefore, it was found that the most typical form of patterns is the roll pattern. Note
that in a rectangular container with one size much longer than another one or in a narrow
annular container of large radius, that pattern is the only possible kind of patterns.

In the next section, we investigate the instability of roll patterns with respect to one-
dimensional disturbances breaking the spatial periodicity of patterns (Eckhaus instability).

4. Modulation of Roll Patterns
4.1. Amplitude Equations

We consider the roll patterns near the instability threshold,

M = Mm + δ2M2,Mm = M(Kc). (25)

In that region, the motionless state is unstable with respect to disturbances in the
interval of wavenumbers of the width O(δ) around K = Kc, and their growth rate is O

(
δ2).

Following the approach of Newell, Whitehead, and Segel [11,12], we introduce two
spatial scales: (i) the scale X0 = X corresponding to the basic wavelength of patterns,
and (ii) the scale X1 = δX corresponding to the spatial modulation of patterns due to the
superposition of Fourier components within and around the instability region. Also, we
rescale the time variable: τ2 = δ2τ.

The differential operators are transformed in the following way

∂X = ∂X0 + δ∂X1 ,∂XX = ∂X0X0 + 2δ∂X0X1 + δ2∂X1X1 ,∂τ = δ2∂τ2 .

Therefore, the solution at the leading order is

h1 = A(X1, τ2)eiKcX0 + A∗(X1, τ2)e−iKcX0 , f1 = α1h1,γ1 = α2h1 (26)

(α1 and α2 are the same as in the previous section). At the second order the solution is

h2 = h0(X1, τ2) + B1(X1, τ2)e2iKcX0 + B∗1 (X1, τ2)e−2iKcX0 , (27)

f2 = f0(X1, τ2) + B2(X1, τ2)e2iKcX0 + B∗2 (X1, τ2)e−2iKcX0 , (28)
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γ2 = γ0(X1, τ2) + B3(X1, τ2)e2iKcX0 + B∗3 (X1, τ2)e−2iKcX0 . (29)

The equation for the heat transfer, (2), at the second order gives us the relation between h0
and f0:

f0 = h0 −
Kc

2

β
|A|2. (30)

At the third order the solvability condition yields the evolution equation for the
amplitude A similar to that obtained by Golovin et al. [13] in the problem of the interaction
of the short-wave and long-wave instability modes:

∂τ2 A = κ0 A + κ1|A|2 A + µ1∂X1X1 A + µ2h0 A + µ3γ0 A. (31)

The coefficients µi (i = 1, 2, 3) are cumbersome and are not presented here. The equation
for the surface deformation h0 which can be obtained from the kinematic Equation (1), as
well as the equation for perturbations of surfactant concentration γ0, are obtained at the
fourth order as (here we eliminated f0 using (31)):

∂τ2 h0 = a1∂X1X1 |A|
2 + a2∂X1X1 h0 + a3∂X1X1 γ0, (32)

∂τ2 γ0 = b1∂X1X1 |A|
2 + b2∂X1X1 h0 + b3∂X1X1 γ0, (33)

where
a1 = 1

3
(
G + 7K2S

)
− MmKc

2

2β ,a2 = G
3 ,a3 = N

2 ,

b1 = 1
36L
[
G(12L− G) + 4Kc

2(G + 21L)S + 5Kc
4S2]− MmKc

2

β ,

b2 = G
2 ,b3 = L + N.

(34)

The obtained system of Equations (31)–(33) describes the evolution of modulated rolls
near the instability threshold. Recall that A is the amplitude of the rolls (see (26)), while h0
and γ0 are long-wave deformation of the free surface and concentration of the surfactant,
respectively (see (27),(29)). Therefore, additional terms µ2h0 A and µ3γ0 A reflect the influ-
ence of large-scale surface deformation and inhomogeneity of surfactant concentration on
the roll-like Marangoni convection. In Equations (32) and (33) the term ∂X1X1 |A|

2 is due
to a large-scale flow and a surfactant flux generated by the spatial inhomogeneity of the
convection roll amplitude.

System (32)–(33) is solved under global conditions on h0 and γ0:

〈h0〉 = 0,〈γ0〉 = 0. (35)

Here 〈. . .〉 is averaging over X1; the appearance of convection cannot change the total
volume of the liquid and the amount of the surfactant.

4.2. Equation for the Growth Rate

Now we consider the linear stability analysis of the spatially periodic roll patterns, in
the framework of the system of Equations (31)–(34).

Let us consider the family of stationary roll patterns

A0 =

√
q2µ1 − κ0

κ1
eiqX1 ,h0 = γ0 = 0(κ1 < 0) (36)

The parameter q is the rescaled deviation of the wave number from the critical value Kc;
q2 < q2

0 = κ0
µ1

. Solutions (36), (26) describe the stationary spatially periodic supercritical
convection with constant amplitude, without interfacial deformation and disturbance of
the surfactant concentration independent of X0.

To describe the roll stability, we add small perturbations to the roll amplitude and
phase in the form A = A0(1 + r)ei(qX1+ϕ), where r and ϕ are real functions of τ2 and X1.
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Linearizing Equations (32)–(34), we obtain the following evolution equations for r, ϕ,
h0, and γ0 :

∂τ2 r = 2
(

q2µ1 − κ0

)
r + µ1∂X1X1 r− 2µ1q∂X1 ϕ + µ2h0 + µ3γ0, (37)

∂τ2 ϕ = 2µ1q∂X1 r + µ2∂X1X1 ϕ, (38)

∂τ2 h0 = 2a1

(
κ0 − q2µ1

κ1

)
∂X1X1 r + a2∂X1X1 h0 + a3∂X1X1 γ0, (39)

∂τ2 γ0 = 2b1

(
κ0 − q2µ1

κ1

)
∂X1X1 r + b2∂X1X1 h0 + b3∂X1X1 γ0. (40)

Though the disturbances are real, one can perform the stability analysis using normal
modes in the form

(r, ϕ, h0, γ0) =
(

r̃, ϕ̃, h̃0, γ̃0

)
eλτ2+ikX1 ,

where the eigenvector
(

r̃, ϕ̃, h̃0, γ̃0

)
and the eigenvalue λ(k) can be complex.

Substituting these modes into (37)–(40) we obtain the following equation for the
growth rate of the side-band instability:

λ4 + c0,1λ3 + c0,2λ2 + c0,3λ + c0,4 = 0, (41)

where

c0,1 = c1,0 + c1,2k2,c0,2 = c2,2k2 + c2,4k4,c0,3 = c3,4k4 + c3,6k6,c0,4 = c4,6k6 + c4,8k8

and

c1,0 = 2
(
κ0 − q2µ1

)
,c1,2 = a2 + b3 + 2µ1,

c2,2 = 2(a2 + b3)
(
κ0 − q2µ1

)
+ 2µ1

(
κ0 − 3q2µ1

)
− 2

κ1
(a1µ2 + b1µ3)

(
κ0 − q2µ1

)
,

c2,4 = µ2
1 + 2(a2 + b3)µ1 + a2b3 − a3b2,

c3,4 = 2
κ1

{(
κ0 − q2µ1

)
[κ1(a2b3 − a3b2)− µ1(a1µ2 + b1µ3) + µ2(a3b1 − a1b3)+

+µ3 (a1b2 − a2b1)] +
(
κ0 − 3q2µ1

)
(a2 + b3)κ1 µ1},

c3,6 = (a2 + b3)µ
2
1 + 2µ1(a2b3 − a3b2),

c4,6 = 2µ1(a2b3 − a3b2)
(
κ0 − 3q2µ1

)
+ 2µ1

κ1

(
κ0 − q2µ1

)
[(a3b1 − a1b3)µ2 + (a1b2 − a2b1)µ3],

c4,8 = (a2b3 − a3b2)µ
2
1.

It is known, see [11], that the limit k2 � 1 is crucial for the long-wave modulations of
the patterns. Assuming λ = λ0 + Λk2 + o(k2), we obtain at the leading order,

λ4
0 + c1,0λ3

0 = 0.

We find that one root,

λ0 = −c1,0 = 2
(

q2µ1 − κ0

)
,

corresponding to amplitude modulation of the roll pattern, is negative, while other three
roots tend to zero when k→ 0 . For those roots, we obtain at the leading order

c1,0Λ3 + c2,2Λ2 + c3,4Λ + c4,6 = 0. (42)

This equation describes the interaction of three “soft” (Goldstone) modes corresponding
to definite symmetries of the problem, phase disturbances (translational invariance of
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the envelope function), surface deformation (conservation of the volume) and surfactant
concentration disturbances (conservation of the amount of surfactant).

4.3. Stability in the Absence of Surfactant

First, let us consider the roll modulation in the absence of surfactant (N = 0). In that
case, coefficients µ3 and a3 in (32), (33) are equal to zero, hence those equations do not
contain γ0. Equations (37)–(39) form a closed system, while Equation (40), which has no
physical meaning, has the obvious solution

γ0 = γ̃0eλτ2+ikX1 , λ = −(L + N)k2,

hence
Λ = −(L + N).

Therefore, the dispersion relation (42) can be presented as(
c̃1,0Λ2 + c̃2,2Λ + c̃3,4

)
(Λ + L + N) = 0.

The analysis of the dispersion relation is reduced to the consideration of a quadratic
equation,

c̃1,0Λ2 + c̃2,2Λ + c̃3,4 = 0, (43)

where c̃1,0 = 2(κ0 − q2µ1),c̃2,2 = 2
(

a2 − a1µ2
κ1

)(
κ0 − q2µ1

)
+ 2µ1

(
κ0 − 3q2µ1

)
, and

c̃3,4 = 2µ1
κ1

[
a2κ1

(
κ0 − 3q2µ1

)
− a1µ2

(
κ0 − q2µ1

)]
.

Equation (43) for the growth rate has two roots. Let us plot the growth rates Λ1,2 as
functions of q2 for several values of β at fixed parameter G = 1 (parameters S = 1, M2 = 1).

Figure 3a shows the growth rate at β = 5. For q2 < q2
m ≈ 0.193, one root is positive

and another one negative; for q2 > q2
m, both roots are positive. We find that in this case

the rolls with arbitrary values of q are monotonically unstable. Figure 3b presents case
of β = 10, where one growth rate is negative for all q, but the second one is positive in
whole interval q2 < q2

0 ≈0.112, where the roll solution (37) exists. Again, all the rolls are
monotonically unstable. At β = 10(Figure 3c), in the range q2 < q2

m ≈ 0.0245 the rolls
are stable (both Λ1,2 are negative); for q2 between q2

m and q2
0 = 0.103, one of the growth

rates is positive, therefore we have unstable rolls. Starting from β = 16.7, the instability is
oscillatory on the boundary of the stability interval of rolls. At Figure 3d the dashed line
describes the imaginary part of the growth rate. The rolls are stable when q2 < q2

osc and
unstable (oscillatory or monotonically) when q2

osc < q2 < q2
0.

The stability map of the stationary rolls with respect to long-wave modulation is
shown in Figure 4. The black solid line here indicates the boundary between supercritical
and subcritical regions for the rolls. We consider only the region of supercritical rolls (case
κ1 < 0). The previous investigation of Shklyaev et al. [5] shows the existence of long-wave
oscillatory instability of the conductive state above the red solid line on Figure 4. Therefore,
the analysis of the modulational instability of rolls has to be done only between the black
solid line and the red solid line, where there are three regions:

(i) region 1, where all the rolls are unstable with respect to modulations;
(ii) region 2, where the rolls are stable within the interval q2 < q2

m and monotonically
unstable for q2

m < q2 < q2
0;

(iii) region 3, where the rolls are stable within the interval q2 < q2
osc, oscillatory unstable for

q2 slightly above q2
osc, and oscillatory or monotonically unstable for any q2

osc < q2 < q2
0.
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All regions are shown in Figure 4a. The values of q2
m and q2

osc can be found analytically.
The boundary of the monotonic Eckhaus instability (Λ0 = 0) is given by the relation

c̃3,4
(
q2

m
)
= 0, hence

q2
m =

κ0

µ1

(
a2κ1 − a1µ2

3a2κ1 − a1µ2

)
.

The quantity q2
osc is determined by the relation c̃2,2

(
q2

osc
)
= 0, hence

q2
osc =

κ0(a2κ1 + κ1µ1 − a1µ2)

µ1(a2κ1 + 3κ1µ1 − a1µ2)
.

Figure 4b shows an additional region of stable rolls in the neighborhood of the origin (small
values of β and G).

4.4. Influence of Insoluble Surfactant

As shown in our previous research [10], even rather small quantity of insoluble
surfactant on the free surface of liquid can significantly change the instability thresholds
and creates new oscillatory regimes. That instability is determined by both the surface
property of the surfactant (σ2) and its concentration (Γ0) through the elasticity number N
that includes both factors.

In the present paper, we consider the influence of a very small amount of insoluble
surfactant on the modulation stability of stationary rolls. For this goal we use dispersion
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relation (42). From this relation the monotonic Eckhaus instability is determined by the
relation c4,6 = 0 or

q2
m = q2

0
1 +C
3 +C , (44)

where q0 is the width of the existence interval of the periodic solutions (0 ≤ q2 ≤ q2
0), and

C =
(a3b1 − a1b3)µ2 − (a2b1 − a1b2)µ3

(a2b3 − a3b2)κ1
. (45)
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Figure 4. Stability maps of the stationary rolls without insoluble surfactant. Panel (a) Solid black
line is a boundary between supercritical and subcritical roll regions (“subcr. R”). Region “1” is a
region of unstable rolls; region “2”–rolls are stable within q2 < q2

m and monotonically unstable for
q2

m < q2 < q2
0; region “3”-rolls are stable within the interval q2 < q2

osc, oscillatory unstable for q2

slightly above q2
osc, and oscillatory or monotonically unstable for any q2

osc < q2 < q2
0. Panel (b) the

zoomed-in region of panel (a) at small values of β and G (“stab. R” is a region of stable rolls).

If the interaction of the roll convection with the deformations and disturbances of the
surfactant concentration is switched off, i.e., µ2 = µ3 = 0 or a1 = a2 = 0, then C = 0, and
the classical result

q2
m =

1
3

q2
0

is recovered. The expression for the oscillatory Eckhaus instability boundary q2
osc is cum-

bersome, and it is not presented here.
For plotting stability maps we take two values of the elasticity parameter: N = 10−8

and N = 10−7. In both cases the Lewis number was fixed at L = 0.003. The stability maps
are shown in Figure 5. Here Figure 5a corresponds to the case N = 10−8 and Figure 5b to
N = 10−7.
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Panel (a) N = 10−8, panel (b) N = 10−7. Other parameters: L = 0.003, S = 1.

Comparing the stability maps with surfactant and without surfactant we conclude
that the region of stable rolls shrinks with addition of the insoluble surfactant while the
subcriticality region expands. The behavior of the growth rates in each of these regions
(“1”, “2”, and “3”) are similar to those describing in the case without surfactant. The
shrinking of the region of stable supercritical rolls means that with addition of an insoluble
surfactant the appearance of a subcritical instability becomes more typical. Therefore, the
linear stability analysis become inefficient, and the nonlinear analysis is unavoidable.

5. Conclusions

In the present paper we have studied a stationary Marangoni convection without
and with insoluble surfactant spread over a deformable free surface. The analysis of
nonlinear dynamics of perturbations near the instability threshold shows the existence of
two kinds of steady supercritical periodic structures–rolls and squares. We investigated the
dependence of their stability regions on the heat transfer at the liquid surface, characterized
by Biot number, deformability of the free surface of the liquid characterized by Galileo
number, and the action of the surfactant on the surface tension characterized by the elasticity
number. The presented theory can be applied to different active agents on different surfaces,
independently of the physico-chemical mechanism of the surface-tension decrease, on the
condition of low solubility of the surfactant (the influence of the surfactant on the properties
of the bulk liquid is assumed to be negligible).

It is shown how the regions of pattern selection change under the influence of the
surfactant.

In addition, we carried out the linear analysis of modulational instability of stationary
rolls near the bifurcation point. Using the weakly nonlinear analysis, the set of amplitude
equations that describe large-scale one-dimensional (longitudinal) distortions of periodic
roll patterns is derived. The stability maps of the stationary rolls with and without sur-
factant have been presented. The results indicate the existence of three regions of the
supercritical rolls: (i) region where the rolls are unstable with respect to modulations;
(ii) region where the rolls are stable within the interval q2 < q2

m and monotonically unstable
for q2

m < q2 < q2
0; (iii) region where the rolls are stable within the interval q2 < q2

osc,
oscillatory unstable for q2 slightly above q2

osc, and oscillatory or monotonically unstable for
any q2

osc < q2 < q2
0.

To check the results of described theory we propose performing an experiment on
Marangoni convection in a rectangular container with one size much longer than another
one or in a narrow annular container of large radius.
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