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Abstract: We report a cyclic growth/retraction phenomena observed for saline droplets placed on a
cured poly (dimethylsiloxane) (PDMS) membrane with a thickness of 7.8 ± 0.1 µm floating on a pure
water surface. Osmotic mass transport across the micro-scaled floating PDMS membrane provided
the growth of the sessile saline droplets followed by evaporation of the droplets. NaCl crystals were
observed in the vicinity of the triple line at the evaporation stage. The observed growth/retraction
cycle was reversible. A model of the osmotic mass transfer across the cured PDMS membrane is
suggested and verified. The first stage of the osmotic growth of saline droplets is well-approximated
by the universal linear relationship, whose slope is independent of the initial radius of the droplet.
The suggested physical model qualitatively explains the time evolution of the droplet size. The
reported process demonstrates a potential for use in industrial desalination.

Keywords: osmotic membrane; polydimethylsiloxane; saline droplet; mass transport; evaporation;
reversible cycle

1. Introduction

Polydimethylsiloxane (PDMS) membranes are broadly used for the manufacturing
of microfluidic devices [1], separation of organics from water [2,3], gas separation [4–9],
and removing aldehydes from the reactants [10]. Osmotic mass transport across PDMS-
based liquid layers has already been implemented for the controlled crystallization of
proteins [11,12]. In our recent research, we demonstrated osmotic mass transport between
the saline water encapsulated within a composite liquid marble coated with liquid PDMS
and the supporting layer of water [13]. Our present research is devoted to osmotic mass
transport across cross-linked (cured), floating PDMS membranes. PDMS membranes
may be manufactured by dip- or spin-coating [14] or by 3D printing [15]. Micro-scale
thickness cured PDMS osmotic membranes may be manufactured by drop-casting on the
water/vapor interface [16]. We demonstrate that cured floating osmotic PDMS membranes
enable completely reversible growth/retraction oscillations of sessile saline droplets de-
posited on the membranes. The observed oscillations of the droplet size are explained
by the osmotic mass transport and evaporation cycles as described below in detail. The
investigated process demonstrates the potential of cross-linked PDMS membrane use
for desalination.

2. Materials and Methods
2.1. Materials

The following materials were used in the recent experiment: polystyrene Petri dish
(55 mm× 16 mm); poly (dimethylsiloxane) (PDMS) Sylgard 184, supplied by Dow Corning,
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USA (with the following characteristics: molecular weight 207.4 g/mol, viscosity 5.5 Pa × s,
surface tension 20.4 mN/m); deionized water (DI) from Millipore SAS (France) (with the
following characteristics: specific resistivity ρ̂ = 18.2 MΩ ×cm at 25 ◦C, surface tension
γ = 72.9 mN/m; viscosity η = 8.9× 10−4 Pa× s); sodium chloride (NaCl) was supplied by
Melach Haaretz Ltd., Kfar Monash, Israel. Droplets of 5 mL of the saturated aqueous NaCl
solution (25.9% w/w) were used in the experiment. The thickness of the PDMS membrane
was established by weighting as 7.8 ± 0.1 µm.

2.2. Methods

The floating PDMS membrane was prepared as depicted in Figure 1 by pouring a
mixture containing liquid PDMS and a curing agent on the distilled water/vapor interface
(see also [16]). Afterwards, a 5 µL saline droplet was placed on the PDMS membrane,
floating within the closed vessel (chamber), as shown in Figure 2.

Figure 1. Schematic representation of the PDMS membrane preparation method.

Figure 2. Growth and decay of a 5 µL saline droplet on a floating PDMS membrane due to osmosis
and evaporation; (a) schematic and (b) images.
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A mixture of PDMS and the crosslinker (Sylgard 184 silicone elastomer curing agent)
was prepared with a weight ratio of 10:1. After that, a polystyrene Petri dish was taken and
half-filled with DI water. Then, 10 µL of the PDMS mixture was gently deposited on top of
the surface and kept at room temperature for curing. After complete curing of the PDMS
mixture at room temperature (the curing time was 48 h), a 5 µL saline droplet (saturated
solution) was deposited, and simultaneously, a video was captured to observe the changes
in the droplet diameter over time. The preparation method is schematically shown in
Figure 1. The apparent contact angle of the saline droplet on the PDMS membrane is
θ = 87◦ ± 2◦. Uniformity of the PDMS membrane was controlled with an optical digital
microscope BW1008-500X (New Taipei City, Taiwan)

A BW1008-500X digital microscope and Ramé-Hart advanced goniometer model 500-
F1 (Succasunna, NJ, USA) were used to capture images and movies of the saline droplet.
The experiments were carried out at an ambient air temperature of t = 25 ◦C. The relative
humidity of air was equal to RH = 44 ± 2%.

3. Results and Discussion

The floating PDMS membrane was prepared as depicted in Figure 1 by pouring a
mixture containing liquid PDMS and a curing agent on the distilled water/vapor interface
as described in detail in the Materials and Methods Section (see also [16]). Afterwards,
5–15 µL saline droplets were placed on the PDMS membrane floating within the closed
vessel (chamber), as shown in Figure 2. Osmotic mass transport across the PDMS membrane
gave rise to the increase in the volume of the droplet, accompanied by advancing motion
of the triple (three-phase) line, as depicted in Figure 2 (diffusion of water through thin
oil layers was reported recently in [17]). We performed two series of experiments with
(i) long-range and (ii) short-range cycles of the osmotic growth/evaporation of droplets as
described below. Time evolution of the droplet contact radius r(t) and the apparent contact
angle θapp(t) shown in Figure 4 were registered with the goniometer.

1. In the long-time experiments, the stage of growth continued for τgr = 13070± 0.2 s.
During this time, the droplet volume increased from 5 µL to 30 µL. Afterwards,
the chamber was opened, as shown in Figure 2 and Video S1 and the droplet was
evaporated during τr = 11419 ± 0.2 s. Increasing the evaporation time scale gave
rise to the formation of the NaCl crystals in the vicinity of the triple line as shown in
Figure 2. At this stage, the volume of the droplet was decreased, and the triple line
retracted. We performed n = 2 cycles of the long-time osmotic growth/evaporation
of a droplet and observed that the process is reversible. Statistical scattering of the
contact radius and volume of the droplet within growth/evaporation cycles were
established as ±0.05 mm and ±0.3 µL, respectively.

2. Short-time growth/evaporation (retraction) experiments are illustrated in Figure 3
and Video S2, depicting the cyclic change in the volume V and contact diameter D
of the droplet. In these experiments, the time scales were τgr = τr = 3600± 0.2 s;
n = 5, and reversible growth/evaporation cycles were performed.

The initial volume of the droplets in these experiments was confined within the
range of 5 µL ≤ V ≤ 15 µL. The final volume of these droplets was in the range of
7 µL ≤ V ≤ 19 µL. The changes in both the volume and the contact area diameter of a
droplet were accompanied by a change in the apparent contact angle, illustrated in Figure 5.
The range of the apparent contact angles registered during the osmotic growth/retraction
cycles was established as 65◦ ± 2◦ < θapp < 87◦ ± 2◦. This change in the apparent contact
angle is reasonably attributed to the phenomenon of the contact angle hysteresis [18–24].
In our experiments, this hysteresis is strengthened by the pinning of the triple line arising
from the coffee-stain effect inevitable under evaporation of saline droplets [24–30]. The
coffee-stain effect is evidenced by the formation of NaCl crystals close to the triple line, as
depicted in Figure 2.
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Figure 3. Oscillatory behavior of the droplets exposed to the osmotic mass transport/evaporation
cycles is depicted. (a) Time evolution of the drop volume V(t); (b) the time dependence of the contact
radius r.

Figure 4. Geometrical parameters of saline droplet placed on the floating PDMS membrane are
depicted. R(t) is the current radius of the droplet; r(t) is the current radius of the contact area and
θapp(t) is the apparent contact angle of the droplet.
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Figure 5. (a) Time evolution of the apparent contact angle θ(t) is depicted. (b) Sequence of images
illustrating the side view of the time evolution of the droplet placed on the PDMS membrane is shown.

We now address the stage of the osmotic growth of the droplets in more detail as
illustrated in Figure 6. Consider an approximate model of the osmotic growth of the water
droplet observed in recent experiments.

Figure 6. Growth and decay of a 5 µL saline drop on a floating PDMS membrane due to osmosis
and evaporation.
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In contrast to spherical small liquid marbles, considered recently in [13], the water
droplet is almost hemispherical. The current density of salt water in the droplet can be
expressed as follows:

ρ(t) = ρ0 −
(

1− 1/R3
)
(ρ0 − ρw) (1)

where R(t) = R/R0, R(t) ≥ R0 is the current radius of the droplet, R0 and ρ0 are the
initial radius of the droplet and the initial density of salt water, respectively, and ρw is the
density of pure water under the membrane. According to Equation (1), ρ(0) = ρ0 and the
value of ρ decreases with time due to the osmotic growth of the droplet.

The balance equation for the volume of the growing hemispherical droplet appears
as follows:

2πR2
.
R =

( .
m× πR2

)
/ρw (2)

where
.

m is the constant osmotic flow rate of pure water measured in kg/(m2·s). It is natural
to assume that

.
m is directly proportional to the following difference in densities:

ρ− ρw = (ρ0 − ρw)/R3 (3)

This proportionality can be written as:

.
m = ψosm/R3 (4)

where ψosm is the unknown phenomenological osmotic parameter of the membrane [13]. It
is convenient to introduce the characteristic time of the process:

τosm = 2ρwR0/ψosm (5)

and rewrite Equation (2) as follows:

τosmR3
.
R = 1 (6)

The obvious initial condition for the droplet radius is:

R(0) = 1 (7)

The analytical solution to the Cauchy problem, defined by Equations (6) and (7)
is simply:

R =
4
√

1 + t, (8)

where t = t/τosm is the dimensionless time of the osmotic evolution of the droplet. At the
beginning of the process (at t� 1), Equation (8) is approximated as:

R = 1 + 0.25t (9)

It is interesting that Equations (8) and (9) do not contain any dependence on the initial
radius of the droplet. Thus, the experimental date obtained with different initial radii of
the droplets should be fitted with the universal straight line. This prediction is confirmed
by the measurements carried out for the saline water droplets of different initial volumes
(5 µL, 10 µL, and 15 µL). One recognizes from Figure 7 that the initial time dependences of
the growing droplet radius are almost linear, and the slope of all the curves is very close to
that predicted by Equation (9). This enables us to estimate the characteristic time of the
process, which appears to be in the range of

1.35± 0.25 h < τosm < 1.40± 0.25 h (10)
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Figure 7. Experimental curves describing the osmotic evolution of a droplet of different initial
volumes V0 during the “short-time” growth are presented (black squares—V0 = 5 µL, red circles—
V0 = 10 µL; blue triangles—V0 = 15 µL); the solid line demonstrates the best linear fitting of
the experimental data for V0 = 15 µL. The osmotic growth is satisfactorily approximated by the
universal linear time dependence, reproduced by the solid line, whose slope is independent of the
initial volume of a droplet.

Radii of the studied droplets were smaller than the capillary length, which is lca = 2.71 mm
for water droplets [24], and the apparent contact angles were close to π

2 ; thus, the shape of
the droplets is close to hemispherical.

Note that a more comprehensive model of the osmotic growth of droplets should
take into account the non-perfectly spherical shape of the droplets and inevitably uneven
distribution of salt over the droplet volume. Most likely, the latter effect is responsible for
the relatively fast increase in the droplet size at the very beginning of its osmotic growth
(see Figure 7).

The “long-time” non-linear osmotic growth of droplets may be described by the
phenomenological equation, suggested recently in [13].

R
(
t
)
= 4
√

α− βexp
(
−γt

)
(11)

where the triad α, β, and, γ were taken as parameters. The best possible fit established with
the least square method, depicted in Figure 8, was obtained at α = 7.23 , β = 6.22, and
γ = 0.71.
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Figure 8. Time evolution of the dimensionless radius of the droplet (black circles) and its fit with
Equation (11) at R0 = 1.2 mm and τosm = 4875 s.

4. Conclusions

We conclude that water diffusion across floating micro-scale thickness cured PDMS
film gives rise to the osmotic growth of a saline water droplet placed on the film. The
phenomenological model of the osmotic mass transfer to the droplet is suggested. The
dimensionless equation describing the osmotic growth of a droplet is shaped: R =

4
√

1 + t.
The initial stage of osmotic growth of saline droplets is satisfactorily approximated by
the universal linear time dependence, whose slope is independent of the initial radius
of a droplet. The calculations using this physical model are in good agreement with the
experimental data for droplets of different initial volume. The osmotic growth of the droplet
followed by the evaporation of the droplet yields reversible growth/retraction cycles. NaCl
crystals were observed in the vicinity of the triple line at the evaporation stage due to
the pinning of the triple line and the coffee-stain effect [21–26]. The reversibility of the
reported growth/retraction cycles should be emphasized. The “long-time” osmotic growth

of droplets is described by the phenomenological equation: R
(
t
)

= 4
√

α− βexp
(
−γt

)
.

The characteristic time scale of the osmotic mass transport is established as 1.35± 0.25 h <
τosm < 1.40± 0.25 h. The reported cured PDMS membranes and the process have potential
for desalination [31] and development of separators for batteries [32].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/fluids6070232/s1, Video S1: Long-time growth/evaporation, Video S2: Short-time growth/evaporation.
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