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Abstract: The control of flow separation on aerodynamic surfaces remains a fundamental goal for
future air transportation. On airplane wings and control surfaces, the effects of flow separation
include decreased lift, increased drag, and enhanced flow unsteadiness and noise, all of which are
detrimental to flight performance, fuel consumption, and environmental emissions. Many types of
actuators have been designed in the past to counter the negative effects of flow separation, from
passive vortex generators to active methods like synthetic jets, plasma actuators, or sweeping jets. At
the Chair of Aerodynamics at TU Berlin, significant success has been achieved through the use of
pulsed jet actuators (PJA) which operate by ejecting a given amount of fluid at a specified frequency
through a slit-shape slot on the test surface, thereby increasing entrainment and momentum in
a separating boundary layer and thus delaying flow separation. Earlier PJAs were implemented
using fast-switching solenoid valves to regulate the jet amplitude and frequency. In recent years, the
mechanical valves have been replaced by fluidic oscillators (FO) in an attempt to generate the desired
control authority without any moving parts, thus paving the way for future industrial applications.
In the present article, we present in-depth flow and design analysis which affect the operation of
such FO-based PJAs. We start by reviewing current knowledge on the mechanism of flow separation
control with PJAs before embarking on a detailed analysis of single-stage FO-based PJAs. In particular,
we show that there is a fundamental regime where the oscillation frequency is mainly driven by the
feedback loop length. Additionally, there are higher-order regimes where the oscillation frequency
is significantly increased. The parameters that influence the oscillation in the different regimes are
discussed and a strategy to incorporate this new knowledge into the design of future actuators
is proposed.

Keywords: active flow control; fluidic oscillators; pulsed jet actuation; actuators

1. Introduction

The objective of flow separation control is to enhance the effectiveness and efficiency
of aerodynamic systems that are naturally limited by boundary-layer separation. The many
types of actuators that have been devised over the years may be classified in numerous
ways [1]. Among fluidic actuators, three main control strategies are usually followed:
boundary-layer suction removes low-momentum fluid from the near-wall region and
thereby increases the boundary-layer’s resistance to separation [2], continuous blowing
energizes the near-wall flow to limit separation or increase circulation [3], and unsteady
forcing attempts to influence naturally-occurring flow instabilities to either delay or sup-
press flow separation [4,5].

In recent years, based on the demonstrated success of unsteady forcing [6], several
types of unsteady actuators have been introduced by the flow-control community. Promi-
nent examples are synthetic jet actuators, which operate by generating a train of vortices
by alternating suction and ejection without any net mass flux [7], as well as sweeping jet
actuators that use fluidic oscillators (FO) to generate a spatially oscillating jet of a given
frequency and velocity [8].
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The present paper is concerned with another type of unsteady fluidic actuator, the
pulsed jet actuator (PJA), which operates by injecting a given amount of fluid at a specified
frequency through a slit-shape slot. Such actuators were successfully used in several
wind-tunnel experiments [9,10] and flight tests [11] for the open and closed-loop control of
flow separation. While the first PJAs used fast switching solenoid valves to generate the
unsteady actuation, further work demonstrated the potential of using fluidic oscillators
as a switching mechanism for PJAs (FO-PJAs) without the use of moving parts. In the
1960s, different fluidic oscillators based on fluidic bistable amplifiers were introduced. A
fluidic oscillator with a single feedback loop (“Spyropoulus” feedback loop) was presented
in [12] and was proposed as a pneumatic replacement for clock pulse generators for digital
computers. This concept was later patented in [13]. In the patent description it was
suggested, among other things, that the device could be used for boundary layer control.
Another fluidic oscillator with two separate feedback loops (“Warren” feedback loop) has
been patented in 1964 [14]. These two concepts have been the basis for multiple fluidic
oscillators over the last decades. The potential of fluidic oscillators for flow control has
been demonstrated in [15]. A more recent review of fluidic oscillator development and
application for flow control was published in [16]. Based on the results presented in [17],
the ongoing development led, among other things, to the actuator that was presented
in [18]. The latter concept combines steady suction and oscillatory blowing, thus increasing
the efficiency of the actuator. Furthermore, a no-moving-part hybrid-synthetic jet actuator
based on the Spyropoulus fluidic oscillator concept was adapted to generate alternately
suction and blowing at the exit nozzles in [19]. An oscillator geometry similar to the
sweeping jet actuators is connected to a fluidic diverter in [20]. The diverter part has
no feedback loop connection, similar to the Spyropoulus concept. By combining the two
elements, a kind of duty cycle modulation can be created and thus promises a high efficiency
potential. Another fluidic oscillator concept based on the fluidic bistable amplifier was
presented in [21]. This oscillator replaces the feedback loop with a Helmholtz resonator
tube connected to one control port while the other port is open into the atmosphere. The
advantage of this concept is the independence of the switching frequency and the jet
velocity, whereby the actuator performance can be customized to a target flow control
application. Additionally in [21], a secondary experiment using the proposed actuator
with a modified outlet was conducted. Through this modification and a combination of a
multitude of such actuators side by side, alternately suction and blowing on a wing model
was achieved. All the modified actuators based on the Spyropoulus concept take advantage
of the influence of pressure differences at both sides of the power jet on the jet deflection
and switching. A recently presented concept similar to the Spyropoulus oscillator was
investigated in [22] and later patented in [23]. With this concept, the typical control ports
are completely omitted and the outlet channels are connected by an acoustic feedback
loop. Another concept with frequency and mass flow independence was presented in [24]
where a two-stage FO-PJA was used to increase the performance of a two-element high-lift
configuration and in [25] the same actuator concept was tested for active drag reduction on
a complex outer wing model. The two-stage active flow control (AFC) system consisted
of an outlet stage and a driver stage. The latter was implemented with a fluid oscillator.
Furthermore, the two-stage actuator design was adapted and optimized to control the flow
separation at the pylon-wing junction of a real-scale model [26,27]. Later on, single-stage
FO-PJAs were also used to control the three-dimensional (3D) flow separation on a vertical
tail model [28–30].

The aforementioned references have shown that the most important parameters that
govern the effectiveness of flow separation control with PJAs are forcing frequency and
velocity ratio [31]. However, although the control authority of FO-PJAs has been investi-
gated in the past [32] and a preliminary investigation of their switching characteristics has
been provided in [33], an in-depth analysis of their internal switching mechanism is still
missing. In the aforementioned studies, it has been shown that the switching frequency
may suddenly drop at a specific value of the mass flow. The parameters that influence the
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switching frequency and in particular the reason for the frequency drop have not yet been
investigated. Hence, the objective of the present paper is to examine in detail the internal
fluid-dynamic properties of single-stage FO-PJAs, and particularly the parameters that
influence their switching frequency. This will be done by a combined experimental and
numerical investigation on a family of generic actuator geometries. We also discuss how
to use this new knowledge in the design process of single-stage FO-PJAs by providing
some basic guidelines for the design of the feedback loop and the sizing of the outlet
nozzles. Additionally, based on the investigations into the mechanisms responsible for the
different frequency characteristics, the special behavior of the FO-PJA geometry may also
be exploited in future applications. Hence we provide parameters to increase or reduce the
mass flow range in which high-frequency switching occurs. In addition, non-dimensional
equations for calculating the various frequency ranges will be beneficial in future FO-PJA
design processes.

2. Flow Physics of Active Separation Control with PJAs
2.1. PJA Working Principle

In this section, the mechanism of active separation control by means of pulsed blowing
will be explained briefly. The basic idea of separation control with PJA is to inject high
momentum fluid into a separated flow where the momentum is low in order to transfer
momentum between the high and low speed regions of the flow and by that reattach the
flow to the surface [31]. The pulsed jet flow control mechanism is driven by complex
three-dimensional vortex structures [34,35], which are generated by the starting vortex ring
of the pulsed jets injected in the main flow [36]. The reattachment process with a pulsed jet
is sketched in Figure 1. Note that this sketch is a simplified two-dimensional (2D) version
of a 3D process and only gives an insight into the PJA working principle by illustrating the
effect of one period of forcing. In practice, the flow control mechanism is a periodic process.
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high momentum
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detached flow
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Figure 1. Simplified 2D sketch of the PJA working principle.
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A planar starting jet (Figure 1, picture 2, green arrow) with a sufficiently high veloc-
ity ratio (in relation to the surrounding velocity field) will induce a vortex ring [36,37].
Depending on the orientation of the pulsed jet and the cross-flow the vortex ring will be
deformed [38,39]. In the two-dimensional plane perpendicular to the slit-shape orifice,
the vortex ring appears like a pair of counter-rotating vortices [34] (Figure 1, red and blue
arrows). The upstream vortex brings high momentum fluid (Figure 1, magenta arrow)
through the mixing layer to the wall while the downstream vortex transports low mo-
mentum fluid (Figure 1, yellow arrow) away from the surface. This also lowers the static
pressure near the wall and supports the flow reattachment. Furthermore, when the jet
inclination angle is sufficiently low, the trailing jet behind the vortices stays attached to the
surface through coanda effect (Figure 1, picture 3, green arrow), thus entraining additional
surrounding fluid and lowering the local static pressure [5]. Hence, the flow reattachment
process works well when the actuator outlet is placed close to the mean separation line [34].

2.2. Main Design Parameters of PJA

With the information on the working principles of PJAs and the knowledge on flow
separation characteristics, fundamental parameters for designing PJA systems can be
defined. The control mechanism is based on a starting vortex with a trailing coanda jet as
described above. When the flow is reattached, a constantly blowing actuator would be
effective as long as the coanda effect is strong enough to keep the flow attached. However,
the required power and mass flow for effective separation control is typically an order
of magnitude smaller with oscillatory blowing than with constant blowing [4,17]. Thus,
constant blowing will not be the most efficient solution when it comes to application.
Furthermore, it was shown in [5] that once the flow is reattached to the surface, hysteresis
can be taken advantage of. Pulsed blowing at a specific frequency thus takes advantage of
the flow inertia by turning off blowing until the flow starts separating again.

Due to the variety of possible AFC applications, the optimal excitation frequency
can be diverse. The correct frequency range must therefore be determined in advance.
With flow separation, the neutral stability of the shear layer is a decisive factor in de-
termining the optimal excitation frequency [6]. The most effective reduced frequency
is F+ = fe · lte/U∞ ≈ Stc = 1, where fe is the excitation frequency, and lte is the distance
between excitation location and the trailing edge of the surface [5]. Moreover, it was noted
that the optimum can also be found at higher frequencies. Nevertheless, the optimal
excitation frequency for pulsed blowing applied on the flap of a high-lift configuration was
found within the range of F+ ≈ 1 as well [9]. With pulsed blowing at a specific frequency,
the periods where the flow separates are minimized and the AFC system will be effective.
Higher frequencies could have negative impact on efficacy in some situations [17]. There is
a minimum period of time between the start of excitation and complete reattachment [5].
In particular, if pulsed blowing with too high frequency is applied, the vortex pair can no
longer be formed in the short period or the starting jet from the next period constantly
breaks the previous created vortex pair [38]. If no stable vortex rings are generated and the
pulsing frequency is several orders of magnitude higher than the natural flow separation
shedding frequency, the PJA jet can be considered quasi-stationary again.

The necessity of matching the excitation to the frequency of the separating flow in a
certain range makes the actuation frequency one of the most important parameters when it
comes to PJA design. The other fundamental parameter is the jet velocity since the strength
of the entrainment [40] (and thus the coanda effect) and the vortex formation depends on a
high jet velocity ratio [37]. There are many other parameters to consider like signal quality
of the pulsed jet, span-wise jet uniformity, or pressure loss through the PJA system. The
signal quality for example can be described with parameters like duty-cycle, modulation,
crest-factor, and form-factor and can be compared to an ideal pulse-wave. Nevertheless
these parameters are secondary and the main objective of an FO-PJA is to generate a pulsed
jet of a given velocity at a specific frequency. In Section 3, we will propose a generic design
aimed at investigating the switching properties of such actuators.
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2.3. Example of FO-PJAs Used in Practice

As mentioned in the introduction, FO-PJAs have been used in various flow control
applications. In the following, an example for AFC and the specific challenges with single-
stage FO-PJAs are briefly discussed.

Experiments on the performance enhancement of a vertical tail plane (VTP) model
using alternately pulsed blowing were carried out with multiple single-stage FO-PJAs.
A sketch of the wind-tunnel model is shown in Figure 2. The implementation of several
actuator segments (Figure 2 (left), marked in gray) was necessary because the influence
of partial actuation on the 3D flow separation was investigated. Therefore, each actuator
segment consisted of an FO-PJA with multiple outlets. A detailed view of one FO-PJA
segment is shown in Figure 2 (right). The green area represents the part through which
the compressed air is flowing and the green arrows represent the pulsed jets (described in
Figure 1, also with green arrows) at a specific period. Due to geometrical limitations and the
required flow control parameters (frequency and outlet velocity respectively momentum
flow rate), the actuator geometry had to be folded. Results of wind-tunnel experiments
with this configuration of FO-PJA are provided in [28–30].

actuator segments

top view bottom view

outlets compressed
air supply

Figure 2. Sketch of the VTP wind-tunnel model with multiple FO-PJA elements.

The main difficulty in the design process of the complex FO-PJA system is to build
an actuator that will fit into a specific aerodynamic geometry of a given size while simul-
taneously fulfilling the required flow control parameters. The shape and size of these
FO-PJAs determine the outlet jet characteristics. Therefore, the aim of the present study
is to investigate the influence of the geometric parameters on the actuator output, and
specifically the pulsing frequency. The influence of three-dimensional folding of the FO-PJA
geometry will be discussed in Section 5.

3. Experimental and Numerical Setup

For the experimental and numerical investigations, a family of generic fluidic oscil-
lators based on a bistable switch [41] was designed. Stereo-lithography 3D printing was
used to manufacture different variants derived from a reference oscillator presented in
Section 3.1. For each design variant of the oscillator geometry, a variation in length and
diameter of the feedback loops and different sizes of the outlet nozzle were investigated.
The main goal of this study is the investigation of fundamental parameters which affect
the primary design objectives, switching frequency and outlet velocity. The differences
in design (2D and 3D) have no major impact on the primary design goals (see Section 5).
Furthermore, the 2D FO-PJA offers more flexibility in varying feedback loop parameters. It
was therefore selected as a reference geometry for this study.
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The experimental methodology is presented in Section 3.2. Additionally, a geometry
with a fixed feedback loop and a throttled outlet was chosen for the numerical simulations
described in Section 3.3.

3.1. Utilized Fluidic Oscillator Geometry

The generic FO-PJA geometry shown in Figure 3 may be classified with the taxonomic
tree with classification based on the number of active devices proposed in [42]. The FO-
PJA device used in this study is based on a single amplifier with a bistable switching
characteristic using external feedback loops. Based on this classification, the working
principle can now be briefly explained.

Pressured air is led through the plenum to the power jet. Since the geometry is based
on a bistable switch the power jet will be deflected in one direction to the left or right side
of the splitter. A large proportion of the fluid will be led to the outlet nozzle while a smaller
fraction of fluid will flow into the feedback loop to be reinjected at the corresponding
control port. Thereby, the power jet will be deflected into the other settling chamber and a
similar mechanism occurs there. When the power jet gets deflected again, one oscillation
has passed.

The mass flow ejected through the outlet nozzle delivers the control authority to
the outside flow while natural oscillation of the fluidic oscillator defines the actuation
frequency. Note the primary and secondary attachment walls separated from each other by
the separation edge in the detailed view (Figure 3 right), as these parameters are significant
for the switching frequency, as we will see later in the analysis. This specific geometry
was initially designed to reduce the pressure at the control ports required for switching by
fixing the location of separation.

feedback loop

plenum
pressured air supply

power jet

outlet nozzle

splitter

feedback splitter

settling chamber

control port

primary attachment walls

secondary attachment walls

separation edge

Figure 3. Definitions used for parts of an FO-PJA geometry.

Several variations of this nominal geometry where considered. The design variants
are shown in Figure 4 with the reference FO-PJA labeled as Ref. These variations of the
nominal geometry were performed to investigate the effect of geometrical changes that
may occur when the actuator is designed to fit into a given aerodynamic model. The main
dimensions of the geometry variants are shown in Table 1.

Table 1. Main dimensions of the oscillator geometries.

Ref FR Z S

power jet nozzle cross-section area APJ [mm2] 15.12 15.12 15.12 6.72
max. settling chamber cross-section area [mm2] 53.67 53.67 96.27 23.85

feedback ratio [-] 50/50 80/20 50/50 50/50
outlet nozzle cross-section area [mm2] 30.24 30.24 30.24 30.24
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The geometrical change of the feedback ratio is marked in red in Figure 4 (geometry
labeled as FR) and basically modifies the ratio between the cross-section area of the pipe
leading to the outlet nozzle and the pipe of the feedback loop inlet. All other parts remain
the same. The feedback ratio in the Ref case is f r = 50/50 while in the FR case it is
f r = 80/20. The second approach in geometrical change was expanding the height of the
settling chambers in z-direction, marked in magenta, and referenced as Z case. The third
geometrical variation was a 3D scaling of the complete FO-PJA shown in green and labeled
as S case. Note that while scaling down the geometry the outlet nozzles remain the same to
be able to use the same throttling device (shown in Figure 5) during the experiments.
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Figure 4. Family of oscillators investigated in the experiments.
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Figure 5. Variations of feedback loop and throttling.
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3.2. Experimental Methodology

The investigations were conducted on an actuator test bench. A pressure reducer
valve in combination with a 1000 L/min maximum flow rate version of the FESTO pro-
portional flow control valve (VPCF) was used to ensure a constant pressured air supply
into each actuator. The absolute accuracy of the VPCF (-6-L-8-G38-6-V1-E-EX2) device
translates to an uncertainty of ±1.6% for the mass flow rate. The manufacturer specifies
a repetition accuracy of ±0.5% FS which corresponds to a maximum repetition error of
±0.54% (≈0.1 g/s) in our application.

For the determination of dominant frequencies and Mach numbers in different parts
of the geometry, several pressure taps were incorporated into the oscillator devices. The
outlet Mach number was calculated using the total pressure measured in the plenum,
the static pressure at the outlet and the total temperature in the plenum, assuming an
isentropic process. The pressure measurement ports are marked in red: four ports are
placed in the plenum and five within the oscillator circuit (see Figure 6). Four KULITE
XTL-190M-3.5BARA absolute pressure transducers are used in the experiments: one sensor
is connected to all ports placed in the plenum, which are combined through a multiple
distributor with silicone tubes of equal length (30 mm each), one to the feedback loop,
one to the port in the power jet nozzle, and one is connected to the port in the settling
chamber for oscillation frequency analysis. The connection between each sensor and the
respective pressure tap (except for those in plenum) was made by a 25 mm long aluminum
tube. These short and straight tubes were chosen to ensure low attenuation of the pressure
signal for accurate frequency measurement. The other ports are physically there in order to
maintain the greatest possible symmetry but are closed during the measurements.

feedback loop length

             LFL

pressure measurement ports

Figure 6. Feedback loop length and positions of pressure measurement ports.

In order to investigate different sizes of outlet nozzles, a wedge-shaped device was
used to throttle the outlet nozzles of the FO-PJA during the experiments. The device
was mounted on a linear traverse, thus the throttling could be varied. As we will see in
Section 4, it is not just the size of the outlet nozzle that is important. Rather, the ratio of
the outlet nozzle to the power jet nozzle is significant, since this determines the outlet
jet velocity at a certain mass flow. Therefore, the throttling ratio TOP is defined as the
contraction ratio of the FO-PJA device:

TOP =
APJ

AO
(1)
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with the cross-section area of the power jet nozzle APJ and the cross-section area of the
unblocked part of one outlet nozzle AO. A low throttling ratio means that the outlet nozzle
is barely blocked (which simulates a large PJA outlet).

Additionally to the variation of throttling ratio, the feedback loop geometry was
changed during the experiments. On the one hand, the length of the feedback loop was
varied by using tubes of different lengths. On the other hand the volume of the feedback
loop was varied by using tubes of different diameter as shown in Figure 5 on the right side.
For normalization an equivalent power jet diameter defined as:

DPJ = 2 ·
√

APJ

π
(2)

was used and the non-dimensional feedback loop length L+ and diameter D+ were calcu-
lated as:

L+ =
LFL
DPJ

(3)

D+ =
DFL
DPJ

(4)

with the feedback loop length LFL (see Figure 6) and the feedback loop diameter DFL. To
evaluate the results, the non-dimensional feedback loop volume is given by:

V+ =
π

4
· (D+)2 · L+ (5)

Note that an investigation on the physical mechanism and the scaling laws for fluidic
oscillators was performed in [43]. However, in that study the feedback loop was designed
in a different way, thus making the results inapplicable to the FO-PJAs used here.

For the experimental evaluation, the measurement chain was optimized and un-
certainties were minimized. For the quantification of the measurement uncertainty, the
repeatability of the set mass flow rate and the resulting dominant frequencies generated by
the FO-PJA device were investigated. The repeatability of the setup was initially checked
with the reference geometry on the first four days of the 12 day measurement campaign. For
that a mass flow sweep (0→ 20→ 0 g/s) at 6 different throttling ratios was performed 10
times per day. When validating the repeatability, the hysteresis of the switching frequency
with increasing or decreasing mass flow rate was considered. The repetition error from
different days was in the range of the error from a single day measurement, from which
we concluded that the error was not caused by the external conditions. Therefore, from
day four the repeatability for each setup was checked on a single day. The measurements
were repeated 10 times for every geometrical variation, resulting in ±2σ(ṁ) = 0.048 g/s
for the mass flow rate and ±2σ( fpulse) = 1.6 Hz for the dominant frequency.

The pressure signals from the calibrated KULITE absolute pressure transducers con-
nected to the ports given in Figure 6 were amplified and captured by a BMCM USB-AD16f
data acquisition system at a sampling rate of fs = 8192 Hz. For the KULITE pressure trans-
ducers a non-linearity of ±0.1% FSO-BFSL and a repeatability of ±0.5% FSO is specified
from the manufacturer. The combination of the sensors with the BMCM measurement sys-
tem yields a pressure error of less than 22 Pa. Since the pressure values and the measured
mass flow rates are used for outlet velocity calculation (see Equation (6)) the combined
maximum error for the outlet velocity is ∆vjet = 0.35% (1.3 m/s). The power spectral
density (PSD) of the measured pressure signal was used to determine the dominant fre-
quency fpulse of the FO-PJA for the set mass flow rate (example in Figure 7). The measured
frequency was defined as dominant when there was an explicit peak in the PSD with a
value larger than 50 dB/Hz.



Fluids 2021, 6, 166 10 of 26

100 101 102 103

Frequency [Hz]

0

20

40

60

80

PS
D 

pr
es

su
re

 le
ve

l [
dB

/H
z]

fpulse =  136 Hz
m =  10.82 [g/s]

0 50 100 150 200 250
time [ms]

1.2
1.4
1.6

pr
es

su
re

 [1
e5

 P
a]

Figure 7. (top) Power spectral density of the pressure signal in one settling chamber in the FO-PJA
and (bottom) a section of the measured time-series.

In addition to the frequency, another primary design objective is the jet velocity vjet. It
is calculated as follows:

vjet =
ṁ

ρjet · AO
(6)

with the mass flow ṁ controlled and measured by the festo VPCF and the mach number
corrected jet density ρjet calculated according to the principle described in [25]. To apply this
principle, the pressure inside the oscillator, the pressure at the outlet, the total temperature
in the plenum, and the mass flow rate were measured.

Since the specific characteristics of the FO-PJA family will be investigated, it makes
sense to use dimensionless quantities for the primary design objectives in addition to the
absolute values. Instead of the frequency, the FO-PJA Strouhal number (StFO) will be used
to represent the oscillation and the jet Mach number (Mjet) instead of the jet velocity.

StFO =
fpulse · LFL

vjet
(7)

Mjet =
vjet√

γ · R∗ · Tambient
(8)

Note that the oscillator’s Strouhal number StFO is not the same as the Strouhal number
defined in Section 2.2 with the outside flow quantities.

3.3. CFD Methodology

In supplement to the experimental database, numerical simulations were carried out
using the OpenFoam® computational fluid dynamics (CFD) package. Figure 8 shows
the scaled computational domain and indicates the positions of the boundary patches.
The numerical mesh was built with the OpenFoam® utility snappyHexMesh. To ensure an
undisturbed propagation of the oscillator outlet jet, the distance between the oscillator
outlet nozzle and the outlet plane of the domain was set to 50 · lre f , where lre f is the length
of the oscillator outlet nozzle, as depicted in Figure 8.
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Figure 8. Computational domain and defined boundary patches.

The flow channels of the fluidic oscillator and the adjacent outlet patch were specified
as no slip walls, assuming a zero fluid velocity relative to the boundary. Table 2 lists the
boundary conditions of the numerical simulations at design conditions. At the inlet patch,
a mass flow rate of ṁ = 2 g/s and a temperature of T = 293 K was set. A static ambient
pressure of p = 101325 Pa was predefined at the outlet patch. For the initial conditions in
each simulation the velocity inside the FO-PJA geometry was set to [0, 0, 0] m/s and the
pressure was set to 101325 Pa. The unsteady Reynolds-averaged Navier–Stokes equations
(URANS) were solved using sonicFoam, a transient solver for transonic and turbulent flow of
a compressible gas. Previous numerical investigations of similar fluidic oscillators indicated
that the Spalart–Allmaras one-equation turbulence model shows a good agreement between
CFD and experiment [33]. It was thus chosen in this work. The walls were generated
with one layer of boundary layer cells, where the nutLowReWallFunction was chosen to
calculate the flow behavior in the near wall region. The thickness of the boundary layer
cells was chosen to obtain a dimensionless wall distance of y+ = 30 – 100, in order to use
wall functions. As a result of high unsteady flow characteristics inside the oscillator, the
value of y+ varies throughout the entire geometry.

Table 2. Initial and boundary conditions of the numerical simulations.

Inlet Outlet Walls

U flowRateInletVelocity zeroGradient fixedValue
massFlowRate constant
0.002 [kg/s]

value uniform
(000) [m/s]

p zeroGradient fixedValue zeroGradient
value uniform 101325 [Pa]

T fixedValue zeroGradient zeroGradient
value uniform 293 [K]

νt
fixedValue zeroGradient nutLowReWallFunction
value uniform 0.0011 [m2/s]
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A grid independence study was performed with mesh sizes varying from 0.5 to 1
million cells. For the mesh generation a maximum refinement of level 7 was used along the
entire oscillator channels. Within the mesh sensitivity study, the refinement level was not
adjusted but the base grid created by blockMesh was refined equally in any direction of the
three-dimensional grid. Two supply mass flow rates were chosen and the corresponding
switching frequency was obtained from the simulations. During the simulation, data probes
were located at the feedback loops and at the outlet nozzle to capture the characteristic
frequency. The switching frequency of the power jet was used as a parameter to analyze
the different meshes with respect to the grid size. For experimental validation, a fluidic
oscillator in original size (as shown in Figure 3) based on the design of the reference
case was built. The experimental setup for the validation was the same as described
in Section 3.

Figure 9 shows the result of the grid independence study and illustrates the experimen-
tal benchmark for a mass flow rate of ṁ = 2 g/s and ṁ = 4 g/s. The experimental measured
frequency is fpulse,exp = 2360 Hz for a mass flow rate of ṁ = 2 g/s and fpulse,exp = 545 Hz
for ṁ = 4 g/s. The numerically simulated oscillation frequency is within an acceptable
range to the experimental results. Matching the absolute frequency values is not the only
relevant parameter to describe the flow characteristics of the oscillator. It is also important
to consider the frequency trend with increasing mass flow rate (shown later in Section 4).
With the different mesh sizes, there are no major deviations in the switching frequency. In
order to guarantee a good mesh resolution to visualize the inner flow regime, the mesh
with one million cells was selected for all simulations performed in this study. A major
aspect of the accuracy of the numerical simulation is the specification of the numerical
schemes. An overview of the numerical schemes used in this study is shown in Table 3.
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Figure 9. Grid independence study and experimental benchmark.
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Table 3. Numerical schemes and methods used for the simulations.

Schemes/Methods Specification

ddtSchemes Euler
gradSchemes Gauss linear
divSchemes Gauss lienear

Gauss limitedLinear 1
laplacianSchemes Gauss linear corrected

interpolationSchemes linear
snGradSchemes corrected

wallDist meshWave

4. Results

The following section presents the experimental and numerical results of the paramet-
ric investigation, with a focus on the achievable jet velocity and switching frequency of
the actuators.

In Figure 10, the correlation between mass flow rate and jet velocity is shown for the
four different geometrical variants and several throttling ratios. The data points for the S
geometry are limited to a mass flow rate of ṁ ≈ 10 g/s since it was the highest achievable
mass flow rate with the available supply air pressure and the small size of the power jet
nozzle. For the other devices, a larger geometrical size enables a higher mass flow rate to
be set. The outlet velocity limit with the chosen outlet geometry and the available supply
pressure is the speed of sound Nevertheless, the trends of all actuator curves are similar.
With increasing supply mass flow rate or throttling ratio, the outlet velocity increases
following the continuity equation. Of course, this is not a new finding, but the context is
relevant when it comes to simultaneously designing the outlet momentum and switching
frequency. Depending on the application, a desired velocity ratio may be required with a
limited mass flow rate. This will impact the choice of the throttling ratio (i.e., the area of the
outlet nozzle) which, as will be shown below, will also influence the switching frequency.
In certain applications an outlet velocity above the speed of sound could be beneficial.
However, investigations on the performance of the FO-PJA with a supersonic outlet is left
for future studies since it might lead to different design requirements.
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Figure 10. Relation between mass flow rate, outlet velocity and throttling ratio for different FO-
PJA devices.

The frequency characteristic of the FO-PJA device with a fixed feedback loop and an
increasing supply mass flow rate is shown in Figure 11 (left). This specific geometry was
used in the numerical simulations as well as the experiments. The switching process of
the oscillator starts at a mass flow rate of ṁ = 0.8 g/s and a frequency of fpulse = 2198 Hz.
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Increasing the mass flow rate causes a rise of the pulsing frequency up to a mass flow
rate of ṁ = 2.8 g/s. As the mass flow rate is increased, the switching frequency suddenly
drops to approximately 500 Hz. By further increasing the mass flow rate, the frequency
remains nearly constant. In previous investigations with the FO-PJAs, we had already
found that hysteresis occurs when the mass flow rate is first increased and then decreased
again. This hysteresis can be exploited because there is always a mass flow range in which
the high or low frequency switching can be set by reaching the target mass flow from
a certain direction. This behavior was also found in the present experiments. However,
the hysteresis was not investigated further, as the main objective of this study is to first
examine the parameters that define the switching frequency and to identify the differences
in internal flow physics between high and low frequency switching.

The relationship between supply mass flow rate and switching frequency is nicely
reproduced by the numerical simulations. The results of the CFD and the experimental
measurements slightly differ but the position of the frequency drop and the gradients
before and after the drop match very well. Within the high-frequency range (ṁ < 3 g/s),
the calculated frequencies are slightly lower than the measurements and within the low-
frequency range (ṁ > 3 g/s) the calculated frequencies are slightly above the experiment.
This small discrepancy may be caused by the manufacturing tolerance in 3D printing.
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Figure 11. Comparison of experimental and numerical results of FO-PJA frequency response with increasing mass flow rate
(left) and corresponding PSD of most important points (right).

On the right side of Figure 11, some experimental PSD plots for different mass flow
rates are shown. The color of the plots corresponds to the marked points in the frequency
plot on the left side. The dominant frequency is annotated in each plot. It can be seen
that the amplitude of the pressure level PSD is at about 55 dB/Hz in the high-frequency
regime and at 75 dB/Hz in the lower-frequency regime. In the low-frequency regime the
higher harmonics are also very present, where the second higher harmonic measures a
level of about 55 dB/Hz as well. In the following, the low-frequency range will be called
the fundamental frequency of the oscillator and the high oscillation frequencies will be
called higher-order regime.

4.1. Fundamental Frequency Regime

The switching process of any fluidic oscillator depends on the pressure at the control
ports. The power jet will attach to the wall where the pressure is lower [41]. When a
pressure wave moves through the feedback loop, the pressure at the control port will
increase. If the pressure at the other control port is lower the power jet will detach from
the wall and move towards the lower-pressure side. This state will be stable as long as the
pressure difference at the control ports is present.

When the power jet switches to the other direction, the jet must pass the splitter,
whereby a pressure wave will emerge into the settling chamber and move into the feedback
loop back to the control port. This means that the switching frequency depends on many
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factors like the prevailing speed of sound, the feedback loop length, and the pressure
gradient in the feedback loop and settling chamber.

The total pressure during a switching period of the generic actuator is shown in
Figure 12 in 12 time steps. The mass flow rate in this case is ṁ = 5 g/s and the dominant
frequency is fpulse = 613 Hz. For a better visualization, the contour level range is set to a
minimum of 1 ×105 Pa and a maximum of 1.5 ×105 Pa. In addition, some stream-tracers
are shown to facilitate the interpretation of the contour plots. As specific parts of the
oscillator geometry will be referenced in the following explanation, it is useful to remember
the geometrical definitions as shown in Figure 3.

Figure 12. FO-PJA switching process, fundamental regime, Φ is the phase angle during one oscillation.
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In the first time step (1) the power jet starts switching from the left to the right wall. In
this state, the pressure in the right settling chamber starts to rise (2) and a leading pressure
wave moves into the right feedback loop (3). In time step (4), the jet is attached to the
primary but not the secondary attachment wall. This will cause a short pressure reduction
at the feedback loop inlet which can be seen at time step (5). In (6), the jet is bent towards
the feedback loop inlet again due to the attachment at the secondary attachment wall. At
this point, the jet continually pushes fluid into the feedback loop, which creates a trailing
pressure wave (7). In addition, at time step (7) the leading pressure wave in the right
feedback loop reaches the control port. Although the pressure of this leading pressure
wave is high, it is not sufficient to switch the power jet to the left wall, as there is still high
pressure at the left control port (7–8). The pressure at the left control port is low in time
step (9) and the trailing pressure wave reaches the control port in (10). Here it is sufficient
to detach the power jet from the right primary attachment wall and switches the jet to the
left wall (11–12).

The switching mechanism illustrated in Figure 12 implies that small geometric changes
may have a strong effect on the switching frequency. In the following we investigate these
effects experimentally.

In Figure 13, the frequency characteristic of the Ref geometry is shown for two different
feedback loop length (left) and three different feedback loop diameters (right). First the
feedback loop length will be discussed. The non-dimensional length L+ = 5.2 × 102

corresponds to an actual length of LFL = 2.1 m and L+ = 9.8× 102 to LFL = 4.1 m. It can
be seen that doubling the feedback loop length roughly halves the frequency. The actual
frequency values match the statement that the speed of sound and feedback loop length
are responsible for the switching characteristics. Even though the pressure gradient into
the feedback loop and the actual speed of sound into the system are not measured, a rough
estimate for the frequency response can be calculated. With the speed of sound a = 350 m/s
and the feedback loop length, the resulting frequency is fpulse = 350 m

s /2.1m ≈ 166 Hz for
L+ = 5.2× 102 and f pulse = 350 m

s /4.1 m ≈ 85 Hz for L+ = 9.8× 102. These estimated
values are close to the actual measured frequencies in Figure 13 (left).
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Figure 13. Variation of feedback loop length (left) and feedback loop diameter (right) using the reference geometry with a constant
throttling ratio of TOP = 1.

On the right side of Figure 13, the feedback loop diameter is varied while the length
is constant at L+ = 5.2× 102. The diameter has an influence on the frequency response,
nevertheless it is significantly smaller than the feedback length. For comparison, the
feedback loop volume is given in both plots. Increasing the diameter from D+ = 1.37 to
D+ = 2.28 reduces the frequency by ∆ fpulse ≈ 10 Hz even though the volume increases
by ∆V+ = 1.34× 103. In the left plot, where the feedback loop length was varied, the
volume increases by ∆V+ = 1.1× 103 and the frequency is reduced by ∆ fpulse ≈ 80 Hz.
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This confirms that the length of the feedback loop is critical but not its volume. The next
parameter to be discussed is the throttling ratio.

For the results shown in Figure 14, on the left side the reference geometry with the
same feedback loop lengths as in Figure 13 (left) were used and the throttling ratio was
varied. It can be seen that with the long feedback loop the throttling has less influence
than with the short one. In both cases, increasing the throttling ratio also increases the
frequency. Another interesting fact is that the curves for TOP ≥ 0.85 coincide while the
outlet velocity comes close to the speed of sound. Only for smaller throttling ratios the
frequency first increases with the mass flow rate and then decreases again. Nevertheless,
the general influence of the throttling ratio on the frequency response of the FO-PJA is
lower than the feedback loop length.
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Figure 14. Variation of throttling ratio using the reference geometry (left) and variation of settling chamber geometry with a constant
throttling ratio of TOP = 1 and feedback loop diameter D+ = 1.82 (right).

Three different FO-PJA geometries are investigated in Figure 14 (right). Like before,
two feedback loop lengths are chosen with a constant diameter and throttling ratio. With
regard to the long feedback loop L+ = 9.8× 102, all three oscillators respond similar with
the set mass flow rates. With the shorter feedback loop there are slight differences. The
reference geometry has the lowest average frequencies over the mass flow range. The
Z geometry starts at a higher frequency and matches the reference geometry at higher
mass flow rates. The FR geometry starts at lower frequencies but has the highest when
the mass flow rate increases. At a mass flow rate of ṁ ≈ 11 g/s the frequency of all three
devices remains constant. Overall, the geometry changes in the combination of feedback
loop length and diameter have only a small influence on the switching frequency. The S
geometry was not shown here because the throttling ratio did not match since the throttling
device was the same, but the internal geometry was smaller. Nevertheless, the results of
the S geometry are added with the results of the other geometries on the non-dimensional
scatter plot shown in Figure 15.

It can be seen that all actuators combined with different feedback loop lengths, diame-
ters, throttling ratios, and mass flow rates follow a common trend. All points are taken, and
a least square fit is calculated. The Stouhal-number of the fundamental FO-PJA behavior
can be estimated with:

StFO,1st ≈ 1 ·M−0.9
jet (9)

The fundamental switching frequency that follows this non-dimensional trend will be
called first-order regime.
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Figure 15. Non-dimensional characteristic of the used FO-PJA family, first-order regime.

4.2. Higher-Order Regimes

Recall Figure 11, where the mass flow range of ṁ < 3 g/s shows dominant frequencies
that are significantly higher than the frequencies of ṁ > 3 g/s. The lower frequencies
follow the trend of the first-order regime. As we will see in this section, the high frequencies
follow specific trends as well.

When the data points from all variations (geometry, feedback length, diameter, throt-
tling) are taken into account and the dimensionless quantities are calculated, the switching
frequencies follow three different trends as shown in Figure 16.
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Figure 16. Non-dimensional characteristic of the FO-PJA family, first-, second- and third-
order regime.

The trend for the first-order regime (Equation (9)) was given in Section 4.1. Now,
additional trends with higher frequencies can be identified. The results were taken separately
and two curves for the higher-order regimes were approximated with least squares regression.

StFO,2nd ≈ 3 ·M−1.0
jet (10)

StFO,3rd ≈ 5 ·M−1.1
jet (11)

The switching frequency that follows the STFO,2nd trend (Equation (10)) will be called
second-order regime and the one that follows the STFO,3rd trend (Equation (11)) will be
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called third-order regime. Both trends are referenced as higher-order regime. First, the
second-order regime is investigated.

The data measured for the reference actuator with two different feedback loop lengths
and variable throttling ratio are shown in Figure 17. On the left side, the feedback loop
length is L+ = 1.5× 102 and the diameter is D+ = 0.91. Note that both values are low
compared to the previous section where the FO-PJA frequency response was only in
the first-order regime (lowest values there: L+ = 5.2× 102 and D+ = 1.37). Here the
frequency response to the increase of the mass flow rate is clearly divided in two ranges:
a low-frequency range (the fundamental frequency) and a higher-frequency range (the
higher-order regime). While the low frequency range is essentially constant with increasing
mass flow rate, the high frequency increases at ≈ 100 Hz per added g/s. Furthermore,
it can be seen that the drop from high to low frequency occurs at a lower mass flow rate
when the throttling ratio is increased.

On the right side in Figure 17 the feedback loop length is L+ = 1.8× 102. Here, the
low frequency follows the first-order trend with a frequency of fpulse ≈ 460 Hz. In the
higher-order regime the frequencies and frequency gradients are lower than on the left side.
The frequency drops at lower mass flow rates from high to low values and the mass flow
rates where the drop happens are closer together between the different throttling ratios.
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Figure 17. Variation of throttling ratio using the reference geometry, a constant feedback loop diameter. D+ = 0.91 and feedback loop
length of L+ = 1.5× 102 (left) respectively L+ = 1.8× 102 (right).

Both plots indicate that in the first-order regime the frequency decreases with decreas-
ing TOP but increases in the second-order regime. Furthermore, with increasing feedback
loop length, the difference between the first and second-order frequencies decreases, as
well as the mass flow range where high frequencies occur.

So far, we have shown that in the first-order regime the frequency primarily is deter-
mined by the feedback loop length. The parameters feedback loop diameter, throttling ratio,
and settling chamber geometry have less influence on the frequency in the measured range.
We have also shown that frequencies that follow the second-order trend are generated with
short feedback loops. The throttling ratio influences the position of the frequency drop and
has more influence with decreasing feedback loop length.

Next, we want to find out which parameters produce frequencies in the third-order
regime. Figure 18 shows data measured with two different feedback loop lengths and
variable throttling ratio. On the left side the feedback loop length is L+ = 7.8 × 102

and on the right side it is L+ = 1.5× 103. In both cases the feedback loop diameter is
D+ = 0.68. The throttling ratio range is 0.28 ≤ TOP ≤ 0.59. Note that while the values
for diameter and throttling are small compared to the values used in the second-order
regime (was D+ = 0.91 and 0.73 ≤ TOP ≤ 1.82) the values for feedback length are large
(was L+ = 1.5× 102 respectively L+ = 1.8× 102).

Recall that when the throttling ratio is low, it means that the outlet nozzle is barely
blocked (which simulates a large PJA outlet). We combine this with a small feedback
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diameter. Therefore, the pressure gradient at the feedback loop inlet is much higher than at
the outlet and the jet will more likely flow towards the outlet.
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Figure 18. Variation of throttling ratio using the S geometry, a constant, and feedback loop diameter D+ = 0.68 and feedback loop
length of L+ = 7.8× 102 (left) respectively L+ = 1.5× 103 (right).

The frequency response with increasing mass flow rate is shown in Figure 18. The
trend differs from the results shown previously. Here the frequency jumps from low to
high values with increasing mass flow rate. In the left plot in Figure 18, the lower frequency
is at fpulse ≈ 140 Hz which corresponds to the first-order regime. The jump from low
to high frequency happens at ṁ ≈ 4.2 g/s with a throttling ratio of TOP = 0.59. With
lower throttling ratio the frequency jumps at ṁ > 6.4 g/s. The high frequency with
fpulse ≈ 450 Hz follows the trend of the second-order regime. In the right plot in Figure 18,
the feedback loop length is roughly doubled to L+ = 1.5× 103. Here two jumps happen.
The oscillation starts in the first-order regime at a frequency level of fpulse ≈ 75 Hz. At
ṁ = 3.4 g/s the frequency jumps to fpulse ≈ 250 Hz which is in the second-order regime
for the feedback length of L+ = 1.5× 103. Further increasing the mass flow rate induces a
second jump at ṁ > 5 g/s to a frequency of fpulse ≈ 430 Hz. This frequency follows the
trend of the third-order regime.

To explain the process which causes the high-frequency regimes (second-order or
third-order), a period of oscillation calculated by numerical simulation with a mass flow
rate of ṁ = 2.75 g/s is shown in Figure 19. The first time step (1) shows the state when the
power jet switches from left to right. In this time step, it can be seen that there is already a
leading high-pressure wave in the right feedback loop which was generated during the
last switching period. In (2), the power jet attaches to the right primary attachment wall
(remember Figure 3) but not to the secondary attachment wall, which has the consequence
that the jet does not turn towards the feedback loop inlet. In (3), the pressure wave from
the previous switching period already reaches the control port. This pressure wave causes
the power jet to detach from the primary attachment wall and a trailing pressure wave
enters the feedback loop in (4). In (5), the power jet is pushed back to the left side and in (6)
the next oscillation period begins.

Comparing the low-frequency switching process from Figure 12 to the high-frequency
switching process shown in Figure 19, the main difference can be summarized. We have
shown that in both cases there is a leading and a trailing pressure wave into the feedback
loop. The time step when the leading pressure wave arrives at the control port is shown in
Figure 20.
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Figure 19. FO-PJA switching process, higher-order regime, Φ is the phase angle during one oscillation.

Figure 20. Comparison of the low-frequency switching (left) and high-frequency switching (right).

In the low-frequency case, the pressure at the left control port is higher (1.6 ×105 Pa)
than the pressure at the right port (1.3 ×105 Pa), whereas in the high-frequency case the
pressure at the right port is higher (1.3×105 Pa) than on the left (1.1×105 Pa). Furthermore,
in the low-frequency case, the power jet is attached to the secondary attachment wall,
thus following the outer wall of the settling chamber. In the high-frequency case, the jet
does not attach to the secondary attachment wall, hence following the inner wall of the
settling chamber.

The presence of the secondary wall attachment is significant for the switching mech-
anism, as it determines the length of the trailing pressure wave. When the power jet
attaches to the outer wall, a long trailing pressure wave will be present in the feedback
loop. This long pressure wave causes the high pressure at the opposite control port in the
next oscillation period, thereby preventing the leading pressure wave to push the power
jet to the other side. The consequence of this is that the switching process is delayed, and
the oscillation is in the first-order regime. If the power jet adheres to the inner wall, a short
trailing pressure wave will be present in the feedback loop and the oscillation will be in a
higher-order regime.
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5. Discussion

As explained in Section 2, the actuation frequency and the jet velocity are the most
significant parameters regarding to flow separation control with pulsed jet actuation. In the
past, either fast switching solenoid valves or FO-PJAs were used to generate a pulsed jet.
With the previous knowledge, the design of FO-PJAs was an iterative process. Specifically,
the actuator outlet nozzles were designed first, and the size and shape of the oscillator
geometry was adjusted to fit a target frequency. The results presented here can now be
used in the initial FO-PJA design process.

The design of an FO-PJA starts with the choice of exit velocity and switching frequency
since these parameters are relevant for the flow physics of separation control. Depending
on the size of the exit slot, the jet velocity translates into a specific mass flow rate. If the
required frequency is low while simultaneously the mass flow rate is low, the FO-PJA must
operate in the first-order regime over the complete required mass flow range. Therefore, a
long feedback loop with a large diameter will be effective.

If the frequency needs to be high over a large mass flow range, an FO-PJA operating
in the second- or third-order regime can be useful. By designing a relatively large outlet
nozzle (small TOP) and a feedback loop with a small diameter, operation in a higher order
regime can be selected. Depending on the length of the feedback loop, the FO-PJA oscillates
in the second-order regime (short feedback) or in the third-order regime (long feedback).

In addition to the size of the feedback loop, the frequency regime may be controlled
by redesigning the internal oscillator geometry. The main reason for the occurrence of the
high frequencies is the flow separation of the power jet from the secondary attachment
wall. There are several ways to redesign the FO-PJA shape and thereby improve the
technology. Note that these are suggestions that need to be reviewed in the future. To
avoid flow separation, diffuser design techniques could be applied to reshape the primary
and secondary attachment walls. Another possible solution could be to swap the FO-PJA
outlet and feedback inlet channels in order to be less dependent on the secondary wall
attachment. Furthermore, since the power jet separation at the secondary attachment wall
is more or less a 2D phenomenon, the feedback splitter could also be rotated by 90 degrees.
The power jet mainly oscillates in the xy-plane (see Figure 4). If the feedback splitter would
be rotated by 90 degrees, it would separate the outlet nozzle from the feedback inlet in the
xy-plane. Thereby, the flow separation could have minor influence.

Another point worth discussing is the influence of three-dimensional folding of the
FO-PJA geometry. In Section 3, it was alleged that the difference between a 2D plain and a
3D folded feedback loop would not significantly affect the two primary design objectives,
switching frequency, and outlet velocity. Therefore, we reviewed the results from the FO-
PJA geometry used in the VTP measurements (see Section 2.3). The 3D folded FO-PJA had
a feedback loop length of LFL = 0.708 m. The estimation using only the speed of sound and
the feedback loop length yields a switching frequency of fpulse ≈ 350 m

s /0.708 m ≈ 495 Hz.
By using the non-dimensional Equation (9), a switching frequency of fpulse ≈ 499.4 Hz
is calculated. The actual measured frequency was fpulse = 498 Hz [28]. Furthermore the
FO-PJA used in the VTP experiments also had a mass flow range where high switching
frequencies ( fpulse = 1493 Hz) were dominant. With the non-dimensional Equation (10),
the estimated frequency would be fpulse ≈ 1483 Hz. In [28], there were also larger FO-PJAs
implemented in the VTP model. The first-order frequency in that case was fpulse = 336 Hz
while the second-order frequency was fpulse = 1014 Hz. The feedback loop length of
the used FO-PJA was LFL = 1.05 m. The estimate with Equation (9) yields a first-order
frequency of fpulse ≈ 333.3 Hz, respectively Equation (10) yields a second-order frequency
of fpulse ≈ 1000 Hz. In both cases (small and large FO-PJA) the estimation of the switching
frequency is close to the measured values. Since the non-dimensional equations were
created with the curve fits of the data of this two-dimensional study, but still deliver
reliable frequency predictions for the 3D FO-PJAs, we conclude that the influence of
feedback loop folding can be neglected in the initial FO-PJA design process. Nevertheless,
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feedback loop folding may influence secondary objectives such as pressure loss, signal
quality, and jet uniformity, which should be investigated in the future.

6. Conclusions

In this study, the internal dynamics and the parameters influencing the frequency of
pulsed jet actuators based on fluidic oscillators were investigated. It was shown that there
is a fundamental regime where the oscillation frequency is mainly driven by the feedback
loop length. Additionally, there are higher order regimes where the oscillation frequency
is significantly increased.

The CFD investigation revealed that there are leading and trailing pressure waves in
the oscillators feedback loops. The length of the trailing pressure wave determines in which
frequency regime the FO-PJA oscillates. Furthermore, the presence of the secondary wall
attachment is the crucial factor for the length of the trailing pressure wave. When the power
jet follows the secondary attachment wall, the switching frequency is in the fundamental
regime. On the other hand, the frequency is in a higher order regime when the power
jet is detached from the secondary attachment wall. Since the influence of the secondary
attachment wall on the frequency regime is now known, the shape of the oscillator can be
adapted to the requirements of the flow control application. It remains for future studies to
analyze how the secondary attachment wall and the shape of the settling chamber can be
redesigned in order to obtain a desired switching characteristic.

Furthermore, the influence of various geometric parameters on the switching fre-
quency was investigated. It was shown that in the fundamental regime the feedback loop
length has the largest impact on the dominant frequency. The throttling ratio, the feedback
diameter, and the settling chamber geometry have a smaller influence on the switching
frequency in the range of the examined variations.

In the investigations on the higher-order regimes, we found that short and thin
feedback loops will contribute to the oscillation that follows the second-order regime.
Furthermore, we have seen that relatively long and thin feedback loops in combination
with a very low throttling ratio favor frequencies in the third-order regime. The exact
values for the transition between the frequency regimes could not be analyzed with the
available data. Here, numerical simulations with an adaptive geometry may provide useful
results and extend the scope of this work.

Finally, we created a non-dimensional equation for each frequency regime based on
the measured characteristics that can now be used in the initial design process of FO-PJAs.
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Abbreviations

The following abbreviations are used in this manuscript:
2D two-dimensional
3D three-dimensional
AFC active flow control
BMCM company name, www.bmcm.de
CFD computational fluid dynamics
FESTO company name, www.festo.com
FO fluidic oscillators
FO-PJA fluidic oscillator based pulsed jet actuator
KULITE company name, www.kulite.com
MDPI Multidisciplinary Digital Publishing Institute
PJA pulsed jet actuators / actuation
PSD power spectral density
TU Berlin Technische Universität Berlin
URANS unsteady-Reynolds-averaged Navier–Stokes
VPCF proportional flow control valve
VTP vertical tail plane

Nomenclature
AO unblocked cross-section area of one outlet nozzle, m2

APJ cross-section area of the power jet nozzle, m2

DPJ equivalent power jet diameter; 2 ·
√

APJ
π , m

D+ non-dimensional feedback loop diameter; DFL
DPJ

DFL feedback loop diameter, m
F+ reduced frequency; fe · lte/U∞
fe excitation frequency, Hz
fpulse switching frequency of the fluidic oscillator, Hz
fpulse,exp experimental measured switching frequency for CFD validation, Hz
fs sampling frequency, Hz
FS Full Scale, specified uncertainty percentage of the full scale range
FSO−
BFSL

Full Scale Output–Best Fit Straight Line, specifies sensor accuracy/non-linearity

f r feedback ratio, ratio between channel to outlet nozzle and the feedback loop inlet
L+ non-dimensional feedback loop length; LFL

DPJ

LFL feedback loop length, m
lte distance between excitation location and trailing edge of the aerodynamic surface, m
ṁ mass flow rate, kg/s
Mjet jet Mach number; vjet√

γ·R∗ ·Tambient

p pressure, Pa
R∗ ideal gas constant, J ·K−1 ·mol−1

St Strouhal number
StFO internal FO-PJA Strouhal number
StFO,1st internal FO-PJA Strouhal number for the first-order regime
StFO,2nd internal FO-PJA Strouhal number for the second-order regime
StFO,3rd internal FO-PJA Strouhal number for the third-order regime
TOP throttling ratio; APJ/AO
T temperature; K
Tambient ambient temperature; K
U∞ free-stream velocity, m/s
V+ non-dimensional feedback loop volume; π

4 · (D+)2 · L+

vjet outlet velocity, m/s
y+ non-dimensional wall distance
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∆ difference between measured results
γ isentropic exponent
ρjet Mach number corrected jet density, kg/m3

2σ confidence interval, 95.45% of all values are within the specified range
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42. Tesař, V. Taxonomic trees of fluidic oscillators. EPJ Web of Conferences. EDP Sci. 2017, 143, 02128.
43. Cerretelli, C.; Gharaibah, E. An Experimental and Numerical Investigation on Fluidic Oscillators For Flow Control. In Proceedings

of the 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, USA, 25–28 June 2007. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-52429-6_8
http://dx.doi.org/10.1017/jfm.2021.77
http://dx.doi.org/10.1017/jfm.2020.637
http://dx.doi.org/10.1146/annurev.fl.24.010192.001315
http://dx.doi.org/10.1017/S0022112010000388
http://dx.doi.org/10.1017/CBO9780511608827
http://dx.doi.org/10.1016/B978-0-12-410250-7.50014-4
http://dx.doi.org/10.2514/6.2007-3854

	Introduction
	Flow Physics of Active Separation Control with PJAs
	PJA Working Principle
	Main Design Parameters of PJA
	Example of FO-PJAs Used in Practice

	Experimental and Numerical Setup
	Utilized Fluidic Oscillator Geometry
	Experimental Methodology
	CFD Methodology

	Results
	Fundamental Frequency Regime
	Higher-Order Regimes

	Discussion
	Conclusions
	References

