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Abstract: We present the results of direct numerical simulations of power spectral densities for
kinetic energy, convective entropy, and heat flux for unsteady Rayleigh–Bénard magnetoconvection
in the frequency space. For larger values of frequency, the power spectral densities for all the global
quantities vary with frequency ( f ) as f−2. The scaling exponent is independent of Rayleigh number,
Chandrasekhar’s number, and thermal Prandtl number.
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1. Introduction

The temporal fluctuations [1] of spatially averaged (or, global) quantities are of interest
in several fields of research, including turbulent flows [2–7], nanofluids [8], biological
fluids [9,10], geophysics [11,12], and phase transitions [13,14]. The probability density
function (PDF) of the temporal fluctuations of thermal flux in turbulent Rayleigh–Bénard
convection (RBC) was found to have normal distribution with slight asymmetries near
the tails. Aumaître and Fauve [5] also showed that the statistical properties of locally
measured and globally averaged temperature field are quite different. They found that
the power spectra of Nusselt number (Nu), which is a measure of heat flux across the
fluid layer in RBC, varies with frequency ( f ) as f−2 at higher frequencies. The scaling
exponent for the temperature field that is measured near the lower and upper boundaries
is different from the one that is measured in the central part of the experimental cell. The
direct numerical simulations (DNS) of the Nusselt number (Nu) also showed the similar
behaviour in the presence of Lorentz force [15] in water-based nanofluids (Pr = 4.0). The
power spectral density (PSD) of the thermal flux in the frequency ( f ) space [2,5,15,16] was
found to vary as f−2. The frequency spectrum for the temperature field measured near the
horizontal plates in Rayleigh–Bénard magnetoconvection [17] shows the exponent to vary
between−6 and−4. The frequency spectra of kinetic energy and convective entropy for the
problem of magnetoconvection are rarely available, either experimentally or numerically.
The frequency spectrum for the Nusselt number [15] was recently computed only for one
value of the thermal Prandtl number.

In this work, we present the results that were obtained by DNS for the frequency spec-
tra of three global quantities: spatially averaged kinetic energy per unit mass (E), convective
entropy per unit mass (EΘ), and Nusselt number (Nu) in unsteady Rayleigh–Bénard mag-
netoconvection (RBM) [18–20] for several values of Rayleigh number (Ra), Prandtl number
(Pr), and Chandrasekhar number (Q). The objective is to study the statistical properties
of the fluctuating global quantities in Rayleigh-Bénard magnetoconvection. The kinetic
energy per unit mass as well as the convective entropy per unit mass are found to vary
with frequency as f−2 at relatively higher frequencies. This behaviour does not depend on
the Rayleigh number (Ra), Prandtl number (Pr), and Chandrasekhar’s number (Q).
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2. Governing Equations

The physical system consists of a thin layer of a Boussinesq fluid (e.g., liquid metals,
melts of some alloys (i.e., NaNO3 melt), nanofluids, etc.) of density ρ0 and electrical
conductivity σ confined between two horizontal plates, which are made of electrically
non-conducting, but thermally conducting materials. The lower plate is heated uniformly
and the upper plate is cooled uniformly, so that an adverse temperature gradient β is
maintained across the fluid layer. A uniform magnetic field B0 is applied in the vertical
upward direction, which is also considered the positive direction of the z-axis. The x and y
axes are in the horizontal plane with origin of the coordinate system taken on the lower
plate. In the basic state, the fluid conducts heat without any motion. The stratification of the
steady temperature field [Ts(z)] and the fluid density [ρs(z)], in the conduction state [18],
are given as:

Ts(z) = Tb − βz, (1)

ρs(z) = ρ0[1 + α{Tb − Ts(z)}], (2)

where Tb and ρ0 are the temperature and density of the fluid at the lower plate, respectively.
The fluid pressure [Ps(z)], in conductive state, is:

Ps(z) = C−
[

ρ0g
(

z +
1
2

αβz2
)
+

B0
2

2µ0

]
, (3)

where g is the acceleration due to gravity and µ0 is the permeability of free space. The fluid
pressure in the conductive state consists of hydrostatic, thermal, and magnetic pressures.
The constant of integration (C) may be determined if the value of pressure at the upper
plate [Ps(z = d)] is known. If we take Ps(z = d) = P0, where P0 is a constant (e.g., air
pressure at the upper plate), the constant C turns out to be

C = P0 +
B0

2

2µ0
+

[
ρ0g
(

d +
1
2

αβd2
)]

. (4)

The fluid pressure, in the basic conductive state, then reads as:

Ps(z) = P0 + ρ0g
[
(d− z) +

1
2

αβ
(

d2 − z2
)]

. (5)

As soon as the temperature gradient across the fluid layer is raised above a critical
value βc for fixed values of all fluid parameters (kinematic viscosity ν, thermal diffusivity
κ, and thermal expansion coefficient α) and the externally imposed magnetic field (B0), the
convection sets in. All the fields are perturbed due to magnetoconvection and they may be
expressed as:

ρs(z)→ ρ̃(x, y, z, t) = ρs(z) + δρ(x, y, z, t), (6)

Ts(z)→ T(x, y, z, t) = Ts(z) + θ(x, y, z, t), (7)

Ps(z)→ P(x, y, z, t) = Ps(z) + p(x, y, z, t), (8)

B0 → B(x, y, z, t) = B0 + b(x, y, z, t), (9)

where v(x, y, z, t), p(x, y, x, t), θ(x, y, z, t) and b(x, y, z, t) are the fluid velocity, perturba-
tion in the fluid pressure, the convective temperature and the induced magnetic field,
respectively, due to magnetoconvection. The perturbative fields are made dimensionless
by measuring all lengths in units of the clearance d between two horizontal plates, which
is also the thickness of the fluid layer. Time is measured in units of the free fall time
τf = 1/

√
αβg. The convective temperature field θ and induced magnetic field b are made
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dimensionless by βd and B0Pm, respectively. The magnetoconvective dynamics is then
described by the following dimensionless equations:

Dtv = −∇p +

√
Pr
Ra
∇2v +

QPr
Ra

[∂zb + Pm(b · ∇)b] + θe3, (10)

PmDtb = Pm(b · ∇)v +

√
Pr
Ra
∇2b + ∂zv, (11)

Dtθ =

√
1

RaPr
∇2θ + v3, (12)

∇ · v = ∇ · b = 0, (13)

where Dt ≡ ∂t + (v · ∇) is the material derivative. The unit vector e3 is directed vertically
upward. Because the magnetic Prandtl number is very small (Pm ≤ 10−5) for all terrestrial
fluids, we set Pm equal to zero in the above set of hydrodynamic equations. The Navier–
Stokes equation Equation (10) then takes the form, as given below.

Dtv = −∇p +

√
Pr
Ra
∇2v +

QPr
Ra

∂zb + θe3. (14)

The induced magnetic field (b) is slaved to the velocity field (v), as Equation (11) is
simplified to

∇2b = −
√

Ra
Pr

∂zv. (15)

The fluid flow due to magnetoconvection, in the limit of Pm→ 0, is described by the
set of Equations (12)–(15). We consider the idealized boundary (stress-free) conditions for
the velocity field on the horizontal boundaries. Relevant boundary conditions [18,21] at
the horizontal plates, which are located at z = 0 and z = 1, are:

∂v1

∂z
=

∂v2

∂z
= v3 = b1 = b2 =

∂b3

∂z
= θ = 0. (16)

All of the fields are considered periodic in the horizontal plane. The fluid dynamics,
as Pm→ 0, is controlled by three dimensionless parameters: (1) Rayleigh number (Ra =
αβgd4

νκ ), (2) Prandtl number (Pr = ν
κ ), and (3) Chandrasekhar’s number (Q =

σB2
0d2

ρ0ν ). The
critical values of Rayleigh number [Rac(Q)] and critical wave number [kc(Q)] are [18]:

Rac(Q) =
π2 + k2

c
k2

c

[
(π2 + k2

c)
2 + π2Q

]
, (17)

kc(Q) = π

√
a+ + a− −

1
2

, where (18)

a±(Q) =

(
1
4

[1
2
+

Q
π2 ±

{(1
2
+

Q
π2

)2 − 1
4

} 1
2
]) 1

3

. (19)

The kinetic energy (E) and convective entropy (EΘ) per unit mass are defined as:

E(t) =
1
V

∫ 2π
kc

0
dx
∫ 2π

kc

0
dy
∫ 1

0

1
2

v2dz, (20)

EΘ(t) =
1
V

∫ 2π
kc

0
dx
∫ 2π

kc

0
dy
∫ 1

0

1
2

θ2dz. (21)
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The Nusselt number (Nu), which is the ratio of total heat flux and the conductive heat
flux across the fluid layer, is given as:

Nu(t) = 1 +

√
RaPr
V

∫ 2π
kc

0
dx
∫ 2π

kc

0
dy
∫ 1

0
v3θdV. (22)

The hydromagnetic system of Equations (12)–(15) presented here may also be used to
investigate magnetoconvection in nanofluids with a low concentration of non-magnetic
metallic nanoparticles [15] in water. A homogeneous suspension of nanoparticles in a
viscous fluid works as a nanofluid. Because the properties of a nanofluid depend on those
of the base fluid and the nanoparticles, the effective values of dimensionless parameters
would depend on both. All of the fluid parameters are may be replaced by their effective
values in the presence of nanoparticles. If φ is the volume fraction of the spherically
shaped nanoparticles, then the effective form of the density and electrical conductivity of a
nanofluid may be expressed as:

ρn f = (1− φ)ρ f + φρp, (23)

σn f = (1− φ)σf + φσp, (24)

where ρ f and σf are the density and electrical conductivity of the base fluid, respectively.
Here, ρp is the density and σp is the electrical conductivity of nanoparticles. The effective
thermal conductivity (Kn f ) of a nanofluid [22] for smaller values of φ is expressed as:

Kn f = K f

[
(Kp + 2K f )− 2φ(K f − Kp)

(Kp + 2K f ) + φ(K f − Kp)

]
, (25)

where K f and Kp are the thermal conductivities of the base fluid and that of sphere shaped
nanoparticles, respectively. Similarly, the product of density and specific heat capacity
[(ρcV)n f ] may be expressed through the following relation [23]:

(ρcV)n f = (1− φ)(ρcV) f + φ(ρcV)p. (26)

The effective dynamic viscosity (µn f ) of a nano-fluid [24] may also be expressed as:

µn f = µ f (1− φ)−2.5. (27)

The kinematic viscosity (νn f ) and thermal diffusivity (κn f ) for nanofluids may then be
estimated while using the formulae:

νn f =
µn f

ρn f
=

µ f (1− φ)−2.5

(1− φ)ρ f + φρp
, (28)

κn f =
Kn f

(ρcV)n f
=

K f

[
(Kp + 2K f )− 2φ(K f − Kp)

]
[
(1− φ)(ρcV) f + φ(ρcV)p

][
(Kp + 2K f ) + φ(K f − Kp)

] . (29)

The effective thermal Prandtl number (Prn f ) for nanofluids is then defined as Prn f =
νn f
κn f

. The definitions of Rayleigh number (Ran f ) and Chandrasekhar’s number (Qn f ) are
also modified for nanofluids, and they read as:

Ran f =
αβgd4

νn f κn f
, Qn f =

σn f B2
0d2

(ρ0)n f νn f
. (30)

Substituting the values of dimensionless parameters Pr, Ra and Q by Prn f , Ran f and
Qn f , respectively, the set of Equations (12)–(15) describes magnetoconvection in nanofluids
with low concentration of nanoparticles in a base fluid. The thermal Prandtl number (Prn f )
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of water-based nanofluids may be varied between 4.0 and 6.5 by varying the volume
fraction (φ) of the spherical copper nanoparticles [15] between 8% to 0.2%.

3. Direct Numerical Simulations

Direct numerical simulations of the magnetoconvective flows for different values of
the dimensionless parameters are carried out using pseudo-spectral method. All of the
perturbative fields are expanded such that they are consistent with the boundary conditions.
Perturbations are expanded as:

Ψ(x, y, z, t) = ∑
l,m,n

Ψlmn(t)eikc(lx+my) cos (nπz), (31)

Φ(x, y, z, t) = ∑
l,m,n

Φlmn(t)eikc(lx+my) sin (nπz), (32)

where Ψ(x, y, z, t) = [v1, v2, p]† and Φ(x, y, z, t) = [v3, θ]†. The time dependent Fourier
amplitudes of these fields are denoted by Ψlmn(t) = [Ulmn, Vlmn, Plmn]

† and Φlmn(t) =
[Wlmn, Θlmn]

†, where l, m, and n are integers. The horizontal wave vector of all the per-
turbations is kH = (le1 + me2)kc(Q), where e1 and e2 are the unit vectors along positive
directions of the x- and y-axes, respectively. All of the numerical simulations are carried out
in a three dimensional simulation box of size L× L× 1, where L = 2π/kc(Q). The value of
kc is computed using the expression for the critical wave number kc(Q) [see Equations (18)
and (19)]. The continuity equations decide the possible values of the integers l, m, n. They
can take values that satisfy the following equation.

ilkc(Q)Ulmn + imkc(Q)Vlmn + nπWlmn = 0. (33)

The computation of non-linear terms (v · ∇)v and v · ∇θ are computed while using
Fast Fourier Transformation (FFT). It is done using the following steps:

(i) Real space variables v(x, y, z) = (v1, v2, v3) and θ(x, y, z) are computed at a given
time t using inverse FFT of v(k) and θ(k), where k = lkce1 + mkce2 + nπe3.

(ii) The multiplication of field variables vi(x, y, z)vj(x, y, z) and vi(x, y, z)θ(x, y, z) for
(i, j = 1, 2, 3) are done at each grid point of the simulation box.

(iii) FFT[vi(x, y, z)vj(x, y, z)] and FFT[vi(x, y, z)θ(x, y, z)] are computed using the pack-
age FFTW.

(iv) Subsequently, the terms ik j× FFT[vi(x, y, z)vj(x, y, z)] and ik j× FFT[vi(x, y, z)θ(x, y, z)]
with j = 1, 2 as well as ik j× FFT[vi(x, y, z)vj(x, y, z)] and ik j× FFT[vi(x, y, z)θ(x, y, z)]
with j = 3 are computed.

The aliasing error is removed using 2/3-rule [25]. The integration in time is performed
using a standard fourth order Runge–Kutta (RK4) scheme. The time step of RK4 integration
scheme was monitored, so that the Courant–Friedrichs–Lewy (CFL) condition was satisfied
for all times. The time step of 10−3 (in dimensionless units) is used for integration. The
data points for the temporal signal of all global quantities are recorded at all time steps.
The grid size was chosen, such that the smallest dissipative (Kolmogorov) scale is resolved.
The thermal dissipative scale was the smallest for our simulations. A resolutions of
128× 128× 128 was good enough for several of the simulations that are presented here.
Each of the simulations was usually carried out for more than 600 dimensionless time units.
For Pr > 1, we carried the simulations with higher resolutions of 256× 256× 256. Das and
Kumar [15] test the code for a magnetoconvection problem, which give more details about
the simulations. Once a simulation for fixed values of dimensionless parameters Ra, Pr
and Q is completed, the same procedure is repeated with a new set of Ra, Pr, and Q.

4. Results and Discussion

The simulations are done for several values of thermal Prandtl number (0.1 ≤ Pr ≤
6.4). These values of Pr are relevant for Earth’s liquid outer core [26]. They are also relevant
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for the problem of crystal growth [27] and water-based nanofluids [8]. The Rayleigh
number is varied in a range 7.0× 104 ≤ Ra ≤ 3.04× 106, while the Chandrasekhar’s
number is varied in the range 50 ≤ Q ≤ 103. In numerical simulations, the value of
∆T = Tb − Tu is always mapped to unity. The total temperature field [T̃(x, y, z, t)], in the
dimensionless units, then reads as: T̃(x, y, z, t) = 1− z + θ(x, y, z). Figure 1 shows the
combined plot of the total temperature field [T̃(x, y, z, t)] and the velocity field [v(x, y, z, t)]
simultaneously at two different instants for a water based nanofluids (Prn f = 6.4) for
Ran f = 5× 105 and Qn f = 100. The dimensions of the simulation box are L× L× 1, where
L = 2π

kc(Qn f )
= 1.697 for Qn f = 100. The colour bar that is given in each of the viewgraphs

shows the temperature field at different points in the convecting fluid. Red, blue, and
other colours stand for the hottest, coolest, and intermediate temperatures, respectively.
The arrows show the flow directions at the outer surfaces of the simulation box. Thin
thermal boundary layers near the lower and upper surfaces of the simulations box are
clearly visible. There are generations of thermal plumes (red coloured patches) at the lower
boundaries if the temperature gradient is large enough. They are of different sizes and they
appear quite irregularly at different locations on the horizontal plate. This also contributes
to the fluctuations of fields. There is no viscous boundary layer because of the use of stress-
free boundary conditions on the velocity field. Two viewgraphs in Figure 1 confirm the
unsteady magnetoconvection. The flow structure is changing with time drastically. Figure
2 shows the variation of flow structures for Prn f = 6.4 and Ran f = 5× 105 and for two
different values of Chandrasekhar number (Qn f ). Figure 2a shows the total temperature
field [T̃(x, y, z)] and the velocity field [v(x, y, z)] in the simulation at a randomly chosen
time for Qn f = 100. The flow structure that is shown in Figure 2b is for Qn f = 250.

Figure 3 shows the temporal variations of three global quantities for Ra = 5.0× 105,
Pr = 4.0 and for two different values of Q: (1) the kinetic energy per unit mass (E), (2) the
convective entropy per unit mass (EΘ), and (3) the Nusselt number (Nu). All fields are
recorded on all grid points and then the global quantities are computed by averaging over
the three-dimensional simulation box. The first two sets of curves (from the top) show the
variation of E with dimensionless time for two different values of Q. The red curve is for
Q = 100 and the blue curve is for Q = 400. The energy signal varies irregularly with time.
They show appreciable fluctuations. The mean of kinetic energy decreases with increase
in Q. The fluctuations of kinetic energy also decreases with an increase in Q. Curves in
the third and fourth rows (from the top) show the temporal variation of EΘ, while curves
in the fifth and sixth rows display the temporal signal of Nu. They also vary irregularly
with time. The mean values of the convective entropy per unit mass as well as the Nusselt
number decrease with an increase in Q. Their fluctuations also decrease, as Q is raised.

Figure 4 displays the power spectrum densities (PSD) for the global (spatially aver-
aged) quantities in the frequency ( f ) space for several values of Ra, Pr and Q. The PSDs of
the fluid speed [E( f ) = |v( f )|2] are shown in Figure 4a. As the thermal energy is injected
slowly in the fluid, the spectra show a small slope at low frequencies. In a small frequency
window (approximately, 0.04 . f . 1.0), the slope of curves E( f )− f on the log-log scale
varies between −3.2 to −5.1. The energy spectra [E( f )] have more noise in this frequency
range. It may be due to irregularity in the size and frequency of thermal plumes from a
particular position on the lower boundary. The spectra for nanofluids (Prn f = 4.0 and
6.4) show more noise. Smaller values of the thermal diffusivity of the fluid lead to an
enhancement of the thermal noise, which makes the spectra nosier at lower frequencies.
However, the E( f ) is found to have insignificant noise for 1 < f < 200. The frequency
spectrum of energy per unit mass [E( f )] decays slowly in this regime. This may be due
to the box averaging of the perturbative fields, and it is different than the behaviour near
horizontal boundaries. The PSD [E( f )] of the kinetic energy scales with frequency ( f )
almost as f−α with α ≈ 2. The scaling behaviour is valid for more than two decades. The
PSD shows a clear scaling behaviour for f > 1. The scaling exponent is independent of Pr,
Ra and Q in this frequency window. Table 1 gives the numerically computed values of the
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exponent (α) for different values of Ra, Pr, and Q. A similar scaling law [E( f ) ∼ f−2] was
also observed in rotating Rayleigh–Bénard convection [16].

Figure 4b shows the PSDs of the convective entropy [EΘ( f ) = |θ( f )|2] of the fluid in
the frequency space for different values of Ra, Pr and Q. Its power spectra is also noisy in
the dimensionless frequency range 0.04 < f < 1.0. The slope on the log-log scale varies
between −5.9 and −6.4. However, for f > 1.0, EΘ scales with frequency as f−β with β ≈ 2.
Table 1 lists the numerically computed values of the exponent β. Interestingly, the power
spectra of the temperature fluctuations are also found to vary as f−2 in the rotating RBC
experiments [2,16]. The temperature of convecting fluid near the horizontal plates in RBM
was measured in experiments on magnetoconvection [17]. The frequency spectra of the
temperature field near the horizontal plates vary clearly as f−2 for Q = 0. Even for very
small values of Q (Q ∼ 10−3− 10−4), this scaling regime shrinks drastically. The data points
for the temperature field were measured locally in this experiment. The frequency spectra
of local quantities near the boundary are known to decay faster [5]. The convective entropy
is a global quantity and it is computed by taking an average over the simulation box. That
is why the power law for the temperature field recorded locally in the experiment [17] may
reflect the behaviour in a thin boundary layer near the horizontal plates. In addition, we
have used stress-free conditions on the velocity field on the horizontal plates. We only have
thermal boundary layers. These may be reasons for disagreement in the power behaviour.

Figure 4c shows the power spectral densities of the thermal flux [Nusselt number,
Nu( f )] for several values of Ra, Pr, and Q. PSDs of the Nusselt number also show the
scaling behaviour. The PSDs are noisy, as in the case of energy and entropy signals, for
dimensionless frequencies 0.04 < f < 1.0, if Pr > 1. The scaling exponent varies between
−4.5 to −6.4 in this frequency window. However, for higher values of dimensionless
frequency (1 < f < 200), the spectra for thermal flux [Nu( f )] also shows very clear
scaling: Nu( f ) ∼ f−γ, with γ ≈ 2. Table 1 shows the values of the exponent γ that is
computed in DNS. The measurements of the spectra of thermal flux in RBC also shows the
similar scaling law [5]. The scaling behaviour for all global quantities for Rayleigh-Bénard
magnetoconvection shows a similar power law. This is also observed in experiments in
different systems [2,5] as well as in numerical simulations [15,16]. The power spectra
of systems showing self-organised criticality [28] scale with frequency as f−1, which is
different than the scaling behaviour in the hydrodynamic systems discussed here.

The scaling law showing the variation of the power spectra as f−2 starts at a critical
frequency ( fc) for different values of Q. Figure 5 shows the variation of fc for E( f ), EΘ( f ),
and Nu( f ) with Q for two different sets of Ra and Pr. The critical frequency fc(E) decreases,
as Q is increased (see Figure 5a). Figure 5b,c show the variations of fc(EΘ) and fc(Nu),
respectively, with Q. The values of critical frequencies are different for E( f ), EΘ( f ) and
Nu( f ). However they all decrease with an increase in Q for given values of Ra and Pr. A
vertical magnetic field is known to delay the onset of fluid flow in RBC [18]. The external
magnetic field suppresses the fluid motion, which leads to a decrease in fc(Q), as Q is
raised.
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Figure 1. Plot of the total temperature field [T(x, y, z, t)] and velocity field [v(x, y, z, t)] at dimen-
sionless time (a) t = t0 and (b) t = t0 + 5 in the simulation box for a water-based nanofluid
[Ran f = 5.0× 105, Prn f = 6.4 and Qn f = 100]. Colour bars describe the temperature distributions in
the convecting fluid. Arrows show the directions of the fluid flow.
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Figure 2. Plot of the total temperature field [T(x, y, z, t)] and velocity field [v(x, y, z, t)] for different
values of Chandrasekhar’s number: (a) Qn f = 100 and (b) Qn f = 250 in the simulation box for
a water-based nanofluid [Ran f = 5.0× 105 and Prn f = 6.4. Colour bars and arrows describe the
distribution of total temperature field (T̃) and fluid velocity (v), respectively, at a given time t.



Fluids 2021, 6, 163 10 of 13

t t+100 t+200 t+300
0.01

0.015

0.02
E

t t+100 t+200 t+300
4

7

10
x 10

−3

t t+100 t+200 t+300

0.035

0.04

0.045

E
Θ

t t+100 t+200 t+300

0.035

0.04

0.045

t t+100 t+200 t+300
8

13

18

N
u

t t+100 t+200 t+300
7

11

15

Dimensionless Time

Figure 3. Temporal variations of the kinetic energy (E), entropy (EΘ) and Nusselt number (Nu) in a water-based nanofluid
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Figure 4. Frequency power spectral densities (PSD) of (a) the energy per unit mass [E( f ) = |v( f )|2], (b) the convective
entropy per unit mass [EΘ( f ) = |θ( f )|2], and (c) thermal flux [Nu( f )] in the frequency space for Earth’s liquid outer core
(Pr ∼ 0.1, 0.2 ) and for water-based nanofluids with less than 8% of spherical copper nanoparticles (Prn f ∼ 4.0, 6.4) of for
different values of Ra, Q, and Pr.
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Figure 5. Variation of critical values of the dimensionless frequencies: (a) fc(E), (b) fc(EΘ), and (c) fc(Nu) for the frequency
spectra of kinetic energy [E( f )], entropy spectra [EΘ( f )], and thermal flux [Nu( f )], respectively, with the Chandrasekhar
number [Q] for Prandtl number (Pr) = 0.1 [red triangles] and 1.0 [blue circles].

Table 1. List of Prandtl number Pr, Chandrasekhar number Q, Rayleigh number Ra, exponents of
Kinetic energy(α), exponents of Entropy (β), and exponents of Nusselt number (γ).

Pr Ra Q Exponent α Exponent β Exponent γ

0.1 7.0× 104 100 1.97 1.97 1.96
300 1.97 1.97 1.97
500 1.96 1.96 1.97
700 1.96 1.97 1.97

0.2 7.0× 104 100 1.96 1.97 1.96
300 1.97 1.97 1.96
500 1.96 1.96 1.96

1.0 3.04× 106 300 1.96 1.97 1.96
500 1.96 1.97 1.96
700 1.97 1.96 1.96

1000 1.96 1.97 1.97
2.0 3.04× 106 500 1.96 1.96 1.96

700 1.96 1.96 1.96
1000 1.96 1.97 1.96

4.0 5.0× 105 100 1.96 1.97 1.96
200 1.96 1.97 1.97
400 1.96 1.97 1.97

6.4 5.0× 105 50 1.96 1.97 1.96
100 1.97 1.97 1.96
250 1.97 1.96 1.97
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5. Conclusions

The results of DNS on Rayleigh–Bénard magnetoconvection show that frequency spec-
tra of global quantities (the kinetic energy E( f ), convective entropy EΘ( f ), and the Nusselt
number Nu( f )) vary differently in different frequency windows. At low frequencies, the
thermal energy enters slowly into the moving fluid. The frequency spectra, therefore have
a small slope at low frequencies. In a narrow intermediate frequency range, the spectral
densities of global quantities decrease sharply with frequency ( f ). They show power law be-
haviour. However, the scaling exponents are dissimilar for different global quantities. The
energy spectrum [E( f )] varies with the frequency ( f ) as E( f ) ∼ f−ξ , with 3.2 ≤ ξ ≤ 5.1.
Scaling behaviour for the convective entropy and Nusselt number are EΘ( f ) ∼ f−η , with
5.9 ≤ η ≤ 6.4 and Nu( f ) ∼ f−ζ with 4.5 ≤ ζ ≤ 6.4, respectively. For frequencies above a
critical frequency fc, all global quantities show universal scaling behaviour. The critical
values fc(E), fc(EΘ), and fc(Nu) are different for kinetic energy, convective entropy, and
the Nusselt number, respectively. The spectra of all three global quantities scale with
frequency as f−2. The scaling exponent of −2 at higher frequencies are independent of Ra,
Pr, and Q. The scaling behaviour of the global quantities at higher frequencies appears to
be a universal feature in turbulent flows. The results that are presented here may also be
relevant for some problems of geophysics, water-based nanofluids, crystal growth, and
magnetohydrodynamics.
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