# Chaotic Dynamics of the Interface between Dielectric Liquids at the Regime of Stabilized Kelvin-Helmholtz Instability by a Tangential Electric Field

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model Equation

## 3. Soliton Dynamics

#### 3.1. Regular Dynamics

#### 3.2. Chaotic Dynamics

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Stepanyants, Y.A.; Fabrikant, A.L. Propagation of waves in hydrodynamic shear flows. Sov. Phys. Usp.
**1989**, 32, 783. [Google Scholar] [CrossRef] - Kuznetsov, E.A.; Lushnikov, P.M. Nonlinear theory of the excitation of waves by a wind due to the Kelvin-Helmholtz instability. J. Exp. Theor. Phys.
**1995**, 81, 332. [Google Scholar] - Melcher, J.R.; Schwarz, W.J. Interfacial relaxation overstability in a tangential electric field. Phys. Fluids
**1968**, 11, 2604. [Google Scholar] [CrossRef] - Zubarev, N.M. Nonlinear waves on the surface of a dielectric liquid in a strong tangential electric field. Phys. Lett. A.
**2004**, 333, 284–288. [Google Scholar] [CrossRef] [Green Version] - Zubarev, N.M.; Kochurin, E.A. Nonlinear dynamics of the interface between fluids at the suppression of Kelvin-Helmholtz instability by a tangential electric field. JETP Lett.
**2016**, 104, 275–280. [Google Scholar] [CrossRef] - Barannyk, L.L.; Papageorgiou, D.T.; Petropoulos, P.G. Suppression of Rayleigh–Taylor instability using electric fields. Math. Comp. Simul.
**2012**, 82, 1008. [Google Scholar] [CrossRef] - Koulova, D.; Romat, H.; Louste, C. Experimental study of wave propagation on liquid/air surfaces under perpendicular electric field. IEEE Trans. Diel. Electr. Insul.
**2018**, 25, 1716–1722. [Google Scholar] [CrossRef] - Gao, T.; Milewski, P.A.; Papageorgiou, D.T.; Vanden-Broeck, J.-M. Dynamics of fully nonlinear capillary–gravity solitary waves under normal electric fields. J. Eng. Math.
**2018**, 108, 107–122. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tao, B.; Guo, D.L. Fully nonlinear capillary–gravity wave patterns under the tangential electric field. Comput. Math. Appl.
**2014**, 67, 627. [Google Scholar] [CrossRef] - Tao, B. Fully nonlinear capillary–gravity solitary waves under a tangential electric field: Part II. Dynamics. Comput. Math. Appl.
**2018**, 76, 788–798. [Google Scholar] [CrossRef] - Papageorgiou, D.T. Film flows in the presence of electric fields. Ann. Rev. Fluid Mech.
**2019**, 51, 155–187. [Google Scholar] [CrossRef] - Krakov, M.S. Mixing of miscible magnetic and non-magnetic fluids with a rotating magnetic field. J. Magn. Magn. Mater.
**2020**, 498, 166186. [Google Scholar] [CrossRef] - Krakov, M.S.; Zakinyan, A.R.; Zakinyan, A.A. Instability of the miscible magnetic/non-magnetic fluid interface. J. Fluid Mech.
**2021**, 913, A30. [Google Scholar] [CrossRef] - Kuznetsov, E.A.; Zakharov, V.E. Nonlinear coherent phenomena in continuous media. In Nonlinear Science at the Dawn of the 21st Century; Lecture Notes in Physics; Christiansen, P.L., Sørensen, M.P., Scott, A.C., Eds.; Springer: Berlin, Germany, 2000; Volume 542, pp. 3–45. [Google Scholar]
- Kuznetsov, E.A.; Zakharov, V.E. Solitons and collapses: Two evolution scenarios of nonlinear wave systems. Phys. Usp.
**2012**, 55, 535–556. [Google Scholar] - Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys.
**1968**, 9, 190–194. [Google Scholar] [CrossRef] - Newell, A.C. Solitons in Mathematics and Physics. In CBMS-NSF Regional Conference Seriesin Applied Mathematics; SIAM: Philadelphia, PA, USA, 1985; Volume 48. [Google Scholar]
- Kachulin, D.; Dyachenko, A.; Gelash, A. Interactions of coherent structures on the surface of deep water. Fluids
**2019**, 4, 83. [Google Scholar] [CrossRef] [Green Version] - Kachulin, D.; Dyachenko, A.; Zakharov, V. Soliton turbulence in approximate and exact models for deep water waves. Fluids
**2020**, 5, 67. [Google Scholar] [CrossRef] - Kachulin, D.; Dyachenko, A.; Dremov, S. Multiple Soliton Interactions on the Surface of Deep Water. Fluids
**2020**, 5, 65. [Google Scholar] [CrossRef] - Zhakin, A.I. Electrohydrodynamics of charged surfaces. Phys. Usp.
**2013**, 56, 141. [Google Scholar] [CrossRef] - Gao, T.; Doak, A.V.; Vanden-Broeck, J.-M.; Wang, Z. Capillary–gravity waves on a dielectric fluid of finite depth under normal electric field. Eur. J. Mech. B Fluids
**2019**, 77, 98–107. [Google Scholar] [CrossRef] [Green Version] - Doak, A.; Gao, T.V.; Vanden-Broeck, J.-M.; Kandola, J.J.S. Capillary-gravity waves on the interface of two dielectric fluid layers under normal electric fields. Q. J. Mech. Appl. Math.
**2020**, 73, 231–250. [Google Scholar] [CrossRef] - Zakaria, K. Nonlinear dynamics of magnetic fluids with a relative motion in the presence of an oblique magnetic field. Phys. A
**2003**, 327, 221–248. [Google Scholar] [CrossRef] - Tao, B. Model equations for three-dimensional nonlinear water waves under tangential electric field. Adv. Math. Phys.
**2017**, 2017, 9312681. [Google Scholar] [CrossRef] [Green Version] - El-Sayed, M.F. Electro-aerodynamic instability of a thin dielectric liquid sheet sprayed with an air stream. Phys. Rev. E
**1999**, 60, 7588. [Google Scholar] [CrossRef] - Zubarev, N.M. Nonlinear dynamics of the interface of dielectric liquids in a strong electric field: Reduced equations of motion. Phys. Fluids
**2006**, 18, 028103. [Google Scholar] [CrossRef] [Green Version] - Zubarev, N.M. Nonlinear waves on the surface of a dielectric liquid in a horizontal electric field in 3D geometry: Exact solutions. JETP Lett.
**2009**, 89, 271–274. [Google Scholar] [CrossRef] - Zubarev, N.M.; Kochurin, E.A. Three-dimensional nonlinear waves at the interface between dielectric fluid in an external horizontal electric field. J. Appl. Mech. Tech. Phys.
**2013**, 54, 52. [Google Scholar] [CrossRef] - Kochurin, E.A.; Zubarev, N.M.; Zubaeva, O.V. Formation of curvature singularities on the interface between dielectric liquids in a strong vertical electric field. Phys. Rev. E
**2013**, 88, 023014. [Google Scholar] [CrossRef] - Zubarev, N.M.; Kochurin, E.A. Integrable model of the interaction of counter-propagating weakly nonlinear waves on the fluid boundary in a horizontal electric field. Theor. Math. Phys.
**2020**, 202, 352–362. [Google Scholar] [CrossRef] - Boyer, F.; Falcon, E. Wave Turbulence on the Surface of a Ferrofluid in a Magnetic Field. Phys. Rev. Lett.
**2008**, 101, 244502. [Google Scholar] [CrossRef] [Green Version] - Dorbolo, S.; Falcon, E. Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. Phys. Rev. E
**2011**, 83, 046303. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kochurin, E.A.; Zubarev, N.M. Gravity-capillary waves on the free surface of a liquid dielectric in a tangential electric field. IEEE Trans. Dielectr. Electr. Insul.
**2018**, 25, 1723–1730. [Google Scholar] [CrossRef] [Green Version] - Kochurin, E.A. Wave turbulence of a liquid surface in an external tangential electric field. JETP Lett.
**2019**, 109, 303–308. [Google Scholar] [CrossRef] [Green Version] - Kochurin, E.A. Numerical simulation of the wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. J. Magn. Magn. Mater.
**2020**, 503, 166607. [Google Scholar] [CrossRef] [Green Version] - Kuznetsov, E.A.; Spektor, M.D. Existence of a hexagonal relief on the surface of a dielectric fluid in an external electrical field. Sov. Phys. JETP
**1976**, 44, 136. [Google Scholar] - Zubarev, N.M.; Kuznetsov, E.A. Singularity formation on a fluid interface during the Kelvin-Helmholtz instability development. J. Exp. Theor. Phys.
**2014**, 145, 1. [Google Scholar] [CrossRef] [Green Version] - Zubarev, N.M.; Kochurin, E.A. Formation of singularities at the interface of liquid dielectrics in a horizontal electric field in the presence of tangential velocity discontinuity. Tech. Phys. Lett.
**2018**, 44, 195–198. [Google Scholar] [CrossRef]

**Figure 2.**The evolution of the interface is shown for the different initial conditions: (

**a**,

**b**) correspond to Figure 1b,d, respectively. Black dashed lines correspond to the pole positions at real x-axis.

**Figure 3.**The difference between two initially close positions of third pole is shown versus time, the red dashed line corresponds to the exponential fit: ${10}^{-4}exp\left(0.1t\right)$.

**Figure 4.**The evolution of the interface is shown for the initial conditions: ${p}_{1}=-0.075i$, ${p}_{2}=-0.6i$, ${p}_{3}=-1.15i$. Black dashed lines correspond to the pole positions at real x-axis.

**Table 1.**The initial poles positions for the numerical solution of the system (8).

# | ${\mathit{p}}_{1}$ | ${\mathit{p}}_{2}$ | ${\mathit{p}}_{3}$ |
---|---|---|---|

1 | $-0.400i$ | $-0.6i$ | $-1.15i$ |

2 | $-0.200i$ | $-0.6i$ | $-1.15i$ |

3 | $-0.175i$ | $-0.6i$ | $-1.15i$ |

4 | $-0.100i$ | $-0.6i$ | $-1.15i$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kochurin, E.A.; Zubarev, N.M.
Chaotic Dynamics of the Interface between Dielectric Liquids at the Regime of Stabilized Kelvin-Helmholtz Instability by a Tangential Electric Field. *Fluids* **2021**, *6*, 125.
https://doi.org/10.3390/fluids6030125

**AMA Style**

Kochurin EA, Zubarev NM.
Chaotic Dynamics of the Interface between Dielectric Liquids at the Regime of Stabilized Kelvin-Helmholtz Instability by a Tangential Electric Field. *Fluids*. 2021; 6(3):125.
https://doi.org/10.3390/fluids6030125

**Chicago/Turabian Style**

Kochurin, Evgeny A., and Nikolay M. Zubarev.
2021. "Chaotic Dynamics of the Interface between Dielectric Liquids at the Regime of Stabilized Kelvin-Helmholtz Instability by a Tangential Electric Field" *Fluids* 6, no. 3: 125.
https://doi.org/10.3390/fluids6030125