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Abstract: Thermal hydraulics, in certain components of nuclear reactor systems, involve complex
flow scenarios, such as flows assisted by free jets and stratified flows leading to turbulent mixing
and thermal fluctuations. These complex flow patterns and thermal fluctuations can be extremely
critical from a reactor safety standpoint. The component-level lumped approximations (0D) or
one-dimensional approximations (1D) models for such components and subsystems in safety anal-
ysis codes cannot capture the physics accurately, and may introduce a large degree of modeling
uncertainty. On the other hand, high-fidelity computational fluid dynamics codes, which provide
numerical solutions to the Navier–Stokes equations, are accurate but computationally intensive,
and thus cannot be used for system-wide analysis. An alternate way to improve reactor safety
analysis is by building reduced-order emulators from computational fluid dynamics (CFD) codes to
improve system scale models. One of the key challenges in developing a reduced-order emulator is to
preserve turbulent mixing and thermal fluctuations across different-length scales or time-scales. This
paper presents the development of a reduced-order, non-linear, “Markovian” statistical surrogate
for turbulent mixing and scalar transport. The method and its implementation are demonstrated
on a canonical problem of differentially heated channel flow, and high-resolution direct numerical
simulations (DNS) data are used for emulator or surrogate development. This statistical surrogate
model relies on Kramers–Moyal expansion and emulates the turbulent velocity signal with a high
degree of accuracy.

Keywords: data driven; multi-scale; turbulence statistics

1. Introduction

Most of the modern design and analysis of engineering systems relies on multi-
scale simulation tools because the phenomena of interest typically incorporate processes
interacting over a wide range of spatio-temporal scales and physical parameters. The
nuclear industry relies on various thermal-hydraulics codes (RELAP, TRACE, and GOTHIC)
for the design evaluation and safety analysis of system-level behavior in Nuclear Power
Plants. Despite using system-level, state-of-the-art models and code architecture, the
modeling uncertainties still impose limitations on the results of safety calculations. The
models involved are imperfect, just like every other model, but they include the best-
available integrated physics, which is highly dependent on the choice of scales in these
models. At a system level, the emphasis is to capture the global phenomena at the cost of
spatial or temporal resolution. In order to save time, cost, and computational resources,
this is done by building component-level lumped approximations (0D) or one-dimensional
approximations (1D) of the three-dimensional (3D) physical phenomena, and integrating
those components within the nuclear system, covering the heat transfer, fluid flow, and
neutron transport.

The system-level codes used in reactor safety analysis have highly approximated
physics. These gross approximations involve homogenization of 3D continuum mechanics
models to develop lower-fidelity 1D or 0D models. A homogenized system parameter
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through a realization of experiments or simulations is bound to produce errors, as the
3D thermo-fluid physics significantly evolves in time, therefore producing physically
inaccurate results due to the complex flow variation over time. For example, motion of
the eddies near the grid plates in the fuel rod bundle is approximated by a 0D equation.
In other examples, mixing and stratification in large volumes, such as containments, can
significantly impact the overall safety [1–3]. For example, hydrogen release into reactor
containment under severe accident conditions of light water can lead to stratification in
the gaseous space of reactor containment due to the lighter weight of hydrogen. Similarly,
plena and cavities in the liquid metal-cooled reactor, molten salt reactor (MSR), and high-
temperature gas-cooled reactor (HTGR) designs experience 3D thermal fluid physics which
cannot be accurately depicted by 0D or 1D models. This may considerably deviate from the
true value of parameters like eddy diffusivity, depending on the nature of the 3D physics [4].
This inaccurate depiction of important physical phenomena due to the turbulent flows in
the system codes can lead to erroneous prediction for scalar transport. The dynamics of the
advected scalar can be described by an advection–diffusion equation. The system codes
handle the solution of this equation by an effective diffusivity type of parameter. While this
provides a method for solving the governing equation, it falls short because the turbulent
diffusion coefficient varies with time [5–11]. It has been shown that only high-fidelity
computational fluid dynamics (CFD) codes using direct numerical simulations (DNS)
or large eddy simulations (LES) have been able to capture the physics of scalar mixing
with accuracy [12]. The main drawback is that they are computationally expensive, and
accurate simulations of the ab initio thermo-fluid models for the industrial scale problem,
such as Nuclear Reactor Systems, are still out of scope to guide design and optimization.
This is true even for the turbulent flow simulations in simple geometries, such as flow
between two plates, which requires simulations that can challenge large-scale parallel
computer architectures. Other 3D CFD models using Reynolds-Averaged Navier–Stokes
(RANS) and other similar models are computationally less intensive, but are limited in their
capability to accurately capture complex mixing behavior. Thus, it can be said that any
approximation introduces a degree of uncertainty in the predicted quantity of interest. In
order to circumvent the limitations of both high-fidelity and approximated models, hybrid
approaches have been proposed. The gross approximations of 1D system codes where 3D
thermal-fluid physics is important can be improved considerably by using high-fidelity
CFD codes to model detailed physics in specific components or subsystems.

System codes have been coupled with CFD codes to simulate transients in EBR-II and
Phenix SFR [13–15]. In all of these examples, the reactor plena were modeled using CFD
codes, and the rest of the system was simulated with 0D or 1D models. Coupling helped in
obtaining better agreement between numerical and experimental results. Therefore, reactor
safety scenarios in advanced reactor designs can be simulated by coupling 1D codes with
high-fidelity CFD codes, that is, by using a 3D CFD code in regions where stratification,
3D flow, or thermal fluctuations are expected and a 1D code is used elsewhere. A critical
question which still stands is: For accurate representation of system-level physics, how
would these 3D models inform 1D models?

Novel coupled multi-scale approaches are implemented in new system analysis codes,
which can model 3D complex physics in some components and 1D approximations in
the rest of the system. Velocity and energy transport are modeled with 1D advection–
diffusion equations for systems by forcing functions for a turbulent mixing term [16].
In the energy equation, turbulent mixing contributes to advective or convective energy
flux, which is computed with the contributions from local 1D flow velocity, body force
terms, and geometry effects. In addition, the closure model is used to estimate the mixing
velocity at the boundary/interface between 1D system models and CFD models. Reduced-
order emulators or surrogates, which can be trained by experimental measurements or
high-fidelity simulations, can provide accurate and efficient 1D to 3D closure evolving
system parameters.
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Recently, various approaches have been adopted to construct reduced-order mod-
els which mimic the 3D physics and improve safety calculations [17–20]. These models
can typically be simulated by a prescribed distribution of the input parameters for for-
ward uncertainty propagation, or the variance of the input parameter can be computed
via an inverse uncertainty quantification methodology [17,21]. Hu et al. [16] proposed
the use of such data-driven algorithms to provide a rapid and potent tool for building
the closures or emulators for multi-scale coupling between 1D and 3D codes. However,
the parameters of the approximated macroscopic model are restricted to only the input
data range, and the model is expected to break down beyond these data-learning condi-
tions due to the non-linear nature of physics. Lack of this physical understanding will
always create a knowledge gap in models based on the black box route with externally
perturbed parameters.

The key engineering quantities of interest often depend on the prediction of velocity
and scalar fields. The transport of these two quantities is governed by the respective
diffusion coefficients, which vary from one time-scale to another (e.g., scalar quantities
like temperature, concentration), which when advected by turbulent diffusion, falls under
the Batchelor regime at short time-scales [22] and in the Richardson regime at larger time-
scales [7]. Since turbulence is a phenomena introduced by the rapid temporal fluctuations
of the velocity, length- and time-scales of the physical phenomenon should be accurately
depicted in models. Turbulent fluctuations affect many other parameters and are not
captured by the system analysis codes. This paper presents a physics-based statistical
learning model of the velocity fluctuations and scalar fluctuations, which emulates the
simulation data obtained from CFD tools.

2. Physics-Based Approach

The physics-based approach to reduce degrees of freedom and emulate the complex
thermal behavior is developed using the principles of fundamental statistical mechanics,
which in recent years have penetrated a number of areas of science and engineering [23–25].
The goal of such physical understanding is to characterize the stochastic process associated
with turbulent flows and mixing. However, the micro-scale scale effects are attributed
to the molecular phenomenon or driven by the fluid thermo-physical properties. It is
in the meso-scopic regime, where the rich set of non-linear, non-deterministic, and not
completely random interactions occur. To illustrate this physics, a canonical problem of
scalar transport is considered in the classical geometry of channel flow and will be used to
statistically capture the energetic interactions between multiple scales.

Physical Setup: Channel Flow with Low Prandtl Number Fluid

The channel flow configuration is used to study the mixed convection flow regime
for liquid metal with a Prandtl number of 0.025. For fluids with a Prandtl number close to
1, the expected behavior of advected scalar turbulence is similar to the flow field, but the
low Prandtl number case where the behavior of the flow and scalar field is expected to be
quite different is chosen to analyze the flow and scalar field data separately. The top and
the bottom walls of the channel are heated uniformly at a certain temperature. The cold
wall is on the top with a lower temperature (Tc), and the hot wall is on the bottom, and
has a relatively higher temperature (Th). Flow enters the channel as shown in Figure 1 at a
Reynolds number of 104, and the global Richardson number in the system is 0.1. Numerical
simulation results of this problem were used to develop physical understanding, and then
to develop a physics-based, reduced-order model. The DNS data were generated using
Incompact-3d [26] (https://www.incompact3d.com) by considering the flow configuration
in a horizontal channel discretized in 512× 256× 512 grid points. A buoyancy force is
induced throughout the flow field due to the temperature difference ∆Thc = (Th − Tc)
between the top wall and the bottom wall. The acceleration acts downward along the y
direction because of gravity. The streamwise, wall-normal, and spanwise coordinates are
represented by x, y, and z, respectively.

https://www.incompact3d.com


Fluids 2021, 6, 79 4 of 13

Figure 1. Simulation domain 512× 256× 512 grid points.

The 2D snapshots of the streamwise velocity field and temperature field at the Z-
centerplane in the domain are presented in Figures 2 and 3. In this flow configuration,
the velocity and temperature signals were probed at the 128th grid point from the bottom
hot plate.

Figure 2. Two-dimensional (2D) snapshot of the streamwise velocity field along the Z-center plane.

Figure 3. 2D snapshot of the temperature field along the Z-center plane.

Energy Cascading

The turbulent flow or convected scalar presented in this problem is expected to have
multiple “hidden” and differentially correlated scales [5]. The interaction of these scales are
highly localized in time. Based on this physical understanding of the turbulent fluctuations
and the energy scales, the macroscopic behavior of the system is affected by the microscopic
phenomena.

The interaction between the scales can be rigorously analyzed by computing prob-
ability density functions (PDF) of velocity or scalar fluctuations at different scales. The
generic description of the energy cascading or interaction between different scales can be
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constructed by computing the transition or conditional PDF (cPDF) from the joint PDF
(jPDF) at multiple scales. In other words, in order to reproduce the energy spectra of
the original signal, multipoint cPDF must be generated, which is a cumbersome process
and will not solve the intent of reduced-order emulation of the physical phenomenon.
Coarse graining of dynamics can be done by approximating the system via a Markov
process. Previous studies [27–29] have shown that this is a good enough approximation
for turbulent jets, wall-bounded flows, and scalar turbulence. This allows the multipoint
cPDF to be simplified to the cPDF computed from the probability of a new state jump
from the most recent state which is, by definition, a Markovian process. By removing the
length/time scale corresponding to memory, it is possible to approximate the process via
a Markov model, and it was shown previously with the experimental data [27] that this
length scale corresponds to the Taylor microscale. For jumps greater than this length scale,
the condition of “Markovianity” will remain satisfied.

Moreover, owing to the very short time-scales associated with microscopic phenom-
ena, it is often prohibitive to resolve them computationally or measure them experimentally.
Therefore, this physics-based approach preserves the mesoscopic scale turbulent fluctua-
tions as compared to traditional homogenization approaches.

3. Theory–Statistics-Based Projection

In this section, the development of the Markovian emulator from the data and the
theoretical background to solve an inverse problem is discussed. Previously, several
statistical mechanics interpretive models or closure models for turbulence were proposed
by researchers (see references [7,29,30]). Pope et al. [30] proposed a linear Markov model for
scalar turbulence based on grid turbulence experiments [30,31]. The simple mathematical
description of the Markovian dynamics process in the continuous time framework can be
described by an Ito semi-martingale.

A more generic, non-linear, statistical mechanics-based continuous time model can
be derived using “Kramers–Moyal expansion” [32,33]. The validity of the Markovian
assumption beyond the Taylor microscale was established by the researchers [27]. The
non-linearity in the model comes from the higher-order dependence of the coefficients of
the Langevin equation on the variable under consideration. This means the parameters
of the model evolve in time. Very generically, a non-linear Langevin equation can be
written for a generic variable “y”, which can take any specific form–velocity, temperature
fluctuations, and so forth.

ẏ = D1(y, t) + D2(y, t)ζ (1)

The coefficients D1(y, t) and D2(y, t) can be obtained from the first two terms of the
Kramers–Moyal (KM) expansion. The KM expansion terms for the transition of probability
current can be derived by starting from the definitions of the cPDF identity [32].

P(y, t + τ|y′, t) =
∫

δ(y′′ − y)P(y′′, t + τ|, y′, t)dy′′ (2)

and substituting the Taylor series expansion of the “δ” function

δ(y′′ − y) =
∞

∑
n=0

(y′′ − y′)n

n!
∂n

∂yn δ(y′ − y). (3)
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Inserting Equation (3) in (2) results in

P(y, t + τ|y′, t) =
∫
(

∞

∑
n=0

(y′′ − y′)n

n!
∂n

∂yn δ(y′ − y))P(y′′, t + τ|y′, t)dy′′ (4)

P(y, t + τ|y′, t) =
( ∞

∑
n=0

∂n

∂yn

∫ 1
n!
(y′′ − y′)nP(y′′, t + τ|y′, t)dy′′︸ ︷︷ ︸

Moments:Mn(y′ , t, τ)

)δ(y′ − y)
)

. (5)

The probability current can be expressed in terms of state transition probability or
cPDF, as

p(y, t + τ) =
∫

P(y, t + τ|y′, t)︸ ︷︷ ︸
state transition probability

p(y′, t)dy′ (6)

p(y, t + τ) =
∫ ( ∞

∑
n=0

∂n

∂yn Mn(y′, t, τ)δ(y′ − y)
)

p(y′, t)dy′ (7)

which can be simplified to

p(y, t + τ)− p(y, t) =
∞

∑
n=1

∂n

∂yn Mn(y, t, τ)p(y, t) (8)

Dividing by τ and setting the limit to 0 results in

lim
τ→0

p(y, t + τ)− p(y, t)
τ

= lim
τ→0

1
τ

∞

∑
n=1

∂n

∂yn Mn(y, t, τ)p(y, t) (9)

Defining and substituting

lim
τ→0

1
τ

Mn(y, t, τ) = Dn(y, t) (10)

leads to

∂p
∂t

=
∞

∑
n=1

∂n

∂yn Dn(y, t)p(y, t)︸ ︷︷ ︸
The Kramers–Moyal Expansion

. (11)

The Kramers–Moyal (KM) expansion as derived is a generic result, where coefficients
of each term can be expressed in terms of the respective moments:

Dn(y, t) = lim
τ→0

1
n!τ

∫ ∞

−∞
(y′ − y)nP(y′, t + τ|y, t)dy︸ ︷︷ ︸

Expansion coefficients

. (12)

If the Kramers–Moyal expansion stops at the second term, then it results in the Fokker–
Planck equation

∂p
∂t

=
∂

∂y
D1(y, t)p(y, t) +

∂2

∂y2 D2(y, t)p(y, t), (13)

and the coefficients D1(y, t) and D2(y, t) can be obtained and substituted to form the
Langevin equation (Equation (1)). If the process is Markovian, then the higher terms
should go to zero, which is an important result from Pawula’s theorem, and allows the use
of the first two terms to compute the coefficients of the Langevin equation (Equation (1)).
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Equivalence to the Advection–Diffusion Equation

Classically, the dynamics of the scalar field is described by the advection–diffusion
equation (see Equation (14)), which is a second-order partial differential equation. Tem-
perature is a scalar, which can be defined in terms of entropy, where entropy is a measure
of randomness accounting the number of microstates occupied by the system [34]. A
stochastic analog for the microstates can be described as a non-linear Langevin equation
(Equation (1)). Therefore, the advection–diffusion equation represents the dynamics of
the probability density function of the occupied microstates. In its most generic form, the
advection–diffusion equation can be written as the Fokker–Planck equation, a PDE which
governs the evolution of PDF through the domain (see Equation (14)):

∂θ

∂t
+ (u · ∇)θ = κ∇2θ︸ ︷︷ ︸

advection−−di f f usion−equation

≡ ∂p(y, t)
∂t

+∇[D1(y, t)p(y, t)] = ∇2[D2(y, t)p(y, t)]︸ ︷︷ ︸
Fokker−Planckequation

. (14)

Equivalence between the Fokker–Planck and advection–diffusion equations can be
demonstrated. The advective flux is driven by the “drift” component, D1(y, t), equiva-
lent to the velocity variable in the advection–diffusion equation. Similarly, the diffusive
component, D2(y, t), in the Fokker–Planck equation is analogous to the thermal diffusion
attributed to local “molecular interactions” or “turbulent eddies”.

Since the physical dynamics are very important for building a statistical emulator of
scalar or flow fluctuations, certain aspects and justifications for building these models are
derived from the classical K-41 theory and Taylor’s hypothesis of local isotropy and frozen
turbulence. Kolmogorov’s K-41 theory relies on the idea that the anisotropy introduced at
production scales is gradually lost as energy is transferred to smaller scales. As a conse-
quence, when the Reynolds number is sufficiently high, the smaller scales are independent
of the production mechanisms, being locally isotropic and universal. Here, the small-scale
isotropy is the property of velocity increments [5]. Local isotropy also means that flow is
invariant from the rotational perspective.

Under Taylor’s frozen turbulence hypothesis, spatial measurements of fluctuations
are possible from a single probe’s measurements [35] (applicable if the mean flow velocity
is much larger than the fluctuating velocity). Owing to this, the spatial correlations can be
approximated via the temporal correlations. In other words, the Taylor hypothesis assumes
a statistical stationarity—that is, space translation will not change the measurement. Thus,
it can be concluded that the temporal response at a fixed point in space can be viewed as
the result of an unchanging spatial pattern convecting uniformly past the point [36]. Under
these hypotheses, it is possible to build simple statistical models for small increments, as
they are locally isotropic and stationary.

4. Results and Discussion

The velocity and temperature signals were obtained from the 128th grid point from
the bottom hot plate in the mid-Z plane (as discussed in the physical domain description).
These signal data are used to obtain the jPDF and cPDF, which are then used to compute
the first and second diffusion coefficients by estimating moments.

4.1. Data Learning: Estimating Moments

The joint probability can be computed via a shifted copy of the signal itself. This shift
in the signal is generated via binning the data and counting the next state achieved by the
signal for each fixed state for the subsequent higher τ.

The jPDF can be obtained for different τ values, and the Equation (12) shows that one of
the key data-generated inputs of this method is the conditional probability, p(y′, t + τ)|y, t,
which is required to compute the conditional moments of the data. This can be computed
by making a vertical (or horizontal) cut in the joint probability distribution function see
(Figure 4).
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Figure 4. Methodology to obtain conditional probability from the time-series data.

Once the conditional probability is obtained, then the conditional moments were
evaluated, and the limiting value of the moments were computed by extrapolating the
moments to τ → 0. These conditional moments were evaluated for all the binning points of
the series for varying lags (τ). Then, a simple regression of computed moments versus the
binning points show the dependence of drift and diffusion coefficients with the measured
signal span itself.

Two important pre-processing conditions which were evaluated before implemen-
tation of this model were that the data or time-series used for analysis were stationary
and Markovian. It was shown in previous studies [27,33] that the Taylor microscale is the
minimum length above which the turbulence shows memoryless behavior, since at that
point, inertial length scales start and the cascade is known to show memoryless behavior.
In other words, the smallest scales used for pre-processing should be above the Taylor
microscale. The time-series used for computing conditional moments was obtained by
subtracting the data from the time-shifted signal where the shifting time-scale, τ, was
larger than the Taylor microscale, which was computed using the osculating parabola
method from the autocorrelation of raw data. This ensures that the data used is Markovian
and stationary.

The post-processing checks for the successful implementation of the Langevin model
include how the PDF obtained from the Langevin model should compare well with the
data, and the higher-order moments (n > 2) of the data, especially the fourth moment, is
relatively small compared to the second moment. This then ensures that the Kramers–
Moyal expansion stops at the second term and results in the Fokker–Planck equation or the
equivalent advection–diffusion equation.

4.2. Velocity Data and Surrogate

The first moment (D1) tends to follow a linear trend with the velocity fluctuations,
while the second moment (D2) shows a quadratic trend. Figure 5 shows the example of
the drift coefficient (D1(y, t)) calculated from a raw velocity time-series, along with the
same data fitted to a first-order polynomial. Figure 6 shows an example of the diffusion
coefficient (D2(y, t)) calculated from a raw velocity time-series, along with the same data
fitted to a first-order polynomial. The fitted coefficients are then inserted back into the
Langevin equation (Equation (1)) for velocity, and this equation is then integrated using
the Euler–Maruyama method. The solution recovers the regenerated signal, which is
then compared with the actual data (see Figures 7 and 8). There are three comparative
analyses used to examine the model—temporal evolution of the regenerated signal, Power
Spectral Density (PSD), and PDF of fluctuations. It can be seen from the the results that the
non-linear Langevin model developed by projecting DNS velocity data on KM expansion
emulates the turbulent flow signal. The regenerated time-series from the Langevin model
looks similar to the time-series obtained from DNS simulations. The PSD comparison
shows that the model captures the expected−5/3 slope in the inertial regime (see Figure 9).
At higher frequencies, the PSD of the model slightly deviates from the data, which is
expected as the raw time-series was pre-processed to remove scales smaller than Taylor
micro-scale for building conditional moments in the KM expansion. The Kramers–Moyal
expansion is a Markovian model, so it will not be able to perfectly capture non-Markovian
processes which are beyond Taylor’s micro-scale. The expansion ends at the second term,
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which is confirmed by the magnitude of the fourth coefficient being negligible as compared
to the second term, thus satisfying Pawula’s theorem. The PDF comparison shows that the
scale of fluctuations obtained from DNS data and the Langevin model are very similar.

Figure 5. Drift parameter fitted to a first-order polynomial.

Figure 6. Diffusion parameter fitted to a second-order polynomial.

Figure 7. Raw velocity data from the probe.
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Figure 8. Regenerated velocity obtained from the Langevin model.

Figure 9. Power Spectral Density (PSD) and probability density functions (PDF) comparison of the
velocity fluctuations obtained from direct numerical simulations (DNS) data and model solution.

4.3. Temperature Data and Surrogate

Some interesting differences are observed between the velocity and temperature time-
series. The temperature data at the same location shows long-term memory effects, which
can be attributed to the thermal diffusivity of the liquid metal. This point can be seen
by drawing a PSD comparison (see Figure 10) of the probed velocity and temperature
time-series. The PSD clearly shows the rapidly dropping energy cascade section in the
temperature spectrum, with a slope of −3 in the inertial regime, which is incongruent with
the liquid metal behavior reported in the literature [37–39]. Beyond the expected inertial
regime, the model is not expected to behave well, due to the high Prandtl number and high
thermal diffusivity of the domain.

The temperature data were then used to construct a statistical surrogate in a manner
similar to the velocity data. Following a similar process, the temperature signal from the
DNS simulations was analyzed and projected on the KM expansion. Conditional moments
and diffusion coefficients obtained show that higher coefficients can be neglected, as in
the velocity case, resulting in retention of only the first two terms of KM expansion and
leading to the Fokker–Planck equation, which is a generic mathematical representative to
the advection–diffusion equation. Thus, the theoretically well-known governing equation
for the scalar transport is conserved from the data.
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Figure 10. Spectrum of velocity and temperature data showing a significant difference in the scalar
turbulence in liquid metal flow.

The Langevin model obtained from the conditional moments is then used to regener-
ate the signal. The comparison between the data and model is demonstrated in Figure 11.
The model matches with the data in the inertial regime quite well by tracking the −3 slope,
which is a special case for liquid metals. Additionally, as expected, the PSD of the model
time-series is expected to deviate from the data at higher frequencies due to high thermal
diffusivity behavior and long-term memory effects. The PDF of the temperature fluctua-
tions in the regenerated signal and the data show good agreement, demonstrating that the
inverse problem, that is, the Langevin equation is successfully constructed.

Figure 11. PSD and PDF comparison of the temperature fluctuations obtained from DNS data and
model solution.

5. Conclusions

This study introduced an alternative approach to overcome uncertainties arising
from the limitations of simplified models in safety analysis tools without significantly
increasing the computational costs. The high-resolution experiments or simulations of a
certain sensitive component or subsystem, which are governed by highly nonlinear thermal
physics, can be used to train the system. The work presented in this paper involved building
a simple statistical reduced-order model or an emulator for the lost degrees of freedom by
learning the parameters directly from the carefully accumulated data, either by running a
model which describes the full dynamics of the equation or carefully collecting the data
via controlled experiments. The statistical mechanics principles were adopted to build a
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Markovian model for the lost behavior attributed to filtering/averaging and projection
of dynamics. This has been implemented and demonstrated on a canonical problem of
liquid metal channel flow with differentially heated walls. A simple statistical surrogate,
the Langevin equation, was constructed by probing the velocity and temperature signals in
the DNS dataset of the liquid metal. The drift and diffusion coefficients of the Langevin
equation were obtained with the help of the Kramers–Moyal expansion, capturing the
Markovian processes. The statistical emulator was able to capture the essential details of
the turbulent signal, and shows good statistical agreement with the raw DNS fluctuations.
Some interesting differences between the velocity and temperature time-series at the same
time-scales were shown. However, future work will need improvement of these emulators
to capture the memory effects, that is, non-Markovian processes.

The local or microscopic behavior of the system can be studied using high-fidelity
DNS or LES simulations, and then can be propagated to the system-level through an
interface between the 1D and 3D codes. This can be done by studying the specific stochastic
process driving the system by analyzing the time signals (velocity or temperature) using an
unsupervised learning methodology introduced in the context of non-equilibrium statistical
mechanics. These statistical emulators can be used to build closures for the 1D models, or
can be used to provide the coupling mechanism. Stochastic surrogate representation can
also be used in the correct depiction of inlet disturbances as an input for turbulent flow
LES/DNS simulations. In cases of reactor scale geometries, future work is recommended
to simulate reactor plena or geometries with complex flow behavior using LES models
or experiments. The scalar turbulence statistics from these simulations can then be used
to develop emulators for stochastic forcing or stochastic closures in 1D models. These
modified 1D models with stochastic emulators might be the most efficient and accurate
option to capture thermal stratification and local scalar mixing in reactor plena. These
models can significantly improve the safety analysis and safety envelope calculations.
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