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Abstract: The Earth’s magnetic field is measured on and above the crust, while the turbulent dynamo
in the outer core produces magnetic field values at the core–mantle boundary (CMB). The connection
between the two sets of values is usually assumed to be independent of the electrical conductivity in
the mantle. However, the turbulent magnetofluid in the Earth’s outer core produces a time-varying
magnetic field that must induce currents in the lower mantle as it emerges, since the mantle is
observed to be electrically conductive. Here, we develop a model to assess the possible effects
of mantle electrical conductivity on the magnetic field values at the CMB. This model uses a new
method for mapping the geomagnetic field from the Earth’s surface to the CMB. Since numerical and
theoretical results suggest that the turbulent magnetic field in the outer core as it approaches the CMB
is mostly parallel to this boundary, we assume that this property exists and set the normal component
of the model magnetic field to zero at the CMB. This leads to a modification of the Mauersberger–
Lowes spectrum at the CMB so that it is no longer flat, i.e., the modified spectrum depends on mantle
conductance. We examined several cases in which mantle conductance ranges from low to high in
order to gauge how CMB magnetic field strength and mantle ohmic heat generation may vary.

Keywords: geomagnetism; core–mantle boundary; electrical conductivity

1. Introduction

The geomagnetic field is important as it protects the Earth (and humanity) from the
effects of cosmic rays and solar wind. The geomagnetic field is measured on and above the
crust but originates in the Earth’s outer core, where a turbulent magnetohydrodynamic
(MHD) dynamo exists. These geomagnetic field measurements provide a window through
which we can peer into the workings of the outer core. However, this window offers a
distorted view because between the Earth’s surface and the outer core lies a thick mantle
whose electrical properties affect the transition of the magnetic field from the core to surface.
The interface separating the mantle and the outer core is called the core–mantle boundary
(CMB). We want to be able to project the geomagnetic field observed on the surface down
onto the CMB to provide a clearer picture of the magnetic field directly above the outer
core. This, in turn, provides a means to test and further develop various dynamo theories
and to enhance our basic knowledge of rotating MHD turbulence.

The geomagnetic field at the surface is usually connected to that on the CMB by
ignoring any electrical conductivity in the mantle. However, the mantle is observed to
be electrically conductive, as is discussed below. This is critical because the turbulent
magnetofluid in the Earth’s outer core produces a time-varying magnetic field that emerges
into the mantle to induce electrical currents. The presence of these currents distorts our
view of the outer core. Here, we recognized the importance of mantle electrical conductivity
and developed a simple yet effective model that allows us to connect the geomagnetic field
at the Earth’s surface to that on the CMB.

As stated above, the Earth’s mantle has nonzero electrical conductivity [1–3], a prop-
erty we take into account using the ansatz of [4] to represent the effects of an electrically
conducting layer through the presence of a spherical surface current. This leads to a new
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form for the geomagnetic power spectrum at the core–mantle boundary (CMB). Commen-
surate with these observations, the mantle, which lies (in a spherical polar coordinate
system: r, θ, φ) between the Earth’s surface at r = re and the CMB at r = ro, is modeled
as having an upper insulating part with no electrical current separated at r = rs from an
electrically conducting lower part. This lower part, ro ≤ r ≤ rs, has a spherically symmetric
volume of electrical conductivity σ(r), which is taken to be exponential and parametrized
by σs = σ(rs) and σo = σ(ro). The effects of conductivity are modeled by replacing the
volume current in the lower mantle by a spherical surface current at a radius rc, where
ro < rc < rs, and σ(r) by a surface conductance σc, which is the integral of σ(r) over the
range ro ≤ r ≤ rs; in turn, rc is the integral of rσ(r)/σc over the same range.

This is a classical magnetic boundary value problem. There is a magnetic potential
field, i.e., the International Geomagnetic Reference Field (IGRF) [5] for rc < r < ∞, while
for ro ≤ r < rc, there is another magnetic potential field interior to the mantle and above
the CMB. There are two boundary conditions: (i) At the lower mantle current sheet, r = rc,
the radial components of the IGRF and interior potential field must match. (ii) At the CMB,
the interior potential field is taken to be purely transverse. Boundary condition (ii) is an
approximation based on several related factors: numerical results validating the frozen-flux
approximation [6], the phenomenon of dynamic alignment [7–10], and theoretical models
in which a spherically confined, turbulent magnetofluid tends to a force-free state [11–13]
in which the turbulent magnetic field is essentially transverse at the CMB [14].

The end result of this model is a significant modification of the Mauersberger–Lowes
(M–L) spectrum [15,16] at the CMB so that it is no longer flat. Magnetofluid turbulence
in the core is not expected to have an inertial range [17], so any suitable spectrum should
become steeper than the Kolmogorov spectrum ∼ k−5/3 as the multipole order increases.
Here, we discuss how the magnetic spectrum at the CMB is modified for various levels of
mantle electrical conductivity and estimate the associated rates of ohmic dissipation.

2. Mathematical Model
2.1. Mantle Conductivity

As mentioned in Section 1, we used a spherical polar coordinate system (r, θ, φ), where
the surface of the Earth is at re = 6371.2 km, and the mantle lies between re and the CMB at
ro = 3480 km. The insulated upper mantle and electrically conducting lower mantle are
separated at r = rs, and the spherical surface current is at rc, with ro < rc < rs. A suitable
value for rs and means of finding rc are now discussed.

In order to determine an appropriate value for rs, we consider some recent estimates
of mantle conductivity with depth. The estimates of [1,2] have some uncertainty and do not
extend completely to the CMB but only to a depth of about 2000 km, while with the more
recent results of [3], the estimates extend to a depth of 2900 km. The values for conductivity,
when it becomes appreciable in the upper mantle, appear to be similar, though not the
depth at which this value ensues. Ref. [1] found that conductivity σ becomes appreciable
at a depth of ∼1000 km, while [2,3] found that it becomes appreciable around 650 km deep;
at these depths, σ = σs ≈ 4 S/m and seems to increase slightly with depth, but again,
the estimates only extend to about 2000 or 2900 km deep. Above the onset of appreciable
conductivity, values of σ quickly fall by a factor of ∼10−3, so that the upper mantle r > rs
is modeled as nonconducting.

Here, we assume that σs = 4 S/m at rs = 5371.2 km (1000 km deep); at the CMB, the
conductivity is σo ≥ σs. In the lower mantle, conductivity σ(r) is represented as:

σ(r) = σs exp[α(rs − r)], ro ≤ r < rs, (1)

α =
log(σo/σs)

rs − ro
, σo = σ(ro). (2)

A similar form of continuous conductivity for a two-layer mantle was used by [18],
whereas [19,20] introduced a thin, electrically conducting layer in the mantle above the
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CMB, which (1) can approximate with large σo. (Although there may be lateral variation,
as noted by [21], we maintain spherical symmetry here).

In addition to the boundary conditions at the CMB, we differ from [18] in that we
represent the influence of an electrically conducting lower mantle on the CMB magnetic
field by the effect of a spherical surface current located within the lower mantle, an
equivalence shown by [4] [Appendix G]. (A similar approach was used by [22], although
the current sheet was placed directly on top of the outer core.) Here, surface conductance
σc and current sheet position rc are defined by:

σc =
∫ rs

ro
σ(r)dr =

σo − σs

α
, (3)

rc =
∫ rs

ro
rσ(r)dr = ro +

1
α

[
1− σs

σc
(rs − ro)

]
. (4)

As σo → σs, we have: σc → (rs − ro)σs and rc → (rs + ro)/2. In this model, the
parameters σs and σo determine the values of σc and rc. Although we keep σs at 4 S/m below,
various values of σo are used to examine the effects of possibly increasing conductivity as
the CMB is approached.

As previously noted, the presence of a conducting layer in the lower mantle was used
before by [19,20] to couple the outer core to the mantle, affecting the relative rotation rates of
both. Their conducting layer was 90 km thick, sat on the CMB, and had a conductivity equal
to that of the outer core. They integrated radially over this layer to produce a magnetic
boundary condition on the CMB. Implicitly, this permitted the magnetic field to transition
from the nonpotential outer core field to an exterior potential field. Magnetic boundary
conditions are such that the normal component of the magnetic field is continuous, whereas
the difference between transverse parts of exterior and interior magnetic fields is related
to a current in the conducting layer. In [19,20] and [22], the normal component of the
magnetic field appeared very small at the CMB. Here, we assume that the normal, i.e.,
radial, component can be treated as zero at the CMB through the presence of a conducting
layer; through this conducting layer, the radial component grows in its transition to the
exterior geomagnetic field. We now proceed to a description of the magnetic fields and
derive the electrical current in our model system.

2.2. Exterior Geomagnetic Field

The geomagnetic field B, appropriate for r > rc in our model, is due to a magnetic
potential, and is conventionally expressed as

B = −∇ re

N

∑
n=1

n

∑
m=0

( re

r

)n+1
[gm

n Cm
n (θ, φ) + hm

n Sm
n (θ, φ)]. (5)

Henceforth, we denote the double summation symbols above by ∑n,m. gm
n and hm

n ,
n = 1, . . . , 13, m = 0, 1, . . . n are the Gauss coefficients of the IGRF [5], while Cm

n (θ, φ) and
Sm

n (θ, φ) are the cosine harmonics and sine harmonics, respectively:

Cm
n (θ, φ) = P̄m

n (cos θ) cos(mφ), (6)

Sm
n (θ, φ) = P̄m

n (cos θ) sin(mφ). (7)

The associated Legendre functions P̄m
n (cos θ) are Schmidt quasi-normalized [23]. Cm

n
and Sm

n satisfy the orthogonality relations〈
Cq

p Sm
n

〉
≡
∫ π

θ=0

∫ 2π

φ=0
Cq

p Sm
n sin θ dθ dφ = 0, (8)
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〈
Cq

p Cm
n

〉
=
〈

Sq
p, Sm

n

〉
=

4π

2n + 1
δpn δqm. (9)

The Kroenecker delta symbol δjk = 1 if j = k, and 0 if j 6= k.

2.3. Intermediate Magnetic Field

Between the CMB and the surface current (ro ≤ r < rc), there is also a magnetic
potential field, but of the form

β = −∇ re ∑
n,m

fn(r)[Gm
n Cm

n (θ, φ) + Hm
n Sm

n (θ, φ)], (10)

fn(r) =
( re

r

)n+1
+

n + 1
n

(
re

ro

)2n+1( r
re

)n
. (11)

This intermediate field β has r̂ · β = 0 at r = ro in order to match the outer core
magnetic field, which is approximated as purely transverse at the CMB.

We now connect gm
n and hm

n to Gm
n and Hm

n and then find the surface current J at r = rc.
Since r̂ · (B− β) = 0 at r = rc, we have{

gm
n

hm
n

}
=

[
1−

(
rc

ro

)2n+1
]{

Gm
n

Hm
n

}
. (12)

Applying r̂× (B− β) = µoJ at r = rc and using Equation (12) yields

J = ∑
n,m

(
re

rc

)n+2
r×∇

[
Jm
n Cm

n (θ, φ)
+ Km

n Sm
n (θ, φ)

]
, (13){

Jm
n

Km
n

}
= −

(
1

µon

)
2n + 1

1− (ro/rc)
2n+1

{
gm

n
hm

n

}
. (14)

We now know the surface current in terms of the Gauss coefficients gm
n and hm

n of
the IGRF.

In terms of the Gauss coefficients, we use (12) to see that the intermediate field β
given by (10) at the CMB (r = ro) has the form

β = −∑
n,m

Fn ro∇[gm
n Cm

n (θ, φ) + hm
n Sm

n (θ, φ)], (15)

Fn(ro) =
re

ro
fn(ro) =

(
re

ro

)n+2(2n + 1
n

)[
1−

(
rc

ro

)2n+1
]−1

. (16)

This intermediate field β is, again, purely transverse at the CMB, i.e., has r̂ · β = 0 at
r = ro.

2.4. Power Spectrum of the Geomagnetic Field

The traditional power spectral density Rn(r) of the geomagnetic field on a spherical
surface at radius r is called a Mauersberger–Lowes spectrum [15,16]:

Rn(r) = (n + 1)
( re

r

)2n+4 n

∑
m=0

[
(gm

n )
2 + (hm

n )
2
]
. (17)

At the Earth’s surface, it is Rn(re), and at the CMB, it is Rn(ro), where the connection
between the two is

Rn(ro) =

(
re

ro

)2n+4
Rn(re). (18)
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Using Equations (9), (10), (12), (16), and (17), we integrate |β|2 over the surface r = ro
on which r̂ · β = 0. As such, we see that instead of Rn(ro) at the CMB, we have a spectrum

Ro
n(rc) =

n(n + 1)
2n + 1

F2
n(ro)

n

∑
m=0

[
(gm

n )
2 + (hm

n )
2
]
= Gn(rc)Rn(re), (19)

Gn(rc) =

(
2n + 1

n

)[(
rc

ro

)2n+1
− 1

]−2(
re

ro

)2n+4
. (20)

Note that in the integration that led to (17), in addition to the factor n(n + 1)/(2n + 1)
given in (19), there is also a factor (n + 1)2/(2n + 1) due to the nonzero radial part of B;
adding these together produces the factor (n + 1) appearing in (17).

Thus, the results presented here, using the magnetic field β as defined by Equations (15)
and (16), suggest that rather than the factor (re/ro)2n+4 appearing in (18), the actual factor
depends on the radius rc and takes the form described by (20).

The spectra Ro
n(rc) for the five cases with different σo and thus rc are compared to

the Mauersberger–Lowes spectrum Rn(ro) at the CMB, as well as the surface spectrum
Rn(re) in Figure 1. Additionally, a Kolmogorov spectrum k−5/3 is pictured, which takes
into account that each multipole n has many associated wavenumbers k [24].

Consider the factor Gn(rc): as rc approaches ro, the core magnetic field is expected
to continually increase at all n. However, as n becomes large, we have, in terms of the
geometric mean rm,

lim
n→∞

Gn(rc) = 2
(

r2
e

rcro

)2( rm

rc

)4n
, rm ≡

√
rero. (21)

In the limit n → ∞, Gn(rc) (i) proceeds to 0 for rc > rm, (ii) becomes the constant
4(re/ro)3 for rc = rm, and (iii) proceeds to ∞ for rc < rm. Since rm = 4709 km, rm/rc > 0 for
all the rc in Figure 1, and case (iii) applies. However, for all rc, we have

lim
n→∞

Ro
n(rc)

Rn(ro)
= 2

(
ro

rc

)4n+2
→ 0. (22)

Thus, the modified spectrum Ro
n(rc) always falls increasingly farther below Rn(ro) as

n increases.
In Figure 1, Ro

n(rc) is pictured for rc = ri, i = 1, . . . , 5. Now, rc is a function of σo
through Equation (4) and the definition of σc in Equation (3); so, for ease of reference, we
list their values in Table 1, along with the rms magnitudes of dipole magnetic intensity

BD =
√

Rc
1(rc) at the CMB, in units of milli-Tesla (mT). In addition, estimates of mantle

ohmic heat production rate Q(rc), discussed in Section 2.5 with respect to σo, are also
provided in Table 1.

Let us consider the different cases that appear in Figure 1 and Table 1. The closest rc
to the CMB, r5, is 236 km above the CMB, and the modified core field at n = 1 is about
200 times the M–L field. For r1, which is 945 km above the CMB, the modified core field
is about 40 times the M–L field; the other curves fall in between these two. The magnetic
power spectrum in the core is not expected to have an inertial range [17], so any suitable
spectrum should be steeper than the Kolmogorov spectrum ∼ k−5/3. At any value of rc,
the magnetic spectra in Figure 1 are close in shape to that shown in Figure 2 in [17], while
conductivity close to the CMB only affects their vertical position in Figure 1. The magnetic
spectrum of [17] falls by a factor of about ∼ 10−4 from n = 1 to n = 10. The spectra in
Figure 1 fall between 3× 105 and about 3× 103, with the r3 spectra falling almost exactly
by 104. Most of the modified CMB spectra in Figure 1 fall off, as might be expected from
the MHD turbulence with a small or nonexistent inertial range, whereas the Mauersberger–
Lowes spectrum at the CMB seems much too flat as it only falls by a factor of 10. We chose,
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somewhat arbitrarily, to compare n = 1 and n = 10 because the IGRF spectrum for n > 10
is not very exact and the n > 10 values have only been included since the year 2000 [5],
although earlier work, e.g., [25], estimated that the spectrum was relatively accurate up
to n = 13. Better estimates of mantle electrical conductivity close to the CMB will help
determine the value of rc that is most appropriate.

Table 1. Model properties for five cases with different σo. The associated σc and radii rc = ri,
i = 1, . . . , 5 in Figure 1 are given here, along with estimated values of heating rate Q(rc) and rms
dipole magnetic intensity BD at the CMB. For comparison, the Mauersberger–Lowes values for BD

are 0.0422 mT on the Earth’s surface and 0.259 mT on the CMB. (Conduction in the mantle starts at
rs = 5371 km and finishes at the CMB at ro = 3480 km; its effects are modeled as due to a spherical
surface current of conductance σc at r = rc.)

Case, i = 1 2 3 4 5

σo (S/m) 4 40 200 103 104

σc (kS) 7.56 29.5 94.7 341 2414
rc = ri (km) 4425 4091 3925 3815 3721

BD (mT) 0.424 0.717 1.03 1.41 2.01
Q(rc) (GW) 53.4 33.7 20.1 9.93 2.72

1 2 3 4 5 6 7 8 9 10 11 12 13
10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

n

(nT)
2

k−5/3

Rc
n(r5)

Rc
n(r4)

Rc
n(r3)

Rc
n(r2)

Rc
n(r1)

Rn(ro)

Rn(re)

Figure 1. The modified CMB magnetic spectrum Ro
n(rc), for rc = ri, i = 1, . . . , 5; here, in kilometers,

r1 = 4424.8, r2 = 4090.7, r3 = 3924.5, r4 = 3814.7, and r5 = 3720.8; the geometric mean is
rm =

√
rero = 4708.7. For comparison, the Mauersberger–Lowes spectra Rn(r) at the surface

re = 6371.2 km, and CMB, ro = 3480 km; a Kolmogorov spectrum k−5/3 is also given.

With regard to the magnetic spectra due to magnetohydrodynamic (MHD) turbulence,
consider Figure 2, where we use, as an example, the spectrum Ro

n(r3) from Figure 1, and
then scale and overlay on Ro

n(r3) a turbulent spectrum from simulation NM06 in [26]. This
simulation was of rotating, dissipative, forced MHD turbulence run on a 643 grid for a
very long time; the kinetic and magnetic Reynolds numbers were 285 and 200, respectively;
the wavenumber range was 1 ≤ k < 32; and the forcing wave number was k f = 9, which
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pushed the spectrum up for k∼k f . If k f was larger, the simulated spectrum would have
had a greater fall-off. This simulation was used to study the low-k behavior of forced,
dissipative MHD turbulence and a peak at lowest-k is what is predicted by the statistical
theory of ideal MHD turbulence [24,27]. Figure 2 also shows the Mauersberger–Lowes
spectrum Rn(ro) on the CMB and a representative Kolmogorov spectrum k−5/3. Figure 2
demonstrates that the presence of mantle electrical conductivity is needed to produce
a magnetic spectrum on the CMB that is not flat and, at least at low-k, behaves as if it
originated out of a turbulent outer core.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
8

10
9

10
10

10
11

10
12

10
13

n

(nT)
2

k−5/3

Rn(ro), σm = 0

Rc
n(r3)

Sim. kf = 9

Figure 2. The spectrum Ro
n(r3) from Figure 1 along with a scaled, overlaid turbulent spectrum from

simulation NM06 discussed in [26]; NM06 was forced at wavenumber k f = 9 (please see text for more
details). The Mauersberger–Lowes spectrum Rn(ro) on the CMB and a representative Kolmogorov
spectrum k−5/3 are also shown.

2.5. Heat Produced by the Surface Current at r = rc

The current density J on the sphere at r = rc is given by Equation (13); if we integrate,
as defined in Equation (8), the squared surface current density J2 = J · J over the sphere
r = rc and divide by the estimated electrical conductance σc from Equation (3), we arrive
at an expression for the heating rate Q(rc) = r2

c
〈

J2〉/σc produced by the surface current J:

Q(rc) =
4πr2

c
µ2

oσc

13

∑
n=1

(
2n + 1

n

)
Rn(rc)[

1− (ro/rc)
2n+1

]2 . (23)

We use SI units in Equation (23), so the Gauss coefficients in Rn(rc), described in
Equation (17), must be expressed in Tesla and rc in meters, giving Q(rc) in terms of watts.
Although there is a lack of knowledge as to the actual value of the conductivity as the
CMB is approached, a broad range of values for σo, along with Equation (23), provides a
representative range of values for Q(rc).
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Again, these estimated heating rates Q(rc) are listed in Table 1. The total power
produced by the core is estimated to be 10 ± 4 TW [28], so that the values for Q(rc)
given in Table 1 appear reasonable, decreasing as rc decreases, an effect that is due to
the corresponding increase in σc. These estimates of Q(rc) are very approximate, and
more realistic values will depend on how σ actually varies with depth, but they provide a
qualitative picture of the effects of mantle conductivity.

3. Conclusions

A new method for mapping the IGRF from the Earth’s surface to the CMB was
developed and presented here. The proposed mode is not intended to represent the actual
conductivity profile in the mantle, which is unknown, but instead to serve as a surrogate
that allows the effect of mantle electrical conductivity to be factored into estimating the
CMB magnetic field. This led to a modification of the Mauersberger–Lowes magnetic
power spectrum at the CMB, by which it may be viewed as no longer flat, but instead falls
off in a manner more consistent with a spectrum generated by magnetofluid turbulence.
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