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Abstract: For the optimal design of cooling and heating devices, the properties of the included fluids
are crucial. The temperature dependence of viscosity deserves attention, as changes can be one
order of magnitude or more. Here we examine the influence on convective motions by simulating
a heating and cooling experiment with a vertical cylinder by finite element computational fluid
dynamics (CFD) models. Such an experimental setup in which flow patterns are determined by
transient viscous convection has not been simulated before. Evaluating the general behavior of the
experiment in 2D, we find a dynamic phase after and before phases with moderate changes. Flow
patterns in the dynamic phase change significantly with the temperature range of the experiment.
We compare the outcome of the numerical models with results from laboratory experiments, finding
major discrepancies concerning the flow patterns in the dynamic phase. 3D modeling shows weaker
dynamics but does not show good timing with the experiment. The study depicts the importance of
parameter dependencies for convective motions and demonstrates the capabilities and limitations of
models to reproduce details of viscous convection.

Keywords: thermal convection; density-driven flow; parameter dependency; CFD

1. Introduction

Viscous fluids are crucial components used in various applications. They are used
as lubricants, in heat exchangers, etc., generally in cooling and heating facilities at very
different scales. They are pivotal for cooling cores of nuclear reactors at the large scale,
refrigerators and air conditioners at the medium scale, and electronic devices such as
transistors and chips at the micro-scale.

For the optimal design and application of these facilities, the parameter dependencies
of viscous fluids have to be taken into account. As most applications deal with heat transfer,
it is the temperature dependence that is of specific interest, in particular when dealing with
a wide temperature range.

For applications in heat transfer, the following fluid parameters have to be taken
into account: Density, viscosity, thermal conductivity, and heat capacity. As an example,
Figure 1 shows the temperature dependency of these parameters for the oil SAE90. This
oil is commonly known as motor lubricant. According to the grading of the Society of
Automotive Engineers (SAE)m its kinetic viscosity ranges between a minimum of 13.5 cSt,
and a maximum of 24 cSt at 100 ◦C. The relations depicted in Figure 1 yield a value of
18.4 cSt at 100 ◦C. The exact mathematical formulations used for the graphs are given below.

It is a common observation that viscosity has the highest variability among the four
parameters mentioned. This is clearly visible in the plots in Figure 1. The viscosity
plot clearly shows curvature, while the other parameters deviate marginally from linear
relations. The viscosity range may span more than one order of magnitude for relatively
moderate temperature intervals.
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Figure 1. Parameter dependencies on temperature for SAE90 oil [1].

For common fluids, several functional formulations can be found that describe the
effect of temperature T on the parameters. The dependence is often defined in relation to
a reference value Tref.

ς(T) = ςre f exp
(

γ
(

T − Tre f

))
(1)

ς may represent any of the mentioned parameters. Equation (1) is valid with ςre f = ς(Tre f )
and an empirical constant γ. In reaction engineering temperature dependencies, the general
Arrhenius equation is often preferred:

ς(T) = ς0 exp

(
−Ea

kB

(
1
T
− 1

Tre f

))
(2)

with activation energy Ea and Boltzmann constant kB [2]. The coefficient ς0 in formula (0)
depends on the reference temperature. The viscosity dependence on T in the Arrhenius-
type equations is discussed in detail by Messaâdi et al. [3] and Ike [4]. For a rigorous
dimensionless description, it is necessary to transform it to a functional formulation that
is independent of the choice of a reference point. Pawlowski [1] showed that the one-
parametric set of χ− functions, defined by

χ(u, λ) =

{
(1 + λu)1/λ for λ 6= 0
exp(u) for λ = 0

(3)

fulfils the latter condition. Using the χ− functions, the parameter dependency can be
expressed as:

ς(T) = ςre f χ
(
(T − Tre f )/a, λ

)
or

ς(T) = ςre f χ
(
( 1

T −
1

Tre f
)/a, λ

) (4)

The formulations in Equation (4) depend on the constants Tre f , ςre f = ς(Tre f ), a and λ.
As an example, Table 1 lists the coefficients for the different parameters for SAE90 oil using
the first formula in Equation (4). The first version of the dependency is used for all modeling
work reported here.

Variable viscosity effects on convective motions have been studied for different geo-
metrical and physical constellations. There are numerous studies concerning the classical
Benard setup, where a sample is heated from below and cooled from above, in pure flu-
ids [5–7] and in porous media [8–10]. Research work is reported on several other geometries.
Hossain and Munir [11] dealt with a truncated cone structure. Hooman and Gurgenci [12]
were concerned with forced convection in a porous channel with constant heat flux from
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the boundaries. Soares et al. [13] studied the flow across a heated cylinder. Malkovski and
Magri [14] examined convection in a fault within a geological system. Almost all of the
cited work conducts numerical simulation and has no comparison to measured data. Here
we are concerned with a setup that is different from all those previously mentioned.

Table 1. Parameters and their dependency constants for SAE90 oil with Tref = 40 ◦C [1].

Parameter Unit Symbol ζref a λ

Density kg/m3 ρ 890 −1200 1
Dynamic viscosity Pa s µ 0.202 −17.9 −0.201

Specific heat capacity J/(kg◦K) ρC 2005 470 0
Thermal conductivity W/(m◦K) k 0.11 4570 1

The main aim is to reconstruct observations from several laboratory experiments
in which flow is governed by transient viscous convection. The reconstruction of flow
patterns observed in a lab by numerical simulation is apparently a challenge as there are
few studies addressing it. The history of attempts to model steady convection patterns in
the Hele-Shaw cell of the Elder experiment [15] illustrates the challenge. The difficulties
surely increase if the setting is more complex, for example for more complicated geometries,
parameter dependencies, high Rayleigh numbers, forced convection, radiation, etc. In
comparison, the here-considered experiment seems unproblematic, dealing with laminar
flow in simple geometry. Thus, one would expect that the numerical models simulate the
observed behavior easily. The here-reported results demonstrate that even under these
circumstances, exact prediction of all experiment variants remains a challenge.

Pawlowski [1] describes laboratory experiments that are based on thermal convection
for which the outcome clearly depends on parameter dependencies. The setup is very
simple, as sketched in Figure 2. A closed cylinder containing the fluid at a constant
low temperature T0 is put into a bath of elevated temperature T1. During the following
phase in which the cylinder heats up, the temperature development within is recorded at
two positions on the vertical cylinder axis. After the temperature in the entire cylinder has
reached an ambient high temperature, the cylinder is put back into a bath with temperature
T0. During the cooling phase that follows, the temperature at the two observation points is
further recorded.
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Figure 2. Vertical cross-section through the experimental setup, with cylinder axis in the middle.

In the described experiments, the two temperature sensors are located on the cylinder
axis at equal distances from the top and bottom of the cylinder. In Figure 2, the sensor
positions are indicated by A and B. If heat conduction was the dominant process, both
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locations would show the same temperature graphs. In all of the experiments, however,
convection comes into play, and the recorded temperature time series are quite different.

As convective motions strongly depend on the parameter dependencies on tempera-
ture, this has to be considered in the setup of laboratory experiments. The issue is outlined
in detail by Pawlowski [1], describing the setup of an experimental series with the aim
to find the optimal fluids for use in heat exchangers. While the cited study describes
a theoretical approach, based on dimensional analysis, the aim here is to view the experi-
ments from the modeler’s perspective. Using Computational Fluid Dynamics (CFD), i.e.,
numerical methods, we reconstruct the laboratory facility, choose the relevant formulations
in terms of differential equations, and introduce the parameter dependencies. We examine
the outcome of the constructed model and check the sensibility concerning numerical
parameters and the temperature range. Finally, we compare the output of the numerical
model with the results measured in the laboratory.

2. Differential Equations and Numerical Modeling
2.1. Differential Equations

Laminar flow, as can be expected for viscous fluids in the described setup, is described
by the Navier–Stokes equations:

ρ ∂
∂t v + ρ(v · ∇)v = −∇p +∇µ

(
∇v + (∇v)T

)
+ ρg

∇ · ρv = 0
(5)

For the dependent variables pressure p and velocity v, ρ denotes density and µ the
dynamic viscosity. Usually, the second term in the first Equation of (5) that accounts for
inertia effects is neglected and the equation is reduced to Stokes flow [16]. The last term in
the first equation is the forcing term that results from gravity. g is the vector with a length of
9.807 m/s2 in the direction of gravity, which is aligned here with the cylinder axis. Because
of its relevance in the forcing buoyancy term, the variability of density is crucial for the
onset of convective motions.

Heat transport is described by the advection–diffusion equation that can be written as:

ρC
∂T
∂t

= ∇k∇T − ρCv∇T (6)

where T is the dependent variable. C denotes the heat capacity and k is the thermal con-
ductivity. Generally, all of the four previously mentioned parameters change as functions
of temperature.

Altogether, the described equations denote a coupled system for flow and transport.
Heat transport depends on the flow due to advective heat transport. The flow depends on
the distribution of the transport variable due to the temperature dependencies of density
and viscosity. Such coupled behavior is the origin of free thermal convection [17].

2.2. Numerical Model Setup

The breakthrough curves in the series of experiments outlined by Pawlowski [1] show
a typical pattern (see below). Such regular behavior indicates that 2D convective motions
are crucial, at least in the long run. 3D convection breaks the 2D symmetry of the setup
and thus leads to complex irregular flow patterns. The modeling is thus mainly restricted
to the exploration of 2D convective motions. Several runs with a 3D model are performed
to check whether 3D eddies appear temporarily.

Due to the symmetry of the experimental setup, the 2D model region is half of a vertical
cross-section through the cylinder that was shown in Figure 2, with the cylinder axis as
a symmetry boundary. The region is a rectangle that, except for the symmetry axis, is
bound on all sides by impermeable walls at a constant temperature (cylinder bottom, side,
and top).
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On the walls, we require a no-slip condition for flow, and a Dirichlet condition with
a prescribed temperature. Along the cylinder axis, the symmetry conditions have to be
fulfilled. Both the heating and cooling phases of the experiment are simulated by the model.
For the heating phase, the initial temperature is low (T0) and the boundary temperature
is high (T1). For the cooling phase, the initial temperature is high (T1) and the boundary
temperature is low (T0).

Concerning the parameter dependencies, the first equation of the functional relations
(4) is used. The focus here is on the experiments performed with SAE90 oil. So, we use the
values given in Table 1 for the evaluation of the formulas for the different parameters.

Table 2 lists the reference parameters and geometrical values for the experiments. The
values for density, dynamic viscosity, and diffusivity are for the reference temperature of
40 ◦C. The thermal diffusivity is computed using the definition D = k/ρC.

Table 2. Parameters, units, and reference values.

Parameter Unit Symbol Value

Height m H 0.075
Diameter m d 0.03

Sensor location distance from top/bottom m Z 0.012
Dynamic viscosity Pa s µ 0.202

Density kg/m3 ρ 890
Diffusivity m2/s D 6.78 × 10−8

Low temperature ◦C T0 22
High temperature ◦C T1 95

The model is set up using COMSOL Multiphysics 5.6 software that is very versatile
for finite element numerical modeling of coupled processes in physics, chemistry, biology,
geology, medicine, etc. In the 2D finite element formulation, the pressure field is approx-
imated by linear variables (P1), velocity components, and temperature by second-order
elements (P2). The mesh is irregular with a maximum element size of half a millimeter.
A typical mesh consists of 5749 nodes, 10,344 triangular and 402 quadrilateral elements,
and 22,996 degrees of freedom (DOF). The quadrilateral elements result from the special
discretization of the boundary layers at the wall boundaries, as shown in Figure 3. For 3D
linear elements for all dependent variables, a mesh with 23,835 nodes, 81,644 tetrahedra, and
16,320 prisms leads to 119,175 DOFs. With a value of around 0.9, the average mesh quality is
very good in 2D, while the quality measure decreases to about 0.7 for the 3D mesh.
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In order to stabilize the computation, we use consistent stabilization methods: Stream-
line and crosswind diffusion. Non-consistent stabilization is not used, in order to avoid
unphysical numerical diffusion. The temporal development is simulated by time steps. The
time steps are updated during the simulation according to the Courant–Friedrichs–Lewy
(CFL) condition.

3. Results

A series of numerical runs were performed to explore the solution behavior, in order
to compare it with the general observations of the laboratory experiments [1]. The effect of
the temperature range was our particular focus. Numerical results with different T0 and T1
are reported below. The geometrical measures of the experiment were taken from the cited
reference, where the SAE90 oil was used as the fluid. Concerning parameter dependencies,
we mainly applied the values of Table 1. In some runs, we explored the effect of a changed
a-value for the dynamic viscosity.

3.1. Flow Modeling

Figure 4 depicts flow patterns during the heating phase for the example simulation.
The color plots show the velocity magnitude. Arrows indicate the flow direction. The run
was performed for temperatures T0 = 22 ◦C, T1 = 95 ◦C, and the parameter dependency
values of Table 1.
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as shown at t = 1.9, show bigger eddies than in the first stage of the experiment. They 
appear and disappear in a quasi-oscillating temporal pattern, but never destroy the 
dominating two-eddy system. 

     
t = 0.9 min t = 1.1 min t = 1.7 min t = 1.9 min t = 7.5 min 

Figure 4. Flow patterns shown by velocity magnitude and arrows in the half cylinder cross-section for the heating
experiment (maximum velocities in the subplots from left to right: 2.2, 2.4, 1.9, 3.9, 1.3, 1.0 mm/s).

A strong convection current is initiated after the cool cylinder has been submerged in
the hot water. There is strong downward flow in the center of the cylinder and upward flow
at the outer wall. What follows is the weakening of the downward flow, while the upward
flow component at the outer boundary resides. After around one and a half minutes in the
lower center part of the cylinder, a strong upward flow appears, replacing the downward
flow. In the subplots of Figure 4, the corresponding eddy can be recognized at t = 1.3 min,
and it gains strength quickly, reaching a maximum height of a third of the column length
at t = 1.9 min. After this dynamic phase, the recent eddy is pushed back by the major
circulation. In the final phase, the system with a big circulation across the entire length of
the cylinder and a smaller eddy at the bottom center retained between the eddies, the flow
is downward, corresponding to upward flow along the outer wall and the lower symmetry
axis. Small-scale instabilities appear at the bottom, as can be seen in Figure 4 at t = 2.5 min.
These transients die out quickly.
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The flow patterns of the cooling experiment are shown in Figure 5. As expected,
many phenomena of the heating experiment appear during cooling as well, but in opposite
directions. The dominating circulation has downward flow along the outer walls and
upward flow in the center. Furthermore, after about 1.5 min, the formation of a second
eddy can be observed, not at the center bottom of the cylinder but at the center top. While
this eddy gains strength quite rapidly, it also shrinks quickly thereafter. In Figure 6, this
circulation reaches its maximum at t = 1.7 min, and is reduced to its final much smaller size
already at t = 1.9 min. The smaller disturbances, however, which in the cooling experiment
appear at the top of the cylinder, look different compared to heating. Patterns, as shown
at t = 1.9, show bigger eddies than in the first stage of the experiment. They appear
and disappear in a quasi-oscillating temporal pattern, but never destroy the dominating
two-eddy system.
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3.2. Temperature Distributions

Figure 6 illustrates the temperature distributions at various stages of the heating and
cooling experiments. The plots were taken from the output of the model run with the
same parameters used for the plots in the previous figures. In the initial stage, one can
see different heating patterns in the top and the bottom parts. These are attributed to the
convection eddy that was observed in the flow pattern. The development of a second eddy
corresponds to the appearance of a mushroom shaped plume, rising from the bottom along
the cylinder axis, clearly to be seen at time t = 1.9 min. Later, with hotter fluid approaching
the lower part of the cylinder from above, the strong thermal gradients in the upper part
of the secondary eddy vanish. This corresponds to the final pattern, observed in the flow
visualization, showing a weakened secondary current.

The temperature distributions during the cooling stage show similarities with the
observations of the heating stage, but with exchanged roles concerning the top and bottom
of the cylinder. In the initial phase, the fluid cools quicker at the bottom, while more rapid
warming can be observed at the top when the cylinder is heated. Differences between
the two stages of the experiment appear concerning the instabilities that follow the initial
pattern. While there is a single rising plume during heating, more complex figures appear
during cooling. The patterns, shown in Figure 6, are not stable. At certain time instances,
a cool plume can be found halfway between the cylinder axis and wall (times t = 1.1 and
2.5 min), while there are also distributions with the three most significant plume in the
center (t = 1.3). In the latter case, the relicts of previous plumes can be recognized. These
figures reflect the complex flow patterns with multiple eddies, described in Section 3.1,
that are more complex than during heating.

For higher temperatures T1, the patterns become more complex. As an example,
Figure 7 depicts the temperature distributions during heating for changed T1 = 150 ◦C.
The plume that rises along the cylinder axis appears earlier and reaches higher positions
(t = 1.3 and 1.7 min). After reaching its maximum, the plume dissolves and a smaller off-
center plume appears (t = 1.9 min). The behavior during heating resembles that described
previously in the cooling stage. In the following, we even see patterns with several hot
plumes rising from the bottom of the cylinder (t = 2.7 min). The system runs through
a cycle of rising and vanishing secondary plumes several times. Each time, the plumes
become smaller as the total temperature difference in the cylinder becomes smaller and the
heating from the upper part of the cylinder reaches further downward.
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4. Comparison with Laboratory Experiments

During the run of the experiments reported by Pawlowski [1], temperatures were
recorded by two sensors. The locations of sensors A and B are indicated in Figure 1. In the
described numerical runs, two ‘probes’ were included to simulate the sensor operation.
Here we compare the obtained time-series, as far as it is possible.

The following figures show measured values (data, represented by markers) and
numerical results (plotted curves) for the heating and cooling stages of the experiments.
In the heating part, the markers and curves start at a low temperature value and end at
a higher temperature, and vice versa in the cooling part, where the markers and curves
start at a high temperature value and finally reach a lower temperature. Locations A and B
are indicated in the legend.

In the report [1], measured data are depicted in a single figure. Similar to the above-
described graphical representation, they are shown for heating and cooling, and for lo-
cations A and B. However, they are plotted as graphs. The markers in the figures here
represent these graphs. The report [1] mentions the data as the typical output of the ex-
periments, without providing a scale on the temperature axis. Using the numerical model,
we explored various temperature ranges in order to check the match between these given
data and the sensibility of the results for the temperature range. For the comparison in the
graphs, the data curves were adjusted to fit the temperature range of the numerical model.

Figure 8 depicts a comparison between numerical and experimental results at both
observation points, A and B, for the heating and cooling stages as described. The model
was run with a low temperature of 22 ◦C and an elevated temperature of 33.4 ◦C. Obviously,
there is no fit between model results and measured time series. The overall development is
obviously correct, but its dynamics are much too slow, in two respects: (1) The transition
from an initial phase with an almost constant temperature to a dynamic phase with strong
gradients appears too late, with the exception of cooling in point A; (2) the gradients in
the dynamic phase are smaller than the ones in the observed data. Moreover, the model
cannot reproduce the peculiar behavior of the temperature curve at point B in the cooling
experiment. There, a phase with small gradients was observed between phases with
stronger gradients.

Numerous experiments with the numerical model were performed to obtain a better
fit than the first attempt, shown in Figure 8, and to investigate the sensitivity to the



Fluids 2021, 6, 376 10 of 13

temperature range. High and low temperatures were changed between 22 ◦C and 220 ◦C.
In addition, we took into account that there must be a shift in time accounting for the
conduction of the container itself to adjust to the changed ambient conditions. We also
investigated initial disturbances in the dependent variables. Due to the replacement from
one place to another, the cylinder may have been shaken and thus no longer contain the
ideal initial values pressure and temperature distribution.
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We observed that disturbances in the initial conditions do not have any effect on the
results. The disturbances die out so quickly that they are hardly visible in the graphs.
Moreover, we find that a shift of 30 s is convenient to obtain better fits with the laboratory
data. From the temperature variations, it becomes clear that better fits are obtained for
increased temperature ranges.

In all graphs, a partition into three phases can be observed: (1) There is an initial phase
with almost constant temperatures; (2) a highly dynamical phase follows; and (3) finally, the
temperatures monotonically approach the final state without any noticeable fluctuations.
Figure 9 depicts the results for an increased value of T1 = 95 ◦C., in which the phases can
be clearly distinguished. The legend indicates whether the graph is obtained from 2D or
3D modeling.

We first discuss the outcome of the simulations in 2D. At point A, the duration of the
initial phase is predicted accurately for heating and cooling. At point B, the simulation
shows a longer duration in the model than was observed in the laboratory. The dynamics
that follow show monotonous graphs for point B in the heating experiment and point A
in the cooling experiment. For point A during heating and point B during cooling, the
development can be divided in two phases: The first with complex irregular behavior,
followed by one with regular behavior. The irregular phase shows steep gradients (at A
and B) as well as fluctuations (point B). These irregularities in the curves are surely an
effect of local convective flow patterns.

For three of the four curves, the final development of temperature before reaching the
new steady state is reproduced well by the results of the simulations. Only the development
at point B in the cooling experiment does not match with the laboratory experiments.
However, the curve seems to have shifted in time only. The length of the irregular behavior
in phase 2 is much longer in the simulation than in the experiment, where a small ’swerve’
(German: Schlenker) was observed.

In addition to the results from a 2D model, Figure 9 depicts the output from 3D
modeling. The rise of T observed during heating in the lab at position B is reproduced well,
while the modeled rise at position A occurs too early. However, the curve does not show
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disturbances like the one from the 2D simulation. According to this, a phase with high
dynamics does not appear.
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Figure 9. Comparison between measurements and numerical results, at two observation points, A
and B, for the heating and cooling stages, for T0 = 22 ◦C and T1 = 95 ◦C with variable viscosity.

The falling temperatures during cooling at location A coincide well with the real sensor
measurements, while the comparison with the data from sensor B shows a large delay in
the model. The curve itself is much smoother than that from the 2D model, indicating that
there are not strong dynamics at intermediate times. There is a time period with steeper
gradients, followed by smaller gradients—similar to what was observed in the laboratory.
Nevertheless, in the model, this swerve appears after 4 and 5 min, while such behavior
was observed in the real world in the initial stage for t < 1.5 min.

In order to demonstrate the effect of variable viscosity, a model run with constant
viscosity was performed. Figure 10 shows the results for the same input values and
parameter dependencies as those used for the illustrations of Figure 9. There are minor
differences concerning the data for the cooling phase than for the heating phase. Figure 10
clearly demonstrates the symmetry of the model for constant viscosity. The results of
heating and cooling stages can be mirrored on the horizontal axis in the middle of the
relevant temperature range. Concerning the behavior of the entire system, the cases of
heating and cooling are physically identical if the viscosity is constant.
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The curves in Figure 10 were taken from a model run with constant viscosity, but with
all other parameters dependent on temperature as illustrated in Figure 1. The complete
symmetry of the model results depicted in the figure for the heating and cooling stages
indicates that the parameter variability of the other parameters, thermal conductivity and
heat capacity, is not relevant for the convective motions.

5. Discussion and Conclusions

The influence of parameter dependencies on thermal convection of viscous fluids was
simulated by numerical modelling and compared with experimental results. Due to its
strong temperature dependency, viscosity was of particular interest. The model output
confirmed that the variability of other parameters (except density) is of marginal influence
on convection.

The simulations show that the convection in the experimental facility can be divided
in three phases: (1) An initial phase with a single eddy that has downward flow along the
cylinder axis and upward flow on the walls, or vice versa, depending on heating or cooling;
(2) followed by a highly dynamic phase with plumes emerging either at the bottom or the
top, with the location depending on heating or cooling; and (3) a smooth development
towards the final state with small secondary convective disturbances.

Concerning these phases, the models show minor sensitivity in phases (1) and (3),
while the details of the convection patterns in phase (2) depend strongly on the chosen
temperature range. While the development observed in the laboratory during phases (1)
and (3) is captured well by the model runs, the deviations are highest in the dynamic phase.

The strong dynamics of phase (2) that are present in all 2D CFD simulations were
not visible in the experimental results. In fact, during heating, the laboratory sensors
recorded a continuous increase in temperatures at all times. For the cooling stage, only
a small ’swerve’ (German: Schlenker) is mentioned in the report [1]. The time of this swerve
roughly matches with the dynamic phase of the model output. A comparison of the eddies
at the bottom of Figure 4 and at the top of Figure 5 for times t = 1.1 and t = 1.9 clearly shows
the different patterns that lead to the differences in temperature development.

In the final phase, the biggest mismatch between numerical and experimental outputs
can be seen during cooling at position B (see Figure 9). However, a time shift could make
the curves match. The mismatch could thus be explained to be an effect of the mentioned
difficulties to match the flow details in the preceding dynamic phase. If the model was to
progress less dynamically in that phase, the transition to phase (3) would appear earlier. We
can conclude that the computer model and laboratory experiment show different behaviors
at times when the convective motion is strong.

The general behavior of the measured data, with a relatively smooth change at all
times and a slight swerve of the temperature graph measured in the upper part of the
facility during cooling, is better reproduced in the 3D simulations, although the timing
does not match. As the dynamics in the 3D simulations are closer to the experimental data,
we suppose that the strong dynamics seen in the 2D simulation are an artifact of the 2D
approach, which in a real-world system is suppressed by the emergence of local 3D eddies.

Numerical modelling of viscous flows has advanced considerably for various situ-
ations. In comparison, the main characteristics of this study are (1) rotational geometry,
(2) temperature dependency of viscosity, and (3) transient convection. Variations of the
model setup, with and without the consideration of inertial effects, coarse and fine meshes,
slender and widened boundary layer, modifications of parameter dependencies, etc., show
that the results of the models presented here are very robust even concerning the dynamic
phase. The stability of the numerical solutions can be seen as a verification of the model.

There are few studies in which numerical results are directly compared with exper-
imental data. Here, a simple documented setup enabled modeling with only a few free
parameters. Although the laboratory experiments are documented, some crucial informa-
tion is not available. The cylinder material and the wall thickness are unknown, so a shift
of the time scale due to the fact that the container has to adjust to changed ambient thermal
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conditions can only be guessed by inspecting the result. There is no comment concerning
the variability of the experiment development on the temperature range. The way in which
the sensors are fixed within the cylinder, and how the fixation may have influenced the
hydraulic and thermal regimes, is not outlined.

For future research, it is recommended that experimental and modelling work should
be performed in close cooperation. That enables the modeler to modify the CFD setting
in a reasonable way. The experimentalist can modify the experiment, or include further
sensors, to check on crucial points for comparison. The here-described experiment design
is well suited for checking the effect of viscosity variations on convective motions.
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