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Abstract: Sperm have thin structures known as flagella whose motion must be regulated in order
to reach the egg for fertilization. Large numbers of sperm are typically needed in this process and
some species have sperm that exhibit collective or aggregate motion when swimming in groups. The
purpose of this study is to model planar motion of flagella in groups to explore how collective motion
may arise in three-dimensional fluid environments. We use the method of regularized Stokeslets
and a three-dimensional preferred curvature model to simulate groups of undulating flagella, where
flagellar waveforms are modulated via hydrodynamic coupling with other flagella and surfaces.
We find that collective motion of free-swimming flagella is an unstable phenomenon in long-term
simulations unless there is an external mechanism to keep flagella near each other. However, there is
evidence that collective swimming can result in significant gains in velocity and efficiency. With the
addition of an ability for sperm to attach and swim together as a group, velocities and efficiencies
can be increased even further, which may indicate why some species have evolved mechanisms that
enable collective swimming and cooperative behavior in sperm.

Keywords: flagellar motility; sperm cooperativity; collective swimming; hydrodynamic coupling;
regularized Stokeslets

1. Introduction

Many biological cell types rely upon tail-like appendages known as flagella to propel
them towards optimal environments or environments where the cell serves a specific
function. These flagella must typically move through highly viscous fluids, perhaps in
the presence of other objects and cells within the fluid. Collective motion of flagella has
long been observed in cells. For example, in bacteria with multiple flagella, flagella can
rotate in a helical fashion and form a bundle [1,2]. In mammalian sperm, cells have a single
flagellum but flagellar motion may be impacted by neighboring sperm or other structures
in the environment.

Sperm motility is a major indicating factor for fertility potential and thus sexual
reproduction [3]. Sperm must maneuver through a variety of environments in order to
reach the egg and this process involves a complex choreography of biochemical reactions
that mediate changes in motility patterns. These motility patterns are undulatory and
often characterized by a nearly planar, sinusoidal beat form, though helical or “Figure 8”
beat patterns have also been observed [4–7]. A planar waveform would result in sperm
primarily traveling in a planar trajectory, but high resolution 3D trajectories of sperm have
shown more intriguing patterns of helical or chiral ribbon trajectories over time [8–11].
Figure 1a shows one example of a chiral ribbon trajectory observed in human sperm.
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(a) Human sperm trajectory. Reprinted under Creative
Commons license (CC BY-NC-ND 3.0) from Nature,
Sperm Trajectories Form Chiral Ribbons., Su, TW., Choi,
I., Feng, J. et al., 2013 [11].

(b) Deer mouse sperm. Reprinted
by permission from Springer Nature,
Competition drives cooperation among
closely related sperm of deer mice,
Fisher, H., Hoekstra, H., 2010 [12].

Figure 1. Images taken from experimental work with sperm swimming in populations. In panel (a),
a trajectory of a single human sperm swimming in a population of sperm. The trajectory twists over
time, creating a chiral ribbon. Arrow denotes progressive motion of sperm and inset shows a front
view of the trajectory. In panel (b), sperm from deer mouse form a sperm train using apical hooks
on sperm heads to loop around other flagella. This is one type of collective or cooperative behavior
observed in sperm.

Species as diverse as deer mouse, cattle, fly, echidna and opossum have sperm that
can collectively swim together [12–19]. Figure 1b shows an example of such behavior in
the deer mouse, where apical hooks on sperm heads enable sperm to attach to a neighbor’s
flagellum. This is sometimes referred to as a sperm train. Swimming with nearby neighbors
makes for a highly complex fluid–structure environment in which there is feedback between
the fluid and neighboring sperm that will effect velocities and trajectories significantly,
and therefore has the potential to impact reproductive success. Moreover, complexity can
arise from surface interactions between sperm and the oviductal epithelium, egg or other
structures immersed in the fluid. For instance, it is known that sperm will repeatedly bind
and unbind to the oviductal epithelium [20,21] and this behavior has an impact on sperm
trajectories over time.

Undulating flagella and sperm motility have been the inspiration for mathematical
modeling efforts for decades as an ideal system for studying motion in viscous fluids.
Models for planar motion of flagella near surfaces includes investigations near a no-
slip planar surface [22–26] and a rigid sphere [27]. In general, models have shown that
individual sperm tend to be attracted to planar surfaces and stick to them unless the sperm
change their waveform (i.e., increase amplitude, asymmetry, or wavenumber) and/or the
sperm is kept a small distance away from the planar surface. Near a rigid sphere, sperm
may more easily escape the spherical surface though this is dependent on geometry [27].

Mathematical models for flagellar swimming in groups are an active area of research.
Some studies have considered 2D fluids, which demonstrated a tendency of flagella to
attract and that this attraction is energetically favorable [23,28–30]. In 3D fluids, models
have shown both attraction and repulsion of neighboring flagellar pairs, but the results are
dependent on configurations of the flagella, the fluid domain, timescales of simulation, and
the flagellar model. In [29], coplanar swimmers in 3D fluids had increased efficiency. The
work of [31] showed gains in velocity for shorter timescale simulations of both coplanar
and parallel plane geometries, though results depended on phase. In [32], it was proposed
that coplanar attraction was an unstable state, as parallel and nearly coplanar swimmers
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tended to swim apart, in contrast to attraction seen for perfectly coplanar swimmers.
Aggregation of sperm was shown to be a commonly observed behavior in a 2D-periodic
thin film in [33]. Interestingly, this aggregation was suppressed with the introduction of
stochasticity in the beat frequency. A coarse-grained approach based on experimentally-
derived beat patterns showed that sperm clustering is inhibited by low viscosity media and
small changes in individual flagellar motion substantially affect clustering dynamics and
collective motion [34]. In [35], the authors found evidence for stable pairwise swimming
configurations and increases in velocities that may indicate an advantage to cooperative
behavior. Moreover, transient attraction of pairs of swimmers and increases in velocities
were also demonstrated for coplanar flagella in [36].

Missing in these prior results are broader considerations of three-dimensional geome-
tries of groups of flagellar swimmers with fine-grained models of flagellar motility on long
timescales. This is primarily due to the high computational costs of these investigations but
also due to restrictions in some modeling assumptions and frameworks. The purpose of
this work is to address this gap and provide insight into how swimming in groups and near
surfaces affects not only trajectories but also velocities, power expenditures, and efficiency.

The most realistic modeling framework for sperm motility would include a viscoelas-
tic, non-Newtonian fluid model, detailed flagellar waveforms that can be modulated by
interactions with other objects, the entire morphology of the sperm head, fully three-
dimensional domains and geometries, external fluid flow, and biochemically-mediated
interactions between sperm and their environment. At present, putting all of these com-
ponents together is computationally prohibitive. Thus, prior work has all taken aim at
specific pieces of the puzzle. As our interest lies in collective flagellar motion, our priorities
are to consider a detailed model of the flagellum that allows for emergent waveforms as
in [32,37] instead of prescribed waveforms as in [38], simulate many flagella as done in [33]
but with a broader range of geometrical configurations as in [31,32,35], with and without a
surface present similar to [25,39] over longer time scales.

Recent work has simulated flagella in pairs for up to 10–20 beats [35] but we will go
beyond this here to address any lingering questions about long-range stability of flagellar
interactions like those posed in [30]. Simulations involving all of these components are
computational expensive due to the finer scale details we aim to resolve but they are
plausible, as long as we relax some of other ideal features of a model. In our case, we will
focus on purely viscous, Newtonian fluid flow instead of non-Newtonian fluids like those
modeled in [30,40]. We will also not consider sperm heads as done in [26], external fluid
flow such as [41], or more detailed biochemical interactions like those described in [37,42].
These choices not only keep our simulations tractable, but also allow for direct comparison
with prior, related work including [32,43].

As a first approximation, we will be using a planar flagellar motility model that
is capable of bending in three dimensions when a flagellum is pushed out of its native
plane. This model was developed in [32] and is based on prior work developed in [37,44].
Here, we extend this work to consider groups of more than two flagella and add a new
component to the model to allow neighboring flagella to attach along each other’s length
to mimic apical hooks. This model is related to the work in [33], but we do not consider
a thin-film (a nearly 2D setting) nor do we include periodicity in our fluid environment.
Therefore, the environments we are modeling are less spatially constrained and less dense
than in [33], but provide the ability to analyze a broad range of 3D configurations and
yet still focus on individual interactions between swimmers. In comparison to [34], our
flagellar motility model is not coarse grained, allows for changes in the beat pattern when
flagella encounter other objects within the fluid, and allows for a more detailed analysis of
individual flagellar behaviors.

In this paper, we will consider groups of flagella up to 9, in a variety of configura-
tions, both with and without surfaces present. We employ the method of regularized
Stokeslets [45] due to the need for computational solutions to solve the governing equa-
tions of viscous fluid environments. In this modeling framework, planar surface dynamics
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have been studied but only in more restrictive geometries for individual swimmers in [25].
Therefore, this present work is a new exploration of surface dynamics for groups of flagellar
swimmers, with no spatial restrictions for flagellar configurations. In this way, we will be
able to explore the importance of swimming in groups in viscous environments and inter-
pret the behavior of populations of sperm observed in 3D experimental imaging in [8–11]
as well as the observed cooperative behavior we see in species discussed in [12–17].

2. Materials and Methods

The modeling framework we use is a simple extension of the work in [32,46]. We
detail the components of the model below.

2.1. Fluid Model

Flagellar motility in realistic biological settings is characterized by highly viscoelastic,
non-Newtonian fluid environments. In laboratory settings, fluid environments can be
varied between viscous and viscoelastic regimes, both with low Reynolds numbers. For
average mammalian sperm dimensions, the Reynolds number is on the order of 10−2

(see Table 1). Recent work has highlighted that assuming a zero Reynolds number may
not always be appropriate for modeling the motion of cilia and flagella [47], but here
we will assume a Newtonian fluid with zero Reynolds number for simplicity and to
facilitate comparisons with prior work involving similar models. Thus, we model the fluid
environment in 3D using the incompressible Stokes equations below:

µ∆u = ∇p− F(x, t)

∇ · u = 0.
(1)

In these equations, µ is the dynamic viscosity, u is the fluid velocity, p is pressure, F is
the force density and x and t are the spatial and temporal coordinates, respectively.

The flagella in our simulations exert forces along their length and therefore, we use
the following formulation for F:

F(x, t) = ∑
m

∫ L

0
f(Xm(s, t), t)φε(||x− Xm(s, t)||)ds. (2)

The integral term represents all forces that are exerted by the mth flagellum. L is the
flagellum length, s is the arc length along the flagellum, and Xm(s, t) is the spatial position
along the length of the mth flagellum. The function φε(r) is an approximation to the Dirac
delta function, often referred to as a blob function or regularized delta function. There
are many choices for blob functions, but here we will employ one that has been used in
previous studies related to this work [32,43]:

φε(r) =
15ε4

8π(r2 + ε2)7/2 . (3)

In simulations with a surface included, we require additional terms to enforce a no-slip
boundary condition at the surface. We use the method of images to accomplish this, as
derived in [46].

2.2. Flagellum Model

The flagella in our model will all be identical, with the exception of their spatial
positions and beat planes. Each flagellum is considered a three-dimensional curve in space
with forces exerted along the curve. In order to conceptualize these forces, we define a
local frame of reference for each flagellum m as follows: translate the flagellum position
Xm(s, t) so its center of mass is at the origin, and rotate the flagellum so its beat plane is
z = 0. We will refer to flagellar coordinates in the local frame of reference as X̂m(s, t).
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The forces that govern the motion of the flagella include tensile forces that keep the
curve connected and roughly inextensible, bending forces that actuate the motion of the
curve, and planar restriction forces that keep the curve in a nearly planar configuration.
Each of these forces is derived from the following continuous energy formulations:

Etens(X̂m, t) =
1
2

St

∫ L

0

[∥∥∥∥∂X̂m

∂s

∥∥∥∥− 1
]2

ds (4)

Ebend(X̂m, t) =
1
2

Sb

∫ `

0

[(
∂X̂m

∂α
× ∂2X̂m

∂α2

)
· e3 − Cm(α, t)

]2

dα (5)

Eplane(X̂m, t) =
1
2

Sp

∫ L

0

[
∂X̂m

∂s
· e3

]2

ds. (6)

Equation (4) is the continuous version of a tensile energy of an ideal spring model.
Equation (5) is a bending energy that actuates the flagellum to move towards the pla-
nar preferred curvature given by Cm(α, t), which is chosen to mimic sinusoidal flagellar
undulation by setting

Cm(α, t) = κ2b sin(κα−ωt). (7)

The parameter α is used instead of s here, because while the flagellum can be in a
three-dimensional configuration, the beating behavior is planar and therefore α is the
projection of the true arc length s onto the flagellar beat plane. Similarly, ` represents the
full arc length of the flagellum after projection onto the beat plane. Equation (6) is the
planar restriction energy, which is an energy that measures local deviations out of the beat
plane. The vector e3 = [0, 0, 1]T is the normal vector to the beat plane in the local frame of
reference. All Si values are stiffness parameters. In particular, St is chosen to be relatively
stiff to enforce inextensibility of the flagellum. For further details, see [44] for the derivation
of Equations (4) and (5) and [32] for further explanation of Equation (6).

In the local frame of reference, forces exerted along the flagellum length are then
given by:

f̂(X̂m, t) = − ∂E
∂X̂m

(8)

where E = Etens + Ebend + Eplane. The forces f(Xm, t) are then found by rotating and
translating f̂(X̂m, t) back into the original frame of reference for Xm. Such forces move the
flagellum towards a minimal energy configuration.

Because we will be simulating flagellar motion computationally, we discretize the
spatial coordinates Xm and the forces f(Xm, t) by evenly distributing points along the
flagellum as depicted in Figure 2. Thus, we will be modeling the motion of each point Xi

m
(the ith point along the mth flagellum) that arises from discretized forces denoted by fi

m,
which are derived from discretizing the energies in Equations (4)–(6) along each flagellum.
Figure 2 is a schematic representing the forces derived from Equations (4)–(8) and what
they mean in the 2D beat plane, as well as the forces out of the beat plane, resulting from
Equation (6) specifically.

As done in [32], we add an additional repulsive force to each fi
m to prevent flagella

from unrealistically passing through each other. We denote this repulsion force by gi
m and

define it as:

gi
m = ∑

n
∑

j
Sr

(
1
dr
− 1

min(rj
n, dr)

)
(Xi

m − Xj
n) (9)

where rj
n is given by rj

n =
∥∥∥Xi

m − Xj
n

∥∥∥ and dr is a small threshold distance in which the
repulsion force is added. This effectively keeps individual points (denoted by i and j) along
neighboring flagella (denoted by m and n, respectively) from overlapping.

This model for flagellar motion allows for waveforms to emerge and be modulated
by their external environment. Such modulations would occur when flagella are close
enough to surfaces and other flagella. This flagellar model is computationally expensive
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when compared to coarse-grained flagellar models (such as [34]) or prescribed motion
models such as [31,39], but necessary so we can pursue a more detailed analysis of flagellar
cooperativity and surface interactions.

(a) x− y view of flagellum projected into its beat plane.

(b) 3D view showing directionality of planar restriction forces.

Figure 2. Schematic showing discretization of a flagellum and the forces involved in the model.

2.3. Coupling the Flagella and Fluid Environment

Forces that the flagella exert in our fluid will move the fluid in accordance with the
incompressible Stokes Equation (1). If each force were modeled as a point force, the solution
to the fluid velocity field could be found using a summation of Stokeslets (the fundamental
solution to the incompressible Stokes Equation (1)), due to the linearity of these equations.
As we aim to simulate flagellar motion computationally, we use the blob function given in
Equation (3) and therefore solutions will be a summation of regularized Stokelets, which
are solutions to the incompressible Stokes Equations derived from the blob function [45].
In our case, the fluid velocity in free space is:

u(x) = ∑
m

∑
i

r2
i,m + 2ε2

(r2
i,m + ε2)3/2

fi
m +

(
fi

m · (x− Xi
m)
)
(x− Xi

m)

(r2
i,m + ε2)3/2

(10)

where ri,m =
∥∥x− Xi

m
∥∥ and ε is a small parameter. This is a summation of regularized

Stokeslets over all m flagella and all i points along each flagellum.
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2.4. Model for Apical Hooks

In an attempt to understand the collective motion of sperm that have been observed
to attach to each other, we choose to focus on the sperm train behavior shown in Figure 1b,
which has been observed in deer mice as [12]. These so-called trains arise, at least in part,
due to an apical hook on the sperm head that allows a sperm to attach to the flagellum
of another sperm. Instead of modeling the morphology of the hook that can attach to
neighboring flagella, we simply add forces at the head (initial point) of flagellum m and
along the neighboring flagellum n if the head of flagellum m gets within a threshold
distance, da, of the neighboring flagellum n.

The forces added are a simple spring force model that effectively holds the head of
the flagellum close to the neighboring flagellum points, with a fixed resting length a. The
mathematical formulation to model for this attachment behavior can be expressed as:

hj
m,n =

Sa

(∥∥∥Xj
n − X1

m

∥∥∥− a
)

Xj
n−X1

m∥∥∥Xj
n−X1

m

∥∥∥ if
∥∥∥Xj

n − X1
m

∥∥∥ < da

0 otherwise
(11)

Note that this force is applied at the head (first point) of the flagellum m but also in
equal magnitude but opposite direction at nearby points j along the neighboring flagellum
n, so both flagella will be impacted by the attachment. Figure 3 shows a schematic of the
attachment model.

This is not a permanent bond between the flagella, but rather forces that persist as long
as the head of one flagellum remains close enough to another flagellum. This attachment
does not prevent rotation of the flagella, or translational movement of the flagella along
each other. These details are important as a hook around a flagellum might allow for some
motion up and down the flagellum, and would not necessarily prevent rotation around the
hook attachment region.

Figure 3. Schematic detailing the sperm train attachment model framework.

We note that the model described in Equation (11) is similar to models used in other
investigations involving cell adhesion. For instance, a similar spring-like adhesion force to
model receptor-ligand binding between particles and walls in the context of blood flow has
been used for many years [48–51]. Our model differs in four main ways from such work.
First, these works are considering whole cells with distributions of many nano-structures
(receptors) on their surface that can bind to ligands on epithelial surfaces. Our model has no
surface of a cell, but rather a single point at the head of the flagellum that can bind. Second,
bond formation and dissolution is different: for our model, the apical hook force is applied
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only when flagellar heads are within a fixed distance of another flagellum, whereas there is
a probabilistic approach for forming and breaking bonds in [48–51]. Third, we are modeling
a much larger structure than receptors and ligands. An apical hook is a macrostructure
of the sperm head and would not necessarily experience the same types of probabilistic
effects of forming and breaking bonds that we see in receptor-ligand dynamics. Lastly, our
apical hook model enables binding between one flagellum and another flagellum, which
are both freely moving curves in space, rather than a cell body and a surface.

2.5. Computational Method

Our computational method is as follows:

1. Initialize flagella in desired configuration.
2. Every time step:

(a) Compute forces on all flagella, including tensile, bending, and planar restric-
tion forces. If applicable, compute attachment or repulsion forces.

(b) Find the velocity at each point along flagella using regularized Stokeslets.
(c) Move flagellar points Xi

m according to velocity at that point, u(Xi
m(t)), using a

forward Euler method with time step ∆t.

2.6. Parameters and Initial Configurations of Flagella

We will consider a variety of initial configurations of flagella, which are based on
geometries that allow for an exploration of symmetry and phase. While there are infinitely
many configurations that we could consider, we restrict ourselves to the following scenarios
in order to exploit symmetry and compare and contrast effectively:

1. Cylindrical: flagellar planes tangent to a cylinder;
2. Radial: flagellar planes normal to a cylinder;
3. Helical offset: cylindrical pattern of neighboring flagella set back along a cylindrical

surface to form a helical shape; and
4. Grid: all flagella are aligned with bodies in grid patterns.

These basic initial configurations are shown in Figure 4 for groups of 9 swimmers.
In addition to these basic initial configurations, we also wish to consider phase or

alignment differences between flagella. To do so, we rotate nearest neighboring flagella
along their centerline axis by one of two angles:

1. π/2: we will refer to this as a “normal plane” configuration. Neighboring flagella have
beat planes that are normal or nearly normal to each other. Motion of neighboring
flagella are neither in phase (aligned) nor in opposition.

2. π: we will refer to this rotation as an “out of phase” configuration. Neighboring
flagella will be completely out of phase or nearly out of phase, but with similar beat
planes. Similar here means identical, parallel, or nearly parallel beat planes. Motions
of neighboring flagella are generally expected to push and pull in opposition to
each other.

While we are not changing the phase of flagella explicitly, the rotations do enable
some exploration of the role of phase. See Figure 5 for a graphical representation of
these rotations.

Figure 6a–c show depictions of how we combine the alignment schemes of Figure 5
with the basic initial configurations introduced in Figure 4. Figure 6d–f show the initial
configurations we will use when considering a planar surface (or wall) nearby. Lastly, all
parameter values are listed in Table 1.
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(a) Cylindrical. (b) Radial.

(c) Helical offset. (d) Grid.

Figure 4. Examples of initial configurations of simulations. For ease of understanding the 3D
configurations, we also show the “shadows” of each flagellum on the bottom plane, which is simply
a projection of the flagellum onto the z = −50 µm plane. All units are in µm and 9 flagella are shown.

(a) In phase, aligned. (b) Normal planes. Nearby
neighbor rotated by π/2.

(c) Out of phase. Nearby neigh-
bor rotated by π.

Figure 5. Conceptual idea of configurations between neighboring flagella used to explore the role
of phase and alignment. Centerline of each flagella is shown by a dotted line. Rotation of nearest
neighbors is done by rotating about this centerline. Beat planes are represented by transparent
rectangular shapes either at z = 0 or y = 0, depending on rotation angle. When these rotations are
applied to groups of swimmers in a grid-like formation, the beat planes of neighboring swimmers
will either parallel or normal to each other. For cylindrical and radial configurations of groups of
swimmers, neighboring swimmers’ beat planes are rotated by an additional 2π/m for m flagella to
maintain circular symmetry.
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(a) Cylindrical with
phase differences of π.

(b) Grid with
phase differences of π.

(c) Grid with
phase differences of π/2.

(d) Parallel grid, closest
flagella are 1 µm from wall.

(e) Perpendicular grid,
heads are 1 µm from wall.

(f) Cylindrical.

Figure 6. Other initial configurations used. Panels (a–c) shows phase differences between nearest
neighbors. Panels (d–f) show configurations with a planar surface (wall) at x = 0. All panels have 9
flagella, with the exception of (a), in which 8 flagella are used to maintain the out of phase pattern
amongst nearest neighbors. All units are in µm.

Table 1. Parameter values. Sperm parameters were set to that of a typical mammalian sperm with active motility. Wherever
possible, biologically-measured values were used. In absence of biologically-measured values, values from prior modeling
work were used, if they exist.

Parameter Parameter Parameter Remark/Reference(s)

ε Regularization parameter 1.3 µm [45]
Diameter of sperm flagellum 0.5 µm [52]

µ Viscosity (water) 10−3 kg m−1 s−1

∆s Spatial (arc length)
discretization 1 µm Set to be < ε [25,32]

L Flagellum length 100 µm [53]
b Amplitude 10 µm [54,55]
κ Wavenumber 2π/L [5]
ω Frequency 20π (10 Hz) [54,55]
St Tensile stiffness 2 pN µm−3 [25,32]
Sp Planar restriction stiffness 1 pN µm−3 [32]
Sb Planar bending stiffness 10 pN µm−3 [37]
Sr Repulsion stiffness 5 aN µm−3 [32]
Sa Attachment stiffness 20 fN µm−3 Set to be < St, this work
dr Repulsion length 3 µm Set to be > 2ε [32]
da Attraction threshold 10 µm This work
a Attachment length 6 µm Close to sperm head dimensions [53]
V Average path velocity ≈ 10−5–10−4 m/s [56]
ρ Density (water) 103 kg m−3

Re Reynolds number ≈ 10−2
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3. Results

Each simulation was run for many beats (on the order of 50–100) in order to observe
motility patterns that arise in populations over long timescales. Movies showing results
from all simulations are provided in the Supplemental Materials. In addition to spatial
swimming patterns, we computed the average velocity, power, and efficiency per beat
as well as the minimal distance between each flagellum and all of its neighbors. Our
goal is to understand efficiency and behavior of populations of flagella compared to a
single flagellum in free space, so we report all quantitative metrics in reference to a single
swimmer in free space.

The average velocity V is an average path velocity magnitude, computed over one
beat. Power exerted at time t is defined as:

Pm(t) =
∫ L

s=0
u(Xm(s, t), t) · f(Xm(s, t), t)ds. (12)

We discretize this formulation, since our velocities and forces are discrete, using the
trapezoidal rule, as in [43]. For a single flagellum, we expect power to oscillate over the
period of a beat, so we use the total power per beat, P̄m, as a metric to understand typical
power expenditures for each flagellum:

P̄m =
ω

2π

Nb

∑
n=0

Pm(n∆t)∆t. (13)

where ∆t is the time discretization, n is the time step, Nb is the number of time steps
per beat, and ω is the beat frequency. Finally, we use the following metric for efficiency
per beat:

β =
V2

P̄m
. (14)

This definition of efficiency is often used for efficiency measures and was also used
in [43].

3.1. In Phase Simulations

For all configurations shown in Figure 4, we initialized the flagella in phase with
respect to their nearest neighbors. In a cylindrical or radial configuration, this means that
flagellar beating patterns are aligned (i.e., in phase) but with rotation of the beat plane and
translation of flagellar bodies to create a circular pattern. The results of all simulations are
shown in Figures 7–11 and in Movies S1–S4 provided in the Supplemental Materials.

Figure 7 shows 2D snapshots of flagellar positions over time, overlaid, in which we
see both attraction of flagella and divergence of flagella. Each set of flagella is shown 2.5 s
apart, or 25 beats apart. Thus, you can see differences not only in behavior but also in how
far the flagella have traveled over time (an indicator of velocity). Note that the slowest
swimmers are those in the cylindrical configuration.

This can be further understood by looking at the trajectories of each flagellum over
time. There are different ways to visualize this. For instance, if we want to view the average
path of the flagellum over time, we can plot the location of the sperm head once per beat (to
remove the lateral oscillation of the head within the beat). We show two examples of this
approach in Figure 8 for the cylindrical and radial simulations. Notice that in both of these
simulations, the average path trajectories attract towards each other for a transient period
of time before the paths ultimately diverge. For instance, in Figure 8a, we see flagella are
attracting in the initial part of the configuration. This is highlighted with the inset showing
the y-z plane of the trajectories for the first 1.4 s or 14 beats. In contrast, the initial radial
configuration in Figure 8b shows slight divergence of flagella initially with a subsequent
attraction phase followed by divergence near the very end.

The behavior in Figure 8 is also shown in Movies S1 and S2 given in the Supplemental
Material. These movies indicate that flagella in a more cylindrical configuration will have a
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“steering wheel”-like behavior as the group of flagella undulate in a circular fashion. This
action can become quite pronounced as the flagellar heads approach one another, though
this is a transient behavior.
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(a) Cylindrical, see Supplemental Material
Movie S1.
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(b) Radial, see Supplemental Material Movie
S2.
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(c) Helical offset, see Supplemental Material
Movie S3.
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(d) Grid, see Supplemental Material Movie S4.

Figure 7. Snapshots of locations of flagella over time in 2D, overlaid. Times shown are every 2.5 s (as
labeled), equivalent to 25 beats. Head positions started near x = 100 µm (see Figure 4) and flagella
move in the negative x-direction. All units are in µm. Colors correspond to the flagellum of the same
color from the initial configurations in Figure 4.

Another was to visualize flagellar trajectories is to also include the lateral head dis-
placement throughout the beat. This will carve out a zig-zag path that can be triangulated
to show a ribbon-like path. These ribbons indicate the beat plane, which will provide a
sense for how flagellar bodies are rotating. The ribbon path trajectories for all in phase
simulations are shown in Figure 9. The twisting of the ribbons in all of the plots in Figure 9
indicates that the flagella are often rotating due to interactions with neighbors. Without
such interactions, the ribbons would be flat, as we see later on in the simulations when
particular flagella get far away from others. A good example of this is in Figure 9c, where
the black and magenta ribbons towards the top of the figure on the left are fairly flat and
straight. In Figure 9b, the ribbons initially appear to be stable in a radial configuration
but eventually the ribbons start rotating near x = −150 µm. This rotation indicates that
the flagellar beat planes approach a more cylindrical-like configuration. At this stage, we
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see the flagella start to attract and the trajectories look similar to the initial beats of the
cylindrical simulation shown in Figure 8a.

(a) Cylindrical, see Supplemental Material
Movie S1.

(b) Radial, see Supplemental Material Movie
S2.

Figure 8. Paths of individual flagella over time, by plotting the head position once per beat over the
simulation. Insets in panels (a) and (b) show how flagella move in the initial 1.4 s (14 beats) of the
simulation. Blue squares denote the location of flagellum head where maximal efficiency is achieved
and red triangles denote where minimal efficiency is achieved. Head positions start at x = 100 µm
and flagella move in the negative x-direction, so flagellum heads start at the far right and end in the
far left of each image. All units are in µm. Colors of curves correspond to the flagellum of the same
color from the initial configurations in Figure 4.

All simulations indicate that divergence of trajectories is the long-term stable behavior.
To address whether this behavior was an artifact of the repulsion force from Equation (9),
we simulated the cylindrical initial configuration with no repulsion forces. The results were
the same: initial attraction followed by divergence of paths after the flagella got too close.
See Appendix A for further details. As the repulsion force did not fundamentally change
our observations about attraction and divergence of flagella, we retain the repulsion force
for the remainder of the simulations to be consistent with [32] and to be sure that flagella
are not “ghosting” or unrealistically passing through each other.

Figure 10 shows the minimal distances to other flagella, velocity, power, and efficiency
of all flagella. The latter 3 components are shown relative to a single flagellum swimming
in free space at steady state (dotted horizontal black lines), for reference. We see that
velocities, power, and efficiency can be both increased as well as decreased from a single
flagellum reference.

We include minimal distances from each flagellum to neighboring flagella as a metric
in order to compare and contrast distances with the other metrics. Figure 11 is a direct
comparison of these minimal distances to efficiency, showing that efficiency can be boosted
for flagella swimming near each other (above dashed line representing a single free swim-
mer), but it can also be decreased. There does not appear to be any discernible pattern
in efficiency gains or losses compared to distance, except that beyond around 20–30 µm
distances, flagella do not significantly affect each other and are essentially swimming as an
individual free swimmer would.
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(a) Cylindrical, see Supplemental Material
Movie S1.

(b) Radial, see Supplemental Material Movie
S2.

(c) Helical offset, see Supplemental Material
Movie S3.

(d) Grid, see Supplemental Material Movie S4.

Figure 9. Ribbon path trajectories created by triangulation of head positions over each beat for the
entire simulation. Due to the lateral oscillation of the flagellum head (initial point) within each
beat, the head carves out a ribbon-like trajectory. This ribbon indicates the flagellar beat plane. Blue
squares denote the location of flagellum head when maximal efficiency is achieved and red triangles
denote the location of the flagellum head when minimal efficiency is achieved. Head positions start
near x = 100 µm and flagella move in the negative x-direction, so flagella heads start at far right
and end up in the far left of each image. All units are in µm. Colors of ribbons correspond to the
flagellum of the same color from the initial configurations in Figure 4.

Lastly, we highlight where efficiency is maximized or minimized. To do this, we
have added markers to Figures 8 and 9 to show where each flagellum achieves maximal
efficiency (denoted by blue squares) and minimal efficiency (denoted by red triangles).
These appear near the “pinching” points of attraction and subsequent divergence in the
cylindrical and radial simulations, but there is no obvious pattern in the helical offset or
grid configurations. We can also look at snapshots of the simulation at particular times
where efficiency reaches a maximum or minimum for particular flagella to get a qualitative
understanding. A few examples of these are shown in Figures 12 and 13. Overall, it seems
that flagella swimming in closer alignment to each other can maximize their efficiency
if their beat planes are somewhat similar and their heads are closer than their tails to
form a sort of sheath-like shape, as in Figures 12a,b and 13a,b. Configurations that have
flagella aligned along a more cylindrical configuration tend to minimize the efficiency, as
in Figure 12c,d.
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(c) Helical offset.
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Figure 10. Comparison of minimal distances to neighboring flagella (upper left plot in each panel), velocities (average path
velocities), power, and efficiency in reference to an individual swimmer in free space (dotted line). Note that power and
efficiency have been normalized in reference to an individual swimmer in free space. Colors of curves correspond to the
flagellum of the same color from the initial configurations in Figure 4.
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Figure 11. Cont.
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Figure 11. Efficiency normalized to a single swimmer in free space (dotted horizontal line), plotted
with respect to minimal distance (in µm) to other flagella. Each dot represents one flagella (corre-
sponding to its color as depicted in Figure 4) for one beat. Dot size is used to effectively show overlap
of data only and does not indicate any other metric. For reference, red circles denote initial beat and
red x’s denotes final beat for each flagella, with label size varied to show overlap.

(a) Maximal efficiency, 3D image with shadows
projected onto z = −50 µm.

(b) Maximal efficiency, 2D projection onto y− z
plane.

Figure 12. Cont.
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(c) Minimal efficiency, 3D image with shadows
projected onto z = −50 µm.

(d) Minimal efficiency, 2D projection onto y− z
plane.

Figure 12. Snapshots of flagellar configurations for the cylindrical simulation from Figure 4a, for both
maximal and minimal efficiencies observed. One flagellum is highlighted in red for visual emphasis
of the geometry. See Supplemental Material Movie S1 for all configurations over time.

(a) Maximal efficiency, 3D image with shadows
projected onto z = −50 µm.

(b) Maximal efficiency, 2D projection onto y− z
plane.

Figure 13. Cont.
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(c) Minimal efficiency, 3D image with shadows
projected onto z = −50 µm.

(d) Minimal efficiency, 2D projection onto y− z
plane.

Figure 13. Snapshots of flagellar configurations for the radial simulation from Figure 4b, for both
maximal and minimal efficiencies observed. One flagellum is highlighted in red for visual emphasis
of the geometry. See Supplemental Material Movie S2 for all configurations over time.

3.2. Phase and Alignment Differences

In Figures 14–16, we summarize results of phase and alignment differences in the
initial configurations. Note that we use an even number of flagella (eight instead of nine)
for the cylindrical configuration with phase differences, to ensure symmetry of nearest
neighbor configurations. The specific number of flagella do not affect the overall behaviors
we observe. In general, we see an increase in velocity when neighboring flagella are out of
phase (rotations of π) as well as in normal plane configurations (rotations of π/2), though
the greater effect is seen for the out of phase scenario. This can be seen by noticing that the
flagella swim farther in Figure 14 as compared to the in phase simulations shown Figure 7.

We still observe plentiful chiral ribbon trajectories and a tendency to swim away from
each other long term in Figure 15. Moreover, Figure 16 shows that velocities and efficiencies
are increased more consistently over the course of simulation with out of phase neighbors
(rotation byπ), as compared to normal plane neighbors (rotation by π/2) or in phase
results in Figure 10. This indicates that out of phase swimming–or moving in opposition
to your neighbor–has hydrodynamic advantages. However, this does not appear to be a
stable phenomenon and flagellar paths typically diverge, similar to our in phase results in
Section 3.1.
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(a) Cylindrical, out of phase (rotation of π),
see Supplemental Material Movie S5.
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(b) Cylindrical, normal planes (rotation of
π/2), see Supplemental Material Movie S6.
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(c) Grid, out of phase (rotation of π), see
Supplemental Material Movie S7.
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(d) Grid, normal planes (rotation of π/2),
see Supplemental Material Movie S8.

Figure 14. Phase/alignment differences between nearby neighbors. Snapshots of locations of flagella
over time in 2D, overlaid. Times shown are every 2.5 s or 25 beats, as labeled in panels. Head
positions started near x = 100 µm (see Figure 6a–c) and flagella move in the negative x-direction.
All units are in µm. Color of curves indicates data for flagellum of matching color from initial
configurations (see Figure 6a–c).
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(a) Cylindrical, out of phase (rotation of π), see
Supplemental Material Movie S5.

(b) Cylindrical, normal planes (rotation of
π/2), see Supplemental Material Movie S6.

(c) Grid, out of phase (rotation of π), see Sup-
plemental Material Movie S7.

(d) Grid, normal planes (rotation of π/2), see
Supplemental Material Movie S8.

Figure 15. Phase/alignment differences between nearby neighbors, ribbon path trajectories created
by triangulation of head positions over each beat for the entire simulation. Due to lateral oscillation
of head within each beat, the head carves out a ribbon-like surface indicating the flagellar beat
plane. Blue squares denote the location of flagellum head when maximal efficiency is achieved and
red triangles denote the location of the flagellum head when minimal efficiency is achieved. Head
positions started near x = 100 µm and flagella move in the negative x-direction, so flagella heads
start at far right and end up in the far left of each image. All units are in µm. Color of curves indicates
data for flagellum of matching color from initial configurations (see Figure 6a–c).

3.3. Apical Hooks and Sperm Trains

The ability for flagella to attach to each other using the apical hook model described
in Section 2.4 leads to more dynamic motion of the group of flagella, with high levels
of interaction and rotation. Figure 17 and Supplemental Material Movie S9 summarize
the motion over time. Interestingly, while there is nothing in our model that would push
the flagella into a train-like configuration–where flagella align in a staggered fashion
behind one another and have a leading flagellum–we see this behavior emerge in the
simulation over time. Additionally, the trailing flagella phase-lock: their bodies rotate and
translate along the leading flagellum in order to be in phase with each other, thus forming
a fairly cohesive train, as shown in Figure 17b. This image reflects similar experimental
observations shown in Figure 1b. Figure 18 shows significant increases in velocity (with
maximum velocities over 3 times that of an individual free swimmer), as well as power
and efficiency. These increases are noticeably higher than the increases we observed in
free-swimming groups in Sections 3.1 and 3.2 and the optimal configuration for the leading
flagellum is shown in Figure 18b as a point of comparison for Figures 12 and 13.
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(a) Cylindrical, out of phase (rotation of π).
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(b) Cylindrical, normal planes (rotation of π/2).
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(c) Grid, out of phase (rotation of π).
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(d) Grid, normal planes (rotation of π/2).

Figure 16. Phase differences between nearby neighbors. Comparison of minimal distances to other flagella, velocities,
power, and efficiency with reference to individual swimmer in free space (dotted line). Color of curves indicates data for
flagellum of matching color from initial configurations (see Figure 6a–c). Note that panels (a,b) only have 8 curves in order
to exploit symmetries of rotation.
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(a) 2D Positions over time. (b) Final (end of simulation) configuration.

Figure 17. Positions of flagella in sperm train model, starting from the cylindrical initial configuration
depicted in Figure 4a. All units are in µm. Panel (a) shows 2D snapshots of locations of flagella over
time in 2D, overlaid. Times shown are every 2.5 s or 25 beats. Initial and middle time points are
shown in lighter colors, with the initial configuration to the far right. Final time point positions are
shown in bolder colors towards the left. Head positions started near x = 100 µm and flagella move
in the negative x-direction. Panel (b) shows the positions of flagella at the end of the simulation,
forming a phase-locked train. See Supplemental Material Movie S9.
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(a) All metrics over time. (b) Maximal efficiency state for flagellum high-
lighted in red.

Figure 18. Comparison of minimal distances to other flagella, velocity, power and efficiency of apical
hook model. In panel (a), we see all metrics plotted over time. Color of curves indicates data for
flagellum of matching color from the initial configuration, shown in Figure 4a. In panel (b), we show
the configuration for maximal efficiency of the leading flagellum.

3.4. Surface Interactions

As many biological experiments have shown, flagella tend to aggregate near sur-
faces [4,57–59]. Here we explore how neighboring flagella may affect aggregation or
“sticky” effects of surfaces. We will compare our results to two sets of data for individual
swimmers, both of which use the same modeling framework we have employed so far with
a planar surface added using the method of images for regularized Stokeslets [46]. The first
set of data is that individual swimmers in our model get stuck near a planar wall if they
are initialized to swim towards the wall in a beat plane that is normal to the wall [25]. Our
second reference point is how an individual flagellum initialized in a beat plane parallel to
the wall would swim. To this effect, we have run long timescale simulations of this scenario
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for a single flagellum initialized at a variety of distances away from the wall. Figure 19a
summarizes our results: all individual swimmers tend to swim away from the wall, though
if a flagellum is initialized far enough away from the wall (a full body length, or 102 µm, in
our case), almost no surface effects are observed.

We contrast these results with the dynamics of groups of flagella initialized swimming
either parallel or normal to a wall. The initial configurations are shown in Figure 6d–f. We
find that groups of flagella initialized in a grid, all with beat planes parallel to the wall,
do not swim away from the wall–unlike an individual swimmer–but rather some seem
to swim towards the wall, as shown in Figure 19b. This is directly due to hydrodynamic
interactions with other flagella and the wall surface. Alternatively, when the grid of flagella
is initialized to swim in planes normal to the wall, instead of parallel, as shown in Figure 6e,
we only see transient moments in which individuals seem to start to swim away from the
wall. Most swimmers seem to be getting closer to the wall, as shown in Figure 20a. If
the swimmers were not swimming in a group, we would instead see the flagellum swim
continuously closer to the wall over time and get stuck along the wall.
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(b) Group of 9 swimmers initialized in a grid
parallel to wall (see Figure 6d) and Supplemen-
tal Materials Movie S10.

Figure 19. Distance between the head point of the flagellum and the wall over time for swimmers
initialized in parallel planes to the wall. In (a), individual flagella are initialized at various heights
away from the wall, with the flagellar beat plane parallel to the wall (each curve is a simulation of
one solitary flagellum and results are overlaid). All flagella tend to move away from the wall over
time, regardless of how far they start from the wall. In (b), we show the results of a single simulation
of a group of 9 flagella, all initiated with beat planes parallel to the surface, in phase but separated
from each other by a distance of 20 µm. Here, positions of heads are plotted once per beat to remove
the zig-zag pattern that can occur due to the periodic undulation of flagella (1 beat = 0.1 s). Notice
that some sperm seem to become trapped near the wall, in contrast with the individual swimmers in
panel (a). Color of curves in panel (b) indicates data for flagellum of matching color from Figure 6d.

Lastly, we consider the case with swimmers initialized in a cylindrical configuration as
in Figure 6f, with flagellar planes normal to the wall. The results are shown in Figure 20b,c.
Without the apical hook enabling them to form a train, the group initially swims towards
the wall (see Figure 20b). After some rotation (around time t = 2 s), some flagella start
to move away from the wall though it appears that this is not sustained towards the end
of simulation around t = 3 s. Due to computational constraints, this simulation could
only be run for somewhat shorter timescales where we cannot resolve whether all flagella
remain stuck or break free, but evidence from simulations of smaller numbers of flagella
(3 or 4) in similar initial configurations show that all flagella end up stuck along the wall
after around t = 5 s or 50 beats. Our next step is to add the apical hook model to the
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same initial cylindrical wall configuration in Figure 6f. The additional apical hook forces
seem to cause some flagella to move away from the wall much earlier and perhaps with
more persistence, though other flagella seem to be getting trapped near the surface (the
black and green curves). Any surface escape with these initial configurations is directly
caused by swimming in a group: individual swimmers would all get stuck near the wall
in this simulation if neighbors were not present, due to their initial configuration sending
them straight into the wall as was studied in [25]. However, it seems like apical hooks and
sperm train behavior might enable surface escape more readily, perhaps due to velocity
and efficiency advantages.

0 1 2 3
10

-2

10
-1

10
0

10
1

10
2

10
3

(a) Grid, normal to wall.
See initial configuration in
Figure 6e and Supplemental
Materials Movie S11.

0 1 2 3
10

-2

10
-1

10
0

10
1

10
2

10
3

(b) Cylindrical configuration
normal to wall. See initial con-
figuration in Figure 6f and Sup-
plemental Materials Movie S12.

0 1 2 3
10

-2

10
-1

10
0

10
1

10
2

10
3

(c) Cylindrical configuration
normal to wall, with ability to
attach apical hooks to form a
train. See initial configuration
in Figure 6f and Supplemental
Materials Movie S13.

Figure 20. Distance between the head point of the flagellum and the wall over time for 9 swimmers
initialized in planes normal to the wall. In panel (a), we show swimmers initialized in a grid but
with planes normal to the wall. Here, as expected, we see the swimmers moving mostly towards the
wall over time. We can contrast that with panel (b), which are also initialized in planes normal to
the wall but the flagella are in a cylindrical configuration, as in Figure 6f. Lastly, panel (c) shows the
results of swimmers initialized in a cylindrical configuration, as in Figure 6f, but with the ability to
“hook” onto each other and form a train. Again, they initially swim towards the wall, but some swim
away after about 1 s, or 10 beats. Color of curves indicates data for flagellum of matching color from
Figure 6e–f.

4. Discussion

Synchronization and attraction of undulating, planar flagella have been studied for
quite some time using both mathematical models and biological experiments. In particular,
one theory has been that flagella tend to attract due to energetically favorable conditions,
from the perspective of optimizing velocity or efficiency. Our general observations of
flagella swimming in groups can be summarized as follows:

• Flagella with similar beat planes tend to attract initially. If their beat planes are
identical, attraction is a stable long-term behavior. In all other geometries, attraction
is transient.

• If beat planes are nearly identical, velocities and efficiencies decrease as flagella attract.
• Flagella in non-identical beat planes tend to swim apart in the long term.
• Flagella can rotate to have beat planes that are closer to nearby neighbors and this is

often accompanied by a transient attraction phase, with decreases in velocities and
efficiencies.

• Flagella do not tend to swim in higher efficiency configurations unless there is another
mechanism for keeping flagella near one another, such as apical hook binding.

• Near surfaces, having more than one flagella present may promote aggregation unless
sperm are able to bind to one another and swim as a collective with higher velocities
and powers.
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These results are consistent with many prior results for coplanar flagellar geometries.
For instance, in [28], a 2D model showed attraction amongst many flagella. A comparison
of pairs of coplanar flagella in 2D and 3D fluids was done in [29], in which attraction
and synchronization was observed in both fluids, and efficiency as well as velocity were
shown to increase in some parameter regimes. In [30], pairwise attraction of flagella was
demonstrated in a 2D fluid with a resistance term meant to mimic swimming through
a complex fluid containing other cells and polymers, though the question of long-term
stability of this attraction was posed due to final configurations of the simulations. The
work in [33] also included a 2D framework with large populations of flagella (10–1000) and
clustering phenomena were demonstrated, though the clustering was sensitive stochasticity
in beat frequencies.

Transient attraction dynamics (followed by divergence in longer timescales) have
more recently been observed in a model proposed in [36] which considered two coplanar
flagella–a scenario in which our model has been shown to have stable attraction dynamics
in prior studies [32]. The flagella in [36] are based on a geometric clutch model instead of
the preferred curvature model we present here. This difference in modeling framework
might explain the discrepancies between our coplanar results and that of [36]. On the other
hand, the authors in [36] observed increases in velocity for sperm that are staggered behind
one another. In general, these results are in agreement with our models for flagella that
have offset heads (i.e., free-swimming results in from the helical offset configuration shown
in Figure 10c and the apical hook/sperm train results shown in Figure 18a), though our
flagella are swimming in more complex 3D configurations.

Recent, [35] used 3D simulations to show attraction for a pair of flagella and, intrigu-
ingly, a stable steady state configuration for a pair of nearly parallel swimmers using
simulation lengths of 20 beats. It is worth noting that in many of our simulations, attraction
can be observed in the first 20 beats but the divergent long-term behavior we are presenting
here is for beat numbers greater than 50. Moreover, our work goes beyond pairs to consider
a larger number of flagella and thus, more degrees of freedom in geometric complexity. Our
velocity results are in agreement with [35]: swimming side-by-side in a plane seems to slow
swimmers down, but swimming in parallel or nearly parallel planes can increase velocity.

Our results show that flagella swimming in groups will frequently swim in helical
or chiral ribbon-like trajectories, despite having a planar flagellar waveform. This is due
to hydrodynamic coupling with other nearby flagella and evidence that a non-coplanar
waveform is not required for such trajectories. This may provide insight into experimental
observations that sperm can swim in helical or chiral ribbon-like trajectories [8–11], as
some have wondered whether results like these indicate a non-planar waveform is more
biologically accurate and whether non-planar waveforms are important to sperm motility
and function. This work suggests that chiral ribbon trajectories are a natural result of a
planar waveform combined with complex 3D fluid–structure interactions, which includes
swimming in groups.

Biological settings for sperm involve interactions with surfaces that are complex and
can affect motion significantly [20,21,60,61]. While we have not done an exhaustive study
of the impact of surfaces in populations of flagella here, our model does indicate that
swimming with nearby neighbors can enhance surface accumulation. It is known that
flagella attract and accumulate near surfaces, and our results add to the complexity of the
picture by considering the role of neighboring flagella in this accumulation process. Further
exploration is warranted, particularly given results regarding individual flagella near
surfaces. In particular, surface accumulation dynamics can depend on wavenumber [26]
and can be modulated by changes in waveform as well as binding dynamics of the sperm
heads to epithelial surfaces [24,25,39].

In [43], the authors found that a pair of flagella attached at the head had a small
window of geometrical configurations in which both velocity and efficiency were increased
beyond that of an individual swimmer. Ultimately, the maximal efficiency configuration
coincided with biologically-observed geometries of fused heads of opossum sperm. This
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paper extends that work to investigate apical hooks as a means for linking sperm flagella.
Sperm trains naturally arise, again matching observations but this time in deer mouse
sperm in [12].

The authors in [19] found evidence that clustering of sperm is functionally important
for fertilization potential and our model demonstrates that there is certainly an advantage to
clustering or swimming together in terms of velocity and efficiency. With respect to sperm
trains specifically, when we time-average over entire simulations, we observe substantial
increases in velocities for sperm trains when compared to individuals. The average velocity
of the train of flagella was 15% higher than an individual swimmer with a maximum
velocity that was 225% higher than an individual swimmer. Increases of around 50% in
velocity were measured in the experimental work [12], so our results underestimate this
value but seem reasonable. One reason why we might not fully capture the increases in
velocity observed experimentally is that our flagella are idealized to all start in the same
phase and cannot modulate this over time. We plan on exploring this in future work.
Finally, our model provides efficiency measures that indicate that over the span of our
simulation, a train swims on average 50% more efficiently when compared to an individual
swimmer. Thus, our model demonstrates that collective swimming can lead to significant
hydrodynamic advantages.

5. Conclusions

Flagellar and ciliary transport is necessary for motion in biological systems well
beyond the fertility applications discussed here and can only be understood by using a
combination of experimental observation and mathematical modeling. For problems at
these scales, laboratory measurements of forces, power, and efficiency are difficult, if not
impossible, to obtain. Over the last 20 years, the method of regularized Stokeslets [45]
has enabled us to effectively model and shed light upon flagellar and ciliary mechan-
ics due to its ease of implementation and the ability to extend the method to a variety
blob (regularized delta) functions, control for different levels of desired computational
accuracy, incorporate nearby surfaces and effectively study velocities, forces, power, and
efficiency simultaneously.

In this paper, we used the method of regularized Stokeslets to show that collective
swimming appears to not be a stable long-term behavior of populations of free-swimming
flagella exhibiting planar waveforms in a viscous fluid, regardless of velocity and efficiency
advantages. If the beat patterns of neighboring flagella are in direct opposition, this may
drive flagella apart while velocities and efficiencies are enhanced. If beat patterns of
neighboring flagella are more aligned or in sync, then flagella cannot push against each
other effectively to swim faster or more efficiently though attraction may occur. Somewhere
in between these two behaviors may allow for the most effective propulsion. Increases
in velocity and efficiency are most dramatic when flagella are allowed to attach to each
other via some physical binding mechanism–and in these cases, the flagella tend to align
geometrically to synchronize their beat.

This work is the first to examine collective motion of larger groups of free-swimming
flagella with a finer grained model across a large breadth of geometrical configurations
over such long timescales. This is also the first model for apical hook binding. Our results
also provide the first evidence that helical or chiral-ribbon trajectories can arise not from
three-dimensional waveforms but as a consequence long-term interactions with other
swimmers. We have also demonstrated strong hydrodynamic evidence for advantages to
swimming in a sperm train, and the long-range instability of swimming in groups unless a
binding mechanism keeps swimmers close to each other.

The hydrodynamic advantages of collective flagellar motion we have shown here may
elucidate evolutionary benefits of sperm morphologies and behaviors in some species. In
particular, deer mice that exhibit sperm aggregation or train-like behavior are known to be
promiscuous and thus sperm competition may be a primary driver for sperm cooperativ-
ity [12]. If competition is high, it makes sense that cooperative mechanisms would arise
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that enable sperm to swim faster and more efficiently to reach the egg. Even without the
complexity of sperm competition, harsh oviductal environments and a short time period of
viability for sperm to fertilize the egg also lead to strong evolutionary pressures for sperm
to swim quickly and effectively towards the egg.

There are many studies and extensions of this work yet to be done. In particular,
there are two fluid assumptions we have made that should be investigated. First, we have
assumed a zero Reynolds number, but recent studies of ciliary motion indicate that this
simplification may not capture the fluid behavior appropriately [47]. Second, collective
swimming has been observed to be important in fluids that are not only viscous, but also
elastic [18]. There is also potential to extend this work beyond planar flagellar waveforms
into the realm of 3D waveforms such as “Figure 8” deviations or helices observed in some
sperm and other flagellated cells. Lastly, understanding flagellar dynamics can provide
insight for bioengineered devices–perhaps in the form synthetic cells and devices that can
deliver sperm to eggs and aid in overcoming male infertility or, even more broadly, deliver
drugs or chemicals to target locations. At the heart of these problems is motion in viscous
fluids–a world where inertia has relatively little impact and mathematical models such as
the method of regularized Stokeslets may very well hold the key to future developments.
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Appendix A. Role of Repulsion Force

To ensure that the inclusion of the repulsion force defined in Equation (9) did not
significantly affect behavior of flagella in simulations–particularly those in which attraction
of flagella was observed and distances between flagella got small–we ran a simulation
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without repulsion forces included. The results are summarized in Figure A1. The general
pattern of behavior was nearly identical to simulations that had repulsion forces in them.
Supplemental Material Movie S14 shows a full simulation for a cylindrical configuration.
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Figure A1. Simulation results for a cylindrical configuration of 9 flagella with no repulsion forces
present. Distance refers to minimal distance from flagellum to any neighbors. Color of curves
indicates data for flagellum of matching color. Units in panels (a–d) are in µm. See Supplemental
Material Movie S14.

The only discernible differences were that minimal distances between flagella could
go below 3 µm and in fact got very close to 0, as seen in Figure A1f, and metrics such
as velocity and efficiency were higher (see Figure A1e). Because the repulsion force was
designed to push flagella apart if they are within 3 µm of each other, it is expected that
removing it would allow for flagella to get infinitesimally close to each other. Additionally,
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repulsion forces move the flagellum away from its preferred curvature configuration, which
will stifle the sinusoidal motion that propels the flagellum forward. Therefore, we would
expect a repulsion force would reduce velocities and efficiencies. Conversely, removing
a repulsion force would allow for more freedom of motion and therefore an increase in
velocity and efficiency would be expected.

We emphasize that removing a repulsion force allows for flagella to potentially pass
through each other or “ghost” each other unrealistically, so the results reported in Figure A1
allow for such behavior. Therefore, we only use these results to demonstrate an insensi-
tivity of the model to the repulsion force, in terms overall behavior: flagella still attract
transiently and swim away. More detailed conclusions should use a modeling framework
with repulsion, as we have done in this manuscript, for biological realism.
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