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Abstract: This paper confronts the numerical simulation of steady flows of fluid layers through
channels of varying bed and width. The fluid consists of two immiscible fluid layers with constant
density, and it is assumed to be of a one-dimensional shallow flow. The governing equation is a
coupled system of two-layer shallow water models. In this paper, we apply a direct extension of the
momentum conserving scheme previously used for solving the one layer shallow water equations.
Computations of various steady-state solutions are used to demonstrate the performance of the
proposed numerical scheme. Under the influence of a given flow rate, the numerical steady interface
is generated in a channel topography with a hump. The results obtained confirm the analytic
steady interface of the two-layer rigid-lid model. Furthermore, the same scheme was used with an
additional artificial damping to simulate the maximal exchange flow in channels of varying width.
The numerical steady interface agreed well with the analytical steady solutions.

Keywords: two-layer shallow water system; maximal exchange flow; conservative scheme

1. Introduction

The presence of internal waves in Indonesian waters such as the Lombok Strait and
the Andaman Sea inspired this research. The internal waves in the Lombok Strait form
when a layer of warm low-salinity water from the Pacific Ocean enters the strait and flows
into the Indian Ocean as part of the Indonesian throughflow (ITF); the complex bathymetry
of the strait with a sill also contributes to internal wave generation in Lombok Strait. These
internal waves, once generated, travel through the strait; after leaving the strait’s mouth,
the wave propagates radially across the ocean, to the north of the Flores Sea, and to the
south of the Indian Ocean.

In order to construct a numerical model for simulating the generation and propagation
of internal waves in natural straits, we must begin with a simpler numerical model that
captures the most important behavior of exchange flows through channels connecting
two basins with different hydrological characteristics, such as the Lombok Strait. Several
researchers [1–3] and many others discuss the generation and propagation of internal
waves in the Strait of Gibraltar. They adopted a one-dimensional two-layer shallow flow
model, which can be applied to channels of varying topographies and widths, to model
the influence of external flows in the strait. This one-dimensional approach is considered
to be quite feasible for modelling the internal hydraulics of the strait and its effect on
exchange flows [3–5]. While internal wave propagation in the radial direction across the
ocean requires a higher dimensional approach (two-dimension or even three-dimension).
Inspired by their research, in this article, we will focus on developing a numerical scheme
for a one-dimensional two-layer shallow flow model as well as testing the ability of the
numerical scheme to simulate the steady interface of the two-layer fluid flows.

The goal of this research study is to investigate the dynamics of flow through a
one-dimensional channel connecting two reservoirs. Our method employs numerical
simulation of a steady interface in a channel with varying bed and width. In this paper,
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we present a numerical model capable of simulating steady interfaces in a variety of
situations. In contrast to the one-layer shallow water equation, the two-layer shallow
water equation model is not always hyperbolic [1,6–9]. This presents its own challenges
for the proposed numerical scheme. So far, the majority of numerical schemes that have
been developed are associated with the finite volume or the finite difference methods. A
numerical scheme based on a Riemann solver is proposed and developed by [3,9]. A finite
difference scheme for solving the two-layer rigid-lid model is developed in [1], whereas
a phase resolving numerical model is described in [2,5]. References [2,5] developed a
numerical model capable of describing dispersive waves. In this article, we will develop a
numerical scheme for solving the two-layer shallow water equations. The scheme is an
extension of the momentum conserving staggered-grid scheme (MCS) for the one-layer
shallow water equations [10] (see also [11]). It turns out that the newly developed scheme
can be applied directly to solve two-layer shallow water models. The scheme is then
validated by simulating different steady two-layer flows, including those with hydraulic
jumps. We will simulate the formation of a steady interface in the channel due to the
presence of a bottom sill. The numerical scheme will be validated further by simulating the
maximal exchange flow in a channel of varying width.

Thus, the outline of this paper is as follows: discussions about the two-layer shallow
water models followed with some review about the steady hydraulics of two-layer rigid-lid
models are presented in Section 2; formulations of the momentum conserving schemes
for solving the two-layer shallow water models are presented in Section 3; and various
steady-state problems are simulated in Sections 4 and 5 to validate the proposed scheme.
Finally, the conclusion is provided in Section 6.

2. Mathematical Model

We begin with a discussion on the governing equations for the two-layer fluid in a
one-dimensional channel. Here, the channel cross-section is assumed to be rectangular,
with varying bed, and varying width. Assume that the fluid consists of two immiscible
layers of different densities. The upper fluid has density ρ1, and the lower fluid has density
ρ2, with ρ2 > ρ1. Let z = η1(x, t) represent free surface deformation, z = η2(x, t) denotes
the interface between two fluids, and z = d(x) denots the channel bottom topography,
as shown in Figure 1. Under this setting, the thickness of the upper and lower layers
is h1 = η1 − η2 and h2 = η2 − d, respectively. We denote H0 as the reference height,
where H0 = h1 + h2 + d. We employ a one-dimensional approach, which requires us to
assume that the flow is uniform across the channel cross section. Moreover, the channel
under consideration is symmetrical about the x-axis, with channel bed d(x) and width b(x)
assumed to be slowly varying. The fluid particle velocities in the upper and lower layers is
denoted as u1(x, t) and u2(x, t), respectively. Let Ai(x, t) represent the cross-sectional area
of fluid in each layer, whereas Qi(x, t) = Ai(x, t)ui(x, t) denotes the discharge.

Figure 1. Sketch of the problem and notations. (Left) side view; (right) top view.

We restrict our discussion to rectangular channels, so the cross-section area is sim-
ply Ai(x, t) = hi(x, t)b(x), with b(x) being the channel width. According to [7,12,13],
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the governing equations of the two-layer flows under hydrostatic pressure is given by
the following.

∂A1

∂t
+

∂Q1

∂x
= 0, (1)

∂u1

∂t
+ u1

∂u1

∂x
+ g

∂η1

∂x
= 0. (2)

∂A2

∂t
+

∂Q2

∂x
= 0, (3)

∂u2

∂t
+ u2

∂u2

∂x
+ g

ρ1

ρ2

∂η1

∂x
+ g
(

1− ρ1

ρ2

)
∂η2

∂x
= 0. (4)

Equations (1) and (3) are mass conservation for the upper and lower layer, respectively.
Equations (2) and (4) are the momentum balances for each layer. In this paper, we will
propose a numerical scheme for solving the two-layer model (1)–(4). However, we first
provide a brief review here on the formulation of steady two-layer solutions.

2.1. Steady Two-Layer Solutions

Farmer and Armi [4], Armi [6] conducted an in-depth study of the steady-flow of the
two-layer rigid-lid model. The results of their study have been widely used to validate
numerical schemes [1,3,7,9]. In the following description, we will present a brief review of
the Armi Farmer steady solution, which will be used to validate our numerical scheme.

In the steady situation, mass conservation (1) and (3) reduces to Q̂1 = A1b and
Q̂2 = A2b, respectively, whereas the momentum Equations (2) and (4) lead to the specific
energy for each layer as follows.

Ê1 =
1
2

ρ1u2
1 + gρ1(h1 + h2 + d), (5)

Ê2 =
1
2

ρ2u2
2 + gρ2(h2 + d) + gρ1h1. (6)

In the above description, notations with hats represent steady variables. By subtracting
the energy equations in (5) and (6) after dividing with g′ρ2H0 and after some algebra, one
obtains the following:

Ê1 − Ê2

g′ρ2H0
=

1
2g′H0

(
ru2

1 − u2
2

)
− h2 + d

H0
, (7)

where r = ρ1
ρ2

and g′ ≡ g(1− r), which represents reduced gravity. The energy difference (7)
is also known as the Bernoulli equation [4].

Let the Froude number for each layer be denoted as follows.

F2
i =

u2
i

g′hi
=

Q2
i

g′b2h3
i

, i = 1, 2. (8)

As discussed in [6], the two-layer model (1)–(4) reaches a critical condition when G2 = 1 in
which G2 the composite Froude number for two-layer flows with free surface is given by
the following.

G2 ≡ F2
1 + F2

2 − (1− r)F2
1 F2

2 .

For layers with r ≈ 1, the composite Froude number can be approximated to G2 ≈ F2
1 + F2

2 ,
and the criticality condition becomes the following.

F2
1 + F2

2 = 1. (9)
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If G2 < 1, the flow is called subcritical, whereas if G2 > 1 the flow is called supercritical.
When G2 = 1, the flow is said to be critical, and its location is called a control.

Unlike the one-layer shallow water equation which is always hyperbolic, the two-layer
Equations (1)–(4) are not always hyperbolic. The hyperbolic property of the two-layer
equations depends on a parameter called the shear parameter,

S ≡ (u1 − u2)
2

g′(h2 + h1)
. (10)

The model will be hyperbolic if S < 1, in this case, the characteristic velocities are real
numbers. However, if S > 1 the characteristic velocities becomes complex numbers, and
the model changes from hyperbolic to elliptic [14].

The stability condition (10) is related to the Kelvin–Helmholtz instability. If this
instability occurs, this means that the two previously immiscible fluids begin to mix. The
energy will be reduced as a result of this mixing process. Numerically, this instability will
cause spurious error in the calculation, causing the scheme to become unstable [1,8,9,12].
To control this instability, some dissipation must be added to the model; in this study,
the artificial damping terms ν∂xxu1 and ν∂xxu2 is added to the momentum Equations (2)
and (4), respectively.

The most common approximation used is the rigid-lid approximation. In this approxi-
mation, free surface deformation is neglected or η1 is constant over time. When dealing
with a rigid lid, the following relation must be added:

h1 + h2 + d = H0, (11)

with H0 the reference height.

2.2. Formulation Using Normalized Variables

Furthermore, we define the following non-dimensional variables of free surface,
interface, fluid thicknesses, channel width, bottom elevation, and discharges:

η̄i =
ηi
H0

, h̄i =
hi
H0

, b̄ =
b
b0

, d̄ =
d

H0
, Q̄2

i =
Q2

i
g′b2H3

0
, i = 1, 2, (12)

with b0 denoting the reference width. The dimensionless variables are denoted with bars,
whereas the physical variables do not have bars. From the Froude number formula (8), we
have the following useful relationship.

h̄i =

(
Q̄i

b̄

)2/3

F−2/3
i , i = 1, 2. (13)

By using the relation (13), we can rewrite the rigid-lid Equation (11) in terms of Froude
number as follows. (

Q̄1

b̄

)2/3

F−2/3
1 +

(
Q̄2

b̄

)2/3

F−2/3
2 + d̄ = 1, (14)

Q̄2/3
r F−2/3

1 + F−2/3
2 =

(
Q̄2

b̄(1− d̄)3/2

)−2/3

. (15)

Equation (15) is called the rigid-lid curve, with Q̄2
b̄(1−d̄)3/2 being the volume flow rate.
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Under the rigid-lid assumption, we have −h̄2 − d̄ = h̄1 − 1, so the Bernoulli Equa-
tion (7) can be rewritten as follows.

∆Ê ≡ Ê1 − Ê2

g′ρ2H0
+ 1 =

1
2

(
rh̄1F2

1 − h̄2F2
2

)
+ h̄1. (16)

If the channel has constant width b̄ = 1, the formula (16) can be written in terms of the
Froude numbers and discharge ratio Q̄r = |Q̄1/Q̄2| as follows:

F2
2 = Q̄r

(
F−2/3

1 (F2
1 + 2)− 2∆Ē

)3/2

. (17)

where ∆Ē = Q̄−2/3
1 ∆Ê.

Similarly to the one-layer shallow water model where steady hydraulics can be de-
scribed as a trajectory of the energy curve, the steady interface of the two-layer model
(assuming existence is guaranteed) can be described as a trajectory on the energy dif-
ference curve (17). This aspect will be discussed in detail by using specific examples in
Sections 4 and 5.

3. Numerical Model

In this section, we discuss the numerical scheme for solving the two-layer model (1)–(4).
The scheme is based on the momentum conserving scheme for one-layer shallow water
flows originally proposed by [15]. The scheme can be used to solve problems with rapidly
varying flows, such as those involving hydraulic jumps and bores. This scheme has been
implemented and extended to various shallow water flow problems, such as in [10,16,17]
where it was referred to as the MCS scheme, an abbreviation for the momentum conserving
staggered-grid scheme. The extension of the MCS scheme to the two-layer model has been
successfully used for the study of internal waves in [18]. In this article, the scheme, which
is limited to the hydrostatic model, will be used for discussion with a focus on simulating
various steady flows in a channel with varying bed and width. The formulation of the
MCS scheme for the two-layer hydrostatic model (1)–(4) will be described below.

Consider the spatial domain x ∈ [α, β] and time domain t ∈ [0, T] with α, β, T ∈ R.
The spatial domain is discretized uniformly with a spatial step size ∆x/2 to yield partition

points: x1/2 = α, x1, · · · , xj−1/2, xj, xj+1/2, · · · , xNx+1/2 = β, with Nx =
β− α

∆x
. The time

domain is also discretized uniformly using the time step ∆t. In this staggered configuration,
we approximate Ai(xj, tn) ≡ An

i,j at full grid points xj. On the other hand, we approximate
ui(xj+1/2, tn) ≡ un

i,j+1/2 at half grid points xj+1/2, see Figure 2. The semi discrete equations
for (1)–(4) are read as follows.

Figure 2. Sketch of the computational domain α ≤ x ≤ β with the staggered grid partition and
locations of the computed variables An

i,j and un
i,j+1/2, for i = 1, 2.
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dAn
1,j

dt
+

Qn
1,j+1/2 −Qn

1,j−1/2

∆x
= 0, (18)

dun
1,j+1/2

dt
+ (u1∂xu1)

n
j+1/2 + g

ηn+1
1,j+1 − ηn+1

1,j

∆x
=

ν
un

1,j+3/2 − 2un
1,j+1/2 + un

1,j−1/2

∆x2 , (19)

dAn
2,j

dt
+

Qn
2,j+1/2 −Qn

2,j−1/2

∆x
= 0, (20)

dun
2,j+1/2

dt
+ (u2∂xu2)

n
j+1/2 + gr

ηn+1
1,j+1 − ηn+1

1,j

∆x
− g′

ηn+1
2,j+1 − ηn+1

2,j

∆x
=

ν
un

2,j+3/2 − 2un
2,j+1/2 + un

2,j−1/2

∆x2 . (21)

It should be noted that the numerical damping terms with coefficient ν have been
added to Equations (18) and (21). When the problem being simulated is not fully hyperbolic,
as suggested by several authors [1,8,12], these additional damping terms are required to
maintain the stability of the numerical scheme. This issue will be discussed in more detail
in Section 5.

Returning to (18)–(21), the variables below are computed consistently:

Ai,j = hi,jbj, η1,j = h1,j + h2,j + dj η2,j = h2,j + dj, Qi,j+1/2 = ∗Ai,j+1/2ui,j+1/2, (22)

where ∗Ai,j+1/2 in (22) is calculated by using the upwind approximation.

∗Ai,j+1/2 =

{
Ai,j, for ui,j+1/2 ≥ 0,
Ai,j+1, for ui,j+1/2 < 0,

for i = 1, 2. (23)

Using the analogy of the momentum conserving approximation of the shallow water
equations for one-layer model as described in [10], we use the following approximation for
the advection terms:

ui∂xui|i,j+1/2 =
1

Āi,j+1/2

( Q̄i,j+1
∗ui,j+1 − Q̄i,j

∗ui,j

∆x
− ui,j+1/2

Q̄i,j+1 − Q̄i,j

∆x

)
, (24)

whereas

Āi,j+1/2 =
Ai,j + Ai,j+1

2
, Q̄i,j =

Qi,j−1/2 + Qi,j+1/2

2
, (25)

and the first-order upwind approximation for horizontal velocity is the following.

∗ui,j =

{
ui,j−1/2, for Q̄i,j ≥ 0,
ui,j+1/2, for Q̄i,j < 0,

for i = 1, 2. (26)

Equations (18)–(21) are semi-discrete schemes. A fully discrete scheme that we
used here is obtained by implementing forward time integration to (18)–(21), yielding
the following.
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An+1
1,j = An

1,j −
∆t
∆x

[
Qn

1,j+1/2 −Qn
1,j−1/2

]
, (27)

un+1
1,j+1/2 = un

1,j+1/2 − ∆t(u1∂xu1)
n
j+1/2

−g
∆t
∆x

(
ηn+1

1,j+1 − ηn+1
1,j

)
+ ν

∆t
∆x2

[
un

1,j+3/2 − 2un
1,j+1/2 + un

1,j−1/2

]
, (28)

An+1
2,j = An

2,j −
∆t
∆x

[
Qn

2,j+1/2 −Qn
2,j−1/2

]
, (29)

un+1
2,j+1/2 = un

2,j+1/2 − ∆t(u2∂xu2)
n
j+1/2 − gr

∆t
∆x

(
ηn+1

1,j+1 − ηn+1
1,j

)
+g′

∆t
∆x

(
ηn+1

2,j+1 − ηn+1
2,j

)
+ ν

∆t
∆x2

[
un

2,j+3/2 − 2un
2,j+1/2 + un

2,j−1/2

]
. (30)

Thus, the MCS-schemes for the two-layer shallow water equations are (27)–(30). This
scheme is explicit and is based on the leapfrog method, which is discussed in [11] for
the case of a one-layer shallow water flow. This staggered grid arrangement has the
advantage of being free of numerical damping error. Various test cases will be simulated
in Sections 4 and 5 to validate the proposed scheme. It should be noted that the artificial
damping term is only used when the shear stability condition is violated, i.e., when S > 1.

For the linearized form of the two-layer model (1)–(4), there are two phase speeds:√
gH0 corresponds to the fast mode, and

√
g′ h1h2

H0
corresponds to the slow mode [18].

Thus, for all simulations performed here, ∆t is chosen so that the Courant number is√
gH0

∆t
∆x ≈ 0.5. Furthermore, a wet-dry procedure should be used to avoid numerical

instability in simulations involving dry areas. In this case, a simple wet-dry procedure
is used for each layer; for example, in the lower layer, u2 is calculated by using (30) only
when the corresponding cell is wet. While the cell is considered wet if A2,j+1/2 > Athres,
that is, when the wet cross-sectional area exceeds the predetermined value of Athres. The
same is also holds for the upper layer.

Next, we will first show that the momentum conserving staggered grid scheme admits
the well-balanced property. Well balanced here means that the scheme can maintain a
steady state; if it was originally steady, it will stay steady. The following discussion is a
generalization of the well-balanced property of the one-layer shallow water flow that has
been derived in [19].

Theorem 1 (Well balanced semi-discrete). The semi discrete scheme (18)–(20) preserves the
steady state at rest: flat surface and interface (η1 = 0 and η2 = 0) and also no motion (u1 = 0 and
u2 = 0).

Proof. Suppose at time tn, the water does not move (un
1,j+1/2 = 0 and un

2,j+1/2 = 0), and
the water surface and interface are flat (η1,j+1 = η1,j and η2,j+1 = η2,j). Implementing these

on the semi discrete scheme (18)–(20) results in
dAn

2,j

dt
= 0 for i = 1, 2. Furthermore, we

have the following.

dAn
i,j

dt
= bj

dhn
i,j

dt
+ hn

i,j

dbj

dt
= 0, i = 1, 2. (31)



Fluids 2021, 6, 346 8 of 17

The above equations can be expressed in terms η1 and η2 by using relations (22) to yield
the following.

dAn
2,j

dt
≡ bj

d(η2,j + dj)

dt
+ (η2,j + dj)

dbj

dt
= 0, (32)

dAn
1,j

dt
≡ bj

d(η1,j − η2,j)

dt
+ (η1,j − η2,j)

dbj

dt
= 0. (33)

Since the channel width and depth does not vary in time, after dividing by bj 6= 0, for

j = 1, 2, . . . , Nx, we have
dAn

2,j

dt
=

dη2,j

dt
= 0. Moreover, we also have

dAn
1,j

dt
=

d(η1,j − η2,j)

dt
=

dη1,j

dt
= 0. This means that η1,j and η2,j are constant at any time t ≥ tn.

Furthermore, as ηi,j, i = 1, 2 are both flat, Equations (19) and (21) become the following.

dun
1,j+1/2

dt
≡ −gr

ηn+1
1,j+1 − ηn+1

1,j

∆x
= 0,

dun
2,j+1/2

dt
≡ g′

ηn+1
2,j+1 − ηn+1

2,j

∆x
= 0,

This means that ui,j+1/2 is constant at any time t ≥ tn. As we know un
i,j+1/2 = 0, then

ui,j+1/2 is zero for any t ≥ tn. Hence, we have shown that surface and interface stay
flat, and the two-fluid system remain motionless at any time t ≥ tn; hence, the proof
is complete.

Theorem 2 (Well balanced fully discrete). The fully discrete scheme (27)–(30) preserves the
steady state of a lake at rest.

Proof. Suppose at time tn, the surface and interface is flat (η1 = 0 and η2 = 0) and does
not move (u1 = 0 and u2 = 0). Implementing these on (27)–(30) results in the following.

An+1
i,j = An

i,j, for i = 1, 2.

By using (22), the above equations can be expressed in terms η1 and η2 as follows.

(ηn+1
2,j + dj)bj = (ηn

2,j + dj)bj, (34)

(ηn+1
1,j − ηn+1

2,j )bj = (ηn
1,j − ηn

2,j)bj. (35)

After being divided by bj 6= 0, Equation (34) becomes ηn+1
2,j = ηn

2,j. Similarly, Equation (35)

becomes ηn+1
1,j − ηn+1

2,j = ηn
1,j − ηn

2,j or ηn+1
1,j = ηn

1,j. This means that ηi is constant for every
t ≥ tn.

Furthermore, as ηi,j and i = 1, 2 are both flat, Equations (28) and (30) become
the following.

un+1
1,j+1/2 ≡ −

∆t
∆x

[
g
(

ηn+1
1,j+1 − ηn+1

1,j

)]
= 0. (36)

un+1
2,j+1/2 ≡ −

∆t
∆x

[
gr
(

ηn+1
1,j+1 − ηn+1

1,j

)
− g′

(
ηn+1

2,j+1 − ηn+1
2,j

)]
= 0 (37)

Thus, for any time t ≥ tn, we obtain ui,j+1/2 = 0, and ηi,j is constant for i = 1, 2. The proof
is complete.
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Steady State of a Lake at Rest

The first test is the simulation of steady state at rest. The spatial domain is [0, 12], with
the spatial step size ∆x = 0.2. This simulation uses a channel with randomly generated
topography d(x) and width b(x) as shown in Figure 3. The initial condition is u1(x, 0) = 0
and u2(x, 0) = 0 and η1(x, 0) = 1 and η2(x, 0) = 0.5, which represent flat surface and flat
interface at rest. Both left and right boundaries are hard wall boundaries ui(0, t) = 0 and
ui(12, t) = 0 for i = 1, 2.

Figure 3. (Left) The randomly generated channel bed and the initial free surface and interface.
(Right) The randomly generated channel width.

During the calculations it was observed that the free surface and interface remain flat
and that velocities u1 and u2 are nearly zero (see Figure 4 (left)). As shown in Figure 4
(right), non-zero discharges Q1 and Q2 appear during computation, but they are still in the
order of the round-off error; their values also do not increase over time. This test provides
a computational evidence of the well-balanced property of numerical scheme (27)–(30) in
the case of a channel with varying bed and width.

Figure 4. Snapshot of simulation results which show (left) flat surface and interface, with zero
velocities (indicated by the color scale) and (right) nearly zero discharges.

4. Simulation of Hyperbolic Case

In this section, we present the results of numerical calculations using the momentum
conserving scheme (27)–(30) and simulate the formation of a steady interface in a two-layer
flow model under the influence of bottom channel with a sill. All of the test cases presented
here are simulated without the use of artificial damping, so we set ν = 0; additionally, the
problems are hyperbolic with shear parameters less than one.

4.1. Smooth Subcritical Flow

This test case is taken from [7], focusing on simulating a steady interface in a channel
with a bottom sill. The computational domain is x ∈ [−3, 3], with a spatial step size
of ∆x = 0.05 and gravity acceleration of g = 10. The channel width is assumed to
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be one, and the bottom topography consists of a single hump represented by a smooth
exponential function.

d(x) = 0.5 exp(−x2)− 2.

The initial condition is given by ui(x, 0) = 0, η1(x, 0) = 0 and η2(x, 0) = −0.5. The
boundary conditions are the discharge Q1(−3, t) = 0.15 and Q2(−3, t) = −0.15 at the
inflow, and the layer depths are h1(3, t) = 0.5 and h2(3, t) = 1.5 at the outflow. The steady
situation of subcritical flow is depicted in Figure 5 (left). As shown in that figure, the
steady interface forms a negative hump, while the free surface remains flat. The lower
layer flow moves from left to right (u2 positive), while the upper layer flow moves from
right to left (u1 negative). The discharge and energy curves of both layers are depicted in
Figure 5 (right); their constant values indicate that the steady state has been reached. We
also plot the energy difference and shear instability; the shear instability is less than one,
indicating that the problem is still hyperbolic.

Figure 5. (Left) Steady interface in the case of subcritical flow. The fluid velocity for each layer is
represented by the color scale. (Right) Plots of discharge and energy for each layer, as well as the
shear parameter.

4.2. Smooth Transcritical Flow

In this section, we conducted simulations of transcritical flows using the two-layer
model. This is the test case presented in [7], also known as the maximal two-layer flow of the
rigid-lid model by [4]. To simulate the transcritical flow, we performed two simulations:
one where both layers flow in the same direction (parallel flow) and the other where the
two layers flow in opposite directions (exchange flow).

Parallel Flow

The computational domain is x ∈ [−3, 3], with spatial step size ∆x = 0.05, and gravity
acceleration of g = 10. The channel width is taken to unity, whereas the bottom topography
consists of a single hump represented by a smooth function.

d(x) =

0.125
[

cos
(

π x
2

)
+ 1
]2

, for − 2 ≤ x ≤ 2,

0, for otherwise.
(38)

The initial condition used is ui(x, 0) = 0, η1(x, 0) = 1.3338331, and η2(x, 0) = 1.
In this case, the fluid in both layers are flowing in the same direction (parallel flow)

by adopting the boundary conditions: positive discharges at the left inflow Q1(−3, t) =



Fluids 2021, 6, 346 11 of 17

0.09282893, Q2(−3, t) = 0.09282893, and fixed water thicknesses for both layers at the
outflow are given by h1(3, t) = 1.3338331, where Q = 0.09282893 and h2(3, t) = 0.1616669.
Starting from the initial condition, the numerical calculation shows the development of a
steady interface, as shown in Figure 6 (left). That steady interface is of transcritical-type,
which smoothly connects subcritical flow and supercritical flow on the left and right of the
sill, respectively. As shown in that figure, the numerical steady interface agrees well with
the analytical steady interface, with a slight deviation on the upstream part of the hump.
When a steady state is reached, the discharge curves Q1 and Q2 and the energy curves E1
and E2 show constant values, as shown in Figure 6 (right). These flow parameters must
indeed be constant for the steady analytical solution of the rigid-lid model. The fact that
our simulation was able to produce a constant value for these parameters indicates that our
two-layer MCS scheme can be used to simulate the rigid-lid case. In addition, we observed
that the free surface is barely deformed during the simulation of this case. Furthermore,
the shear parameter shown in Figure 6 (right) is less than one, indicating that the problem
remains hyperbolic.

Figure 6. (Left) Steady interface in the case of smooth transcritical flow, where both fluid layers
flowing in the same direction. The fluid velocity for each layer is represented by the color scale.
(Right) Plots of discharge and energy for each layer, as well as the shear parameter.

We also ran another simulation for this smooth transcritical flow in which both
layers flow in opposite directions with the same discharge. This is accomplished in
the numerical simulation by using the boundary conditions as Q1(3, t) = −0.09282893,
Q2(−3, t) = 0.09282893, and h1(−3, t) = 0.4311358 and h2(3, t) = 0.1616669. The numer-
ical simulation yields a steady surface that is similar to the parallel flow case. This is to
be expected because, as predicted by the rigid-lid analytic model, the steady interface is
determined by the same values of Q̄r and ∆Ê as in the parallel case.

Next, we will discuss the hydraulic aspect of this smooth transcritical steady flow.
This description holds for both cases: parallel flow as well as exchange flow, with the
discharge ratio Q̄r = |Q̄1/Q̄2| = 1. The channel topography (38) with constant channel
width b̄ = 1 has the form of a smooth hump with a crest d̄ = 0.33 (corresponds to the
volume flow rate of Q̄2

(1−d̄)3/2 = 0.21) and a foot d̄ = 0 (corresponds to the volume flow rate

of Q̄2
(1−d̄)3/2 = 0.11).
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On the Froude number plane, we draw two rigid-lid contours: one corresponds to
the foot, and another corresponds to the crest of the topographical hump. In numerical
simulation, after reaching steady state ∆Ê = 1.5, we plot the Bernoulli curve with contour
∆Ê = 1.5. In Figure 7 (right), this Bernoulli curve intersects the rigid-lid contour = 0.11 at
the point A; this condition represents the subcritical upstream part of the steady interface
indicated by the point A. Moving forward, at the bottom crest, the Bernoulli and the
rigid-lid contour = 0.21 intersect at B, exactly at a control point with G2 = 1. Furthermore,
the supercritical flow on the downstream part can be recognized by the point C. This
downstream condition meets the fact that h2 is small in the downstream area, implying
that F2

2 must be large.

Figure 7. (Left) Side view of the steady interface of the smooth transcritical flow due to a bottom sill
(not to scale). (Right) The Froude number planes with several contours of the rigid-lid and Bernoulli
are plotted in red and blue labels, respectively, whereas the straight line represents the criticality
condition (9). The Bernoulli contour, shown as a thick solid curve A− B− C, depicts the steady
interface of the smooth transcritical flow.

4.3. Transcritical Flows with Jump

This is a simulation of steady interface in the case of transcritical flow with jump.
Parameters used in this simulation are the same as the previous smooth transcritical case
except that here we specify different boundary conditions. Discharges are specified at the
inflow Q1(−3, t) = Q2(−3, t) = 0.09282893, and water heights for each layer are specified
at the outflow h1(3, t) = 0.5794783 and h2(3, t) = 0.9205217. The resulting steady interface
is depicted in Figure 8; when the flow proceeds over the sill, the subcritical flow accelerates
to supercritical, which then undergoes a hydraulic jump to match the boundary condition
at the right boundary. The numerical steady interface, as shown in Figure 8 (left), is in good
agreement with the exact steady-state solution, and some discrepancy appears at the hydraulic
jump location. At the end of the simulation time, the discharge curve in Figure 8 (right) shows
a constant value, but the energy curve, especially E2, is not really constant. This indicates that
our model is only an approximation of the rigid-lid model. Furthermore, the shear instability
curve in Figure 8 (right) is less than one, suggesting that the problem remains hyperbolic.
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Figure 8. (Left) Steady interface in the case of transcritical flow with jump, where both fluid layers
flowing in the same direction. The fluid velocity for each layer is represented by the color scale.
(Right) Plots of discharge and energy for each layer, as well as the shear parameter.

5. Simulation of Conditionally Hyperbolic Cases

In this second subsection, we simulate steady interface in the case of channel with
varying width. We conducted two test cases, both of which turned out to be conditionally
hyperbolic case. Thus, in this case, we used a numerical scheme (27)–(30) that includes the
artificial damping terms that is three-two orders of magnitude lower than the other terms.

5.1. Maximal Exchange Flows through a Contraction

This test case is known as the maximal exchange flow problem, which was introduced
by [1]. On the computational domain x ∈ [−1.5, 1, 5], with spatial step size ∆x = 0.01,
gravity acceleration g = 9.81, and damping parameter ν = 0.002. This calculation makes
use of a flat bed channel with d(x) = 0 and varying width given by the following:

b(x) = 1 + 4(1− exp(−α2x2)), (39)

with α = 1.073. The function (39) represents a normal channel width of b = 5 with
a single contraction b = 1 at the origin x = 0 and b = 2 at x = ±0.5. Here, we use
h1(x, 0) = 0.5, h2(x, 0) = 0.5, and u1(x, 0) = −u2(x, 0) = 0.2 as the initial conditions. In
this simulation, the upper layer is flowing to the right, while the lower layer is flowing to
the left. The boundary conditions u1(−1.5, t) = 0.2 and u2(1.5, t) = −0.2 are used in the
numerical simulation, along with absorbing boundaries for the other two, u1(1.5, t) and
u2(−1.5, t). Note that, for the absorbing boundary, we used the sponge layer technique
here by [20]; for the computational interval−1.5 < x < 1.5, we place at the far right x = 1.5
a sponge layer for u1 on 1.5 < x < 2 and at the far left x = −1.5 a sponge layer for u2
on −2 < x < −1.5. When the steady state is reached, the interface forms the maximal
exchange flow, as illustrated in Figure 9 (left).
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Figure 9. (Left) Steady interface in the case of maximal two layer exchange flow. The fluid velocity
for each layer is represented by the color scale. (Right) Plots of discharge and energy for each layer,
as well as a shear parameter with a value of one, indicating a conditional hyperbolicity based on (10).

Figure 9 (left) depicts the steady interface and the composite Froude number G2. The
numerical steady interface shows a good agreement with the analytical steady interface of
the rigid-lid model. We observe that the free surface remains flat during the simulation,
indicating that our two-layer numerical scheme can be used to simulate the rigid-lid case.
As shown in Figure 9 (right) both the discharges Q1 and Q2 and the energies E1 and E2
are constant, indicating that stability has been achieved. The G2 curve shows that the
maximal exchange flow is supercritical on both the upstream and downstream sides of the
channel contraction. The control location with G2 = 1 in this case is the channel contraction
x = 0. In addition, this simulation requires the inclusion of a damping term; otherwise,
instability will occur. Indeed, hyperbolicity is not guaranteed in this problem because the
shear parameter curve is nearly one throughout the domain, as shown in Figure 9 (right).

In the following, we will recognize the steady interface on the Froude number plane.
Following [6] and using (5) and (6), we first rewrite the energy difference formula for the
zero channel bed d = 0 as follows.

Ê2 − Ê1

g′ρ2H0
≡ ∆E′ =

1
2g′H0

(
u2

2 − ru2
1

)
+

h2

H0
,

∆E′ =
F−2/3

2 (1 + 1
2 F2

2 )−
1
2 Q̄rF4/3

1

Q̄rF−2/3
1 + F−2/3

2

.

The later expression is obtained after using (8). The given boundary conditions result in the
upper layer flowing to the right, whereas the lower layer flowing to the left at the same rate
yields Qr = |Q1

Q2
| = 1. In this case, the rigid-lid Equation (15) and the Bernoulli equation

are read as follows.

F−2/3
1 + F−2/3

2 =

(
Q̄2

b̄

)−2/3

, (40)

∆E′ =
F−2/3

2 (1 + 1
2 F2

2 )−
1
2 F4/3

1

F−2/3
1 + F−2/3

2

. (41)

Our interest is on the maximal two-way exchange flow between two infinite reservoirs;
with density ρ1 on the left and ρ2 on the right. In this case, the inflowing layer spreads out
to the point where the fluid thickness approaches zero. Since Qi is finite, the vanishing
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hi implies a Froude number Fi that tends to infinity for i = 1, 2. The point A in Figure 10
(left) represents a position near reservoir ρ1, with F2 → ∞, whereas the point C represents
a position near reservoir ρ2, with F1 → ∞. Consider Figure 10 (right), among several
Bernoulli curves, there is only one level curve, i.e., with ∆E′ = 0.5 that satisfies these
boundary conditions; that curve is plotted as a thick solid curve. This Bernoulli curve
intersects the criticality condition (9) at a point (F2

1 = 1
2 , F2

2 = 1
2 ), i.e., the point B, located

at the narrowest section, which becomes a control with G2 = 1. Furthermore, the rigid-lid
curve (40) with contour Q̄2

b̄ = 1
4 passes through the point B. Thus, the solid curve A− B−C

in the Froude number plane represents the steady interface of the maximal exchange flow.
Moreover, this steady flow is supercritical on both sides of the control.

Figure 10. (Left) Top and side views of the steady interface of the maximal exchange flow due to
contraction (not to scale). (Right) The Froude number planes with several contours of the rigid-lid
and Bernoulli are plotted in red and blue labels, respectively, whereas the straight line represents the
criticality condition (9). The Bernoulli contour, shown as a solid curve A− B− C, depicts the steady
interface of the maximal exchange flow.

5.2. Exchange Flows through Sill and Contraction

The final test case is taken from [1]. The steady interface in this case represents the
exchange flow through a channel with contraction and a bottom sill. The computational
domain is x ∈ [−1, 2] with the spatial step size ∆x = 0.01 and gravitational acceleration of
g = 9.81, and the damping parameter is ν = 0.01. The channel beds and widths are given
by the following:

d(x) = sech2(βx), and b(x) = 0.5 + 1.5(1− exp(−α2(x− 1)2)),

where α = 0.673 for x ≤ 1, α = 1.273 for x ≥ 1, and β = 3.75.
For this simulation, the initial conditions are h1(x, 0) = 1, h2(x, 0) = 1, u1(x, 0) = 0.2,

and u2(x, 0) = −0.18. To achieve an exchange flow with the upper layer flowing to the
right and the lower layer flowing to the left, we use boundary conditions u1(−1, t) = 0.2
and u2(2, t) = −0.18, with absorbing boundary conditions for the upper layer downstream
and the lower layer upstream. In this case, the absorbing boundary is built using sponge
layer technique similar to those described in Section 5.1.

Figure 11 (left) depicts the steady interface and the composite Froude number G2. The
numerical steady interface shows a good agreement with the analytical steady interface of
the rigid-lid model. We observe that the free surface remains flat during the simulation,
indicating that our two-layer numerical scheme can be used to simulate the rigid-lid case.
Figure 11 (right) shows that both the discharges Q1 and Q2, as well as the energies E1 and
E2, are constant, indicating that steady state has been achieved. The G2 curve shows that
the maximal exchange flow is supercritical on both the upstream and downstream sides of
the channel, with a subcritical area trapped between the two controls, i.e., at the bottom
sill x = 0 and at the channel contraction x = 1. The shear parameter curve shown in
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Figure 11 (right) is greater than one on the upstream side of the sill, therefore, hyperbolicity
is not guaranteed for this problem. To avoid numerical instability, the numerical damping
term must be incorporated

Figure 11. (Left) Steady interface in the exchange flow through channel with contraction and a
bottom sill. (Right) Plots of discharge and energy for each layer; the shear parameter (10) is greater
than one, indicating a loss of hyperbolicity in that region.

6. Conclusions

We have proposed an extension of the momentum conserving staggered-grid scheme
(MCS) for the two-layer shallow water flows in channels with varying bed and width. For-
mulation of the scheme is a direct analog of the MCS scheme for the one-layer shallow water
equations. The scheme is explicit and well-balanced, and it has been tested with the steady-at-
rest case. The scheme was validated using various test cases of steady interface in a channel
with bottom sill, including subcritical flow, smooth transcritical flow, and transcritical flow
with hydraulic jump. The obtained results agree well with the exact steady interface of the
two-layer rigid-lid model. In the simulation of the maximal exchange flow, the numerical
scheme succeeded in producing a steady interface. In this simulation, an artificial numerical
damping was used to avoid numerical instability. This was necessary because the problem
is classified as conditionally hyperbolic. We concluded that the MCS scheme performs well
in simulating various steady flows in channels with varying bed and width. However, the
scheme developed here is limited to rectangular cross-section channels.
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