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Abstract: A non-modal transient disturbances growth in a stably stratified mixing layer flow is
studied numerically. The model accounts for a density gradient within a shear region, implying a
heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full three-
dimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found
that the transient growth of two-dimensional disturbances diminishes with the strengthening of
stratification, while three-dimensional disturbances cause significant non-modal growth, even for a
strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and
does not necessarily weaken with the increase of the Richardson number. The optimal perturbation
consists of two waves traveling in opposite directions. Compared to the two-dimensional transient
growth, the three-dimensional growth is found to be larger, taking place at shorter times. The non-
modal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is
steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence
of the structures determined by the transient growth analysis.

Keywords: stratified mixing layer; non-modal instability; Kelvin-Helmholtz instability; Holmboe in-
stability

1. Introduction

The mixing layer flow is the simplest configuration allowing for the well-known
Kelvin-Helmholtz (or KH) instability that takes place when two parallel flows having
different velocities meet. The instability develops as a wave (or KH mode) in the shear
layer separating two uniform flows. Studies of this phenomenon started in the early works
of Lord Kelvin [1] and Strutt and Lord Rayleigh [2]. The phenomenon appears to be so
complicated and to pose so many questions that in spite of hundreds of studies published,
it remains the subject of many current researches [3–6]. For the details, the reader is referred
to review papers [7–9].

The isothermal mixing layer is known to be linearly unstable either in the inviscid limit
or starting from relatively low Reynolds numbers within the Newtonian viscous model [10].
It is also known that the flow remains linearly stable for the streamwise dimensionless
wavenumber larger than unity [10,11]. At the same time, studies [12,13] showed that
temporal non-modal disturbances growth can take place in the isothermal inviscid and
viscous mixing layer flows, respectively. A similar mechanism was discovered recently in
round jets [5].

The classical result on the linear stability of an inviscid mixing layer flow stably
stratified by density (or temperature) stays that the flow becomes linearly stable for the
gradient Richardson number exceeding 0.25 [10–15]. Later studies showed that along with
the monotonic Kelvin-Helmholtz instability, an oscillatory instability is also possible [16].
The latter is the Holmboe instability that develops as two waves traveling in opposite
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directions [10,17]. Furthermore, numerical calculations [18–20] supported by experiments
of [21] showed that a three-dimensional mode traveling at an angle to the base velocity may
attain the largest growth rate. For example, a shear layer characterized by a relatively thin
region of stably stratified fluid can exhibit Holmboe instability [16,21,22], whose growth
rate increases with increasing stratification. Despite the valid Squire transformation proved
in [23], the flow is predicted to be linearly unstable to a three-dimensional disturbance.

It was shown in [10] that the instability at small Richardson numbers is governed by
two monotonic KH modes, one of which can become unstable. With further increase of the
Richardson number, the pair of monotonic modes are replaced by a pair corresponding to
complex conjugated eigenvalues related to the Holmboe instability. It was shown recently
that KH instability plays an important role in the formation of interfaces between coating
and substrate materials and metallic materials [24,25]. The non-linear evolution of KH and
Holmboe instabilities was studied in quite a large number of articles (e.g., [17,26–33]). A
difference in the nonlinear disturbances growth compared with the predictions of linear
stability theory was reported in [31]. Surprisingly, the issue of non-modal growth of
disturbances at short times was addressed only by [14] for non-stratified mixing layers and
by [32] for a stratified inviscid model. The study [32] described the non-modal amplification
of the stratified mixing layer in terms of the interaction of gravity wave and vortex energy
of the optimal perturbation for large wavenumbers. It was shown that the amplified
transient growth can be three-dimensional and is associated with wave generation due to a
vertical motion at large wavenumbers.

This study extends the previous results of [12] and [29] to viscous thermally stratified
mixing layers. We show that the non-modal growth in this flow is governed mainly by the
Holmboe-type modes. In the following, we examine their dynamics and interaction via
consideration of a fully nonlinear three-dimensional model.

The paper is organized in the following way. In Section 2, we outline the fundamental
details of the instability analysis and give a formulation of the optimal growth methodology,
including the derivation of an adjoint operator. Section 3 discusses the implementation of
different techniques for the calculation of the largest possible non-modal growth. Section
4 presents non-modal instability properties as a function of the Richardson number and
evolution of the optimal disturbances within three-dimensional models. The summary and
conclusions are derived in Section 5.

2. Formulation of the Problem and Numerical Techniques

We consider a flow of an incompressible Newtonian fluid in a thermally stratified
mixing layer. After the Boussinesq approximation is applied, the flow is governed by the
momentum, continuity, and energy equations

∂u
∂t

+ (u·∇)u = −1
ρ
∇p + ν∆u +
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𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ 𝛁)𝐮 = −

1

𝜌
𝛁𝑝 + ν∆𝐮 + ℊ𝛾(𝑇 − 𝑇̅)𝒆𝒛 (1a) 

∇ ∙ 𝐮 = 0 (1b) 

𝜕𝑇

𝜕𝑡
+ (𝐮 ∙ 𝛁)𝑇 = 𝜅∆𝑇 (1c) 

Here, 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)  is the velocity with components in the streamwise ( 𝑥 ), 

spanwise (𝑦) and vertical (𝑧) directions; 𝑝 and 𝑇 are the pressure and the temperature, 

𝜌 is the density, ν is the kinematic viscosity, ℊ is gravitational acceleration, 𝛾 is the ther-

mal expansion acceleration, 𝒆𝒛 is the unit vector in the 𝑧-direction (vertical direction), 𝑇̅ 

is the mean temperature, which is defined below, 𝜅 is the thermal diffusivity, and ∆ de-

notes the Laplacian operator. 

γ
(
T − T

)
ez (1a)

∇·u = 0 (1b)

∂T
∂t

+ (u·∇)T = κ∆T (1c)

Here, u =
(
ux, uy, uz

)
is the velocity with components in the streamwise (x), spanwise (y)

and vertical (z) directions; p and T are the pressure and the temperature, ρ is the density, ν is
the kinematic viscosity,
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is gravitational acceleration, γ is the thermal expansion acceleration,
ez is the unit vector in the z-direction (vertical direction), T is the mean temperature, which is
defined below, κ is the thermal diffusivity, and ∆ denotes the Laplacian operator.

The stratified mixing layer flow is modeled as two horizontal fluid layers moving in
opposite directions with velocities ±Umax when the colder fluid layer is located under the
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warmer one. It is assumed that the base flow and temperature profiles can be described by
hyperbolic tangent profiles

U(z) = Umaxtanh
(

z
δv

)
, T(z) = T1 + T

[
1 + tanh

(
z

δT

)]
(2)

where T1 and T2 are temperatures of lower and upper fluid layers, respectively, (T2 > T1),
T = 0.5(T2 − T1), and δv and δT are the thicknesses of the velocity and temperature layers
(note δv > δT for a Prandtl number larger than unity). The thickness of the velocity layer is
defined following assumptions derived in [30] where the authors showed that presentation
of base flow based on the “tanh” profile provides a better fit to the experimental data and is
proportional to momentum thickness.

Seeking a solution as a linear combination of the steady base flow (U, T) and an

infinitesimal disturbance
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∗〈𝒑𝑗
∗, 𝒑𝑖〉𝒌𝑗𝑖,𝑗 , as follows 

‖𝒒‖𝐸
2 = 𝒒∗𝓜𝒒 = ∑𝒌𝑖

∗𝒑𝑗
∗
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ℳ𝑗𝑖𝒑𝑖𝒌𝑗 = ∑𝒌𝑖
∗𝑺𝒌𝑗

𝑖,𝑗

 (12) 

where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 

= (
¯
v, θ), we arrive at the dimensionless linearized equations

for the velocity,
¯
v, and temperature, θ, perturbations:

∂
¯
v

∂t
+

(
¯
v·∇

)
U + (U·∇)¯v = −∇p + Re−1∆

¯
v + Riθez (3a)

∇·¯v = 0 (3b)

∂θ

∂t
+

(
¯
v·∇

)
T + (U·∇)θ = Pe−1∆θ (3c)

Equations (3a–3c) are rendered dimensionless using the scales δv, Umax, δv/Umax,
ρU2

max, and (T2 − T1) for length, velocity, time, pressure, and temperature, respectively.
The Reynolds number is defined by Re = Umaxδv/ν, Pr = ν/κ is the Prandtl number,
Pe = RePr = Umaxδv/κ is the Péclet number, Ri = γg(T2 − T1)δv/U2

max is the bulk
Richardson number, and δ = δv/δT is the velocity and temperature thicknesses ratio.

For the modal analysis, we assume an exponential dependence of the perturbations
on time and apply the Fourier integral expansion in the infinite x- and y-direction, i.e.,˜
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which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 
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where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 

(z) = L˜

Fluids 2021, 6, x FOR PEER REVIEW 5 of 17 
 

〈𝕢1, 𝕢𝟐〉 = ∫ [
1

2(𝛼2 + 𝛽2)
(𝑤1𝑤2

∗ +
𝑑𝑤1

𝑑𝑧

𝑑𝑤2
∗

𝑑𝑧
+ 𝜂1𝜂2

∗ +
𝑅𝑖

𝑇𝑧(0)
𝜃1𝜃2

∗)] 𝑑𝑧 (8) 

where * denotes the complex conjugate. In the following, the inner product of two com-

plex vectors 𝕢𝑖 and 𝕢𝑗 associates with the energy norm (7), (8) and is given by 

〈𝕢𝑖 , 𝕢𝑗〉𝐸 = 〈𝕢,M𝕢〉 = ∫ [𝑤𝑗
∗, 𝜂𝑗

∗, 𝜃𝑗
∗]

𝑗
M[

𝑤𝑖

𝜂𝑖

𝜃𝑖

]

𝑖

𝑑Ω
Ω

 with M = [
−Δ 0 0
0 1 0
0 0 𝑅𝑖 𝑇𝑧(0)⁄

] (9) 

So that 𝐸(𝑡, 𝛼, 𝛽) = ‖𝕢‖𝐸
2  is the energy amplification at time 𝑡 = 𝜏, or growth func-

tion, is defined as ([38–40]) 

𝐺(𝜏, 𝛼, 𝛽) = max
𝕢(0)≠0

𝐸(𝜏)

𝐸(0)
 (10) 

Substitution for 𝐸(𝜏) in (10), with assuming 𝐸(0) = 1, and recalling that 𝕢(𝜏) =

𝑒𝑥𝑝 (ℒ𝜏)𝕢(0) = 𝛷(𝜏)𝕢(0), yields 

𝐺(𝜏, 𝛼, 𝛽) = max
𝕢(0)≠0

〈𝛷(𝜏)𝕢(0), 𝛷(𝜏)𝕢(0)〉 = max
𝕢(0)≠0

〈𝕢(0), 𝛷∗(𝜏)𝛷(𝜏)𝕢(0)〉 = ‖𝛷∗(𝜏)𝛷(𝜏)‖ (11) 

where 𝛷∗(𝜏) is the adjoint of the operator 𝛷(𝜏) (see Section 2.2). The operator 𝛷∗(𝜏)𝛷(𝜏) 

is self-adjoint and normal, its eigenvalues are real and non-negative, and ‖𝛷∗(𝜏)𝛷(𝜏)‖ =

max
𝑖

𝜎𝑖 = 𝜎𝑚 is the largest eigenvalue that corresponds to the maximum possible relative 

growth attainable at the time τ. The eigenvector 𝕢𝑚 corresponding to the eigenvalue 𝜎𝑚 is 

the disturbance which yields this maximal growth value. 

To examine possible non-modal disturbance growth, we applied two independent ap-

proaches. The first one is the Gram matrix factorization, followed by the singular value de-

composition (SVD) method [41,42]. The energy norm (7) of an arbitrary perturbation 𝒒(𝑡) 

can be connected with the Euclidean norm of the vector 𝒌(𝑡) defined by the eigenvector 

decomposition of the matrix 𝓛: ‖𝒒‖2
2 = ∑ 𝒌𝑖

∗〈𝒑𝑗
∗, 𝒑𝑖〉𝒌𝑗𝑖,𝑗 , as follows 

‖𝒒‖𝐸
2 = 𝒒∗𝓜𝒒 = ∑𝒌𝑖

∗𝒑𝑗
∗

𝑖,𝑗

ℳ𝑗𝑖𝒑𝑖𝒌𝑗 = ∑𝒌𝑖
∗𝑺𝒌𝑗

𝑖,𝑗

 (12) 

where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 
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on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 
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a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 

(z), (4a)

L =

(
LOS Lwθ

LTw LSqθ

)
(4b)

LOS = ∆−1
(

iα(−U∆ + Uzz) + Re−1∆2
)

, (4c)

Lwθ = −Ri
(

α2 + β2
)

∆−1 (4d)

LTw = −Tz, (4e)

LSqθ
= Pe−1∆− iαU. (4f)

Here, λ is a complex time increment, α and β are real wavenumbers in the x− and y−
directions respectively, L is the linearized generalized operator, LOS is the Orr-Sommerfeld
operator that determines the evolution of perturbation of the vertical velocity component
w; LTw and Lwθ are operators coupling the velocity perturbation w with temperature
perturbations θ; LSqθ

is the Squire operator that determines the evolution of perturbation
of temperature θ; Tz and Uzz are the first and second derivatives of temperature and
velocity profiles (Equation (2)), respectively. Note that the Laplacian operator reduces to
∆ = ∂2

∂z2 −
(
α2 + β2), and ∆−1 denotes the inverse Laplacian operator.
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Equations (4a–4f) define an eigenproblem for eigenvalues λ and eigenvectors ˜
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followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 
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(z, t) exp(iαx + iβy). It can be shown that by applying the continuity equation
and excluding the pressure, an arbitrary three-dimensional infinitesimal perturbation is
described by
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=
(
ux, uy, uz, θ

)
. Furthermore, the two velocity components ux and uy can

be replaced by the vertical vorticity component η = ∂uy/∂x− ∂ux/∂y. Thus, consideration
of the perturbation vector (w, η, θ)T where uz = w is the vertical velocity component
yields an equivalent formulation. The resulting linearized dynamical matrix operator L is
expressed as

∂
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The second approach is the iterative forward/backward time integration applying a 
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followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 
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, (5a)

L =

 LOS 0 Lwθ

Lηw LSq 0
LTw 0 LSqθ

 (5b)

Lηw = −iβUz, (5c)

LSq = Re−1∆− iαU (5d)

In this case, the coupling operator Lηw and the Squire operator governing the vorticity
perturbation LSq are added to the equations system (4a–4f). The non-modal analysis
examines the maximum energy growth at a particular time period of the flow disturbance,

Fluids 2021, 6, x FOR PEER REVIEW 5 of 17 
 

〈𝕢1, 𝕢𝟐〉 = ∫ [
1

2(𝛼2 + 𝛽2)
(𝑤1𝑤2

∗ +
𝑑𝑤1

𝑑𝑧

𝑑𝑤2
∗

𝑑𝑧
+ 𝜂1𝜂2

∗ +
𝑅𝑖

𝑇𝑧(0)
𝜃1𝜃2

∗)] 𝑑𝑧 (8) 

where * denotes the complex conjugate. In the following, the inner product of two com-

plex vectors 𝕢𝑖 and 𝕢𝑗 associates with the energy norm (7), (8) and is given by 

〈𝕢𝑖 , 𝕢𝑗〉𝐸 = 〈𝕢,M𝕢〉 = ∫ [𝑤𝑗
∗, 𝜂𝑗

∗, 𝜃𝑗
∗]

𝑗
M[

𝑤𝑖

𝜂𝑖

𝜃𝑖

]

𝑖

𝑑Ω
Ω

 with M = [
−Δ 0 0
0 1 0
0 0 𝑅𝑖 𝑇𝑧(0)⁄

] (9) 

So that 𝐸(𝑡, 𝛼, 𝛽) = ‖𝕢‖𝐸
2  is the energy amplification at time 𝑡 = 𝜏, or growth func-

tion, is defined as ([38–40]) 

𝐺(𝜏, 𝛼, 𝛽) = max
𝕢(0)≠0

𝐸(𝜏)

𝐸(0)
 (10) 

Substitution for 𝐸(𝜏) in (10), with assuming 𝐸(0) = 1, and recalling that 𝕢(𝜏) =

𝑒𝑥𝑝 (ℒ𝜏)𝕢(0) = 𝛷(𝜏)𝕢(0), yields 

𝐺(𝜏, 𝛼, 𝛽) = max
𝕢(0)≠0

〈𝛷(𝜏)𝕢(0), 𝛷(𝜏)𝕢(0)〉 = max
𝕢(0)≠0

〈𝕢(0), 𝛷∗(𝜏)𝛷(𝜏)𝕢(0)〉 = ‖𝛷∗(𝜏)𝛷(𝜏)‖ (11) 

where 𝛷∗(𝜏) is the adjoint of the operator 𝛷(𝜏) (see Section 2.2). The operator 𝛷∗(𝜏)𝛷(𝜏) 

is self-adjoint and normal, its eigenvalues are real and non-negative, and ‖𝛷∗(𝜏)𝛷(𝜏)‖ =

max
𝑖

𝜎𝑖 = 𝜎𝑚 is the largest eigenvalue that corresponds to the maximum possible relative 

growth attainable at the time τ. The eigenvector 𝕢𝑚 corresponding to the eigenvalue 𝜎𝑚 is 

the disturbance which yields this maximal growth value. 

To examine possible non-modal disturbance growth, we applied two independent ap-

proaches. The first one is the Gram matrix factorization, followed by the singular value de-

composition (SVD) method [41,42]. The energy norm (7) of an arbitrary perturbation 𝒒(𝑡) 

can be connected with the Euclidean norm of the vector 𝒌(𝑡) defined by the eigenvector 

decomposition of the matrix 𝓛: ‖𝒒‖2
2 = ∑ 𝒌𝑖

∗〈𝒑𝑗
∗, 𝒑𝑖〉𝒌𝑗𝑖,𝑗 , as follows 

‖𝒒‖𝐸
2 = 𝒒∗𝓜𝒒 = ∑𝒌𝑖

∗𝒑𝑗
∗

𝑖,𝑗

ℳ𝑗𝑖𝒑𝑖𝒌𝑗 = ∑𝒌𝑖
∗𝑺𝒌𝑗

𝑖,𝑗

 (12) 

where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 

(0), over all possible initial conditions in terms of energy norm, produced by a sum of
kinetic and potential energies, and assuming that the temperature perturbation alters the
latter. The squared energy norm is represented by the inner product (to be defined below):

E(t) =
∣∣∣∣∣∣
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where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 

2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations 

〉
E (6)

For fixed wavenumbers, the integrals in x- and y- coordinates scale out of the problem,
and the energy norm in terms of w, η, and θ becomes

E(t, α, β) =
∫ [ 1

2(α2 + β2)

(
|w|2 +

∣∣∣∣dw
dz

∣∣∣∣2 + |η|2 + C|θ|2
)]

dz (7)

where the coefficient C is a positive definite scalar. The choice of C will not change the
norm qualitatively [34,35]. It was shown in [36] that the perturbation energy is associated
with the Brunt-Väisäla frequency and can be expressed in terms of the local Richardson
number Ril = Ri

Tz
(see also [37]). Following this result, we define C = Ril(z = 0) = Ri

Tz(z=0) .
It is easy to see that the above energy norm is produced by the inner product

〈
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where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 
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the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 
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2〉 =
∫ [ 1

2(α2 + β2)

(
w1w∗2 +

dw1

dz
dw∗2
dz

+ η1η∗2 +
Ri

Tz(0)
θ1θ∗2

)]
dz (8)
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where * denotes the complex conjugate. In the following, the inner product of two complex
vectors
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where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 
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where 𝓜 is the mass matrix, p is the eigenvector, and 𝑺 = 〈𝒑,𝓜𝒑〉 is the Gram matrix, 

which is the complex-valued Hermitian matrix. Then, using factorization of the positive 

definite Gram matrix 𝑺 = 𝑭𝐻𝑭, the maximum energy growth at time 𝜏 can be calculated 

as the value of the 2-norm of the matrix 𝑭𝑒𝑥𝑝(𝜦𝜏)𝑭−1 and is equal to the square of its 

maximal singular value. This method allows for the calculation of non-modal growth based 

on a separated part of the spectrum. Following the arguments of [13], only a discrete part of 

the spectrum should be included in the analysis. To separate the discrete part of the spec-

trum, we tried the approach of [13] and extracted the eigenvectors that have finite amplitude 

inside and are near the mixing zone and vanish far from it. Alternatively, we included in 

the analysis only those modes whose pseudospectrum is located at a distance smaller than 

a given 𝜀 from the eigenvalues of the linearized problem. 

The second approach is the iterative forward/backward time integration applying a 

random initial perturbation. The evolution forward is governed by the operator ℒ and is 

followed by the integration backward governed by the adjoint operator, ℒ∗. The latter is 

derived in the next section. This approach involves both discrete and continuous parts of 

the spectrum and results in the growth function value at a given time and the corresponding 

optimal initial vector [43]. 

To validate the results, we apply the full three-dimensional DNS with the optimally 

perturbed base flow as the initial condition. This validation shows that the second approach 

that involves forward/backward time integrations yields the correct results. 
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So that E(t, α, β) =
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inside and are near the mixing zone and vanish far from it. Alternatively, we included in 
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(10)

Substitution for E(τ) in (10), with assuming E(0) = 1, and recalling that
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where Φ∗(τ) is the adjoint of the operator Φ(τ) (see Section 2.2). The operator Φ∗(τ)Φ(τ)
is self-adjoint and normal, its eigenvalues are real and non-negative, and ||Φ∗(τ)Φ(τ)|| =
max

i
σi = σm is the largest eigenvalue that corresponds to the maximum possible relative

growth attainable at the time τ. The eigenvector
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m corresponding to the eigenvalue σm is
the disturbance which yields this maximal growth value.

To examine possible non-modal disturbance growth, we applied two independent
approaches. The first one is the Gram matrix factorization, followed by the singular value
decomposition (SVD) method [41,42]. The energy norm (7) of an arbitrary perturbation q(t)
can be connected with the Euclidean norm of the vector k(t) defined by the eigenvector
decomposition of the matrix L: ||q||22 = ∑i,j k∗i 〈p∗j , pi〉k j, as follows

||q||2E = q∗Mq = ∑
i,j

k∗i p∗jMji pik j = ∑
i,j

k∗i Sk j (12)

whereM is the mass matrix, p is the eigenvector, and S = 〈p,Mp〉 is the Gram matrix,
which is the complex-valued Hermitian matrix. Then, using factorization of the positive
definite Gram matrix S = FH F, the maximum energy growth at time τ can be calculated
as the value of the 2-norm of the matrix Fexp(Λτ)F−1 and is equal to the square of its
maximal singular value. This method allows for the calculation of non-modal growth
based on a separated part of the spectrum. Following the arguments of [13], only a discrete
part of the spectrum should be included in the analysis. To separate the discrete part of
the spectrum, we tried the approach of [13] and extracted the eigenvectors that have finite
amplitude inside and are near the mixing zone and vanish far from it. Alternatively, we
included in the analysis only those modes whose pseudospectrum is located at a distance
smaller than a given ε from the eigenvalues of the linearized problem.

The second approach is the iterative forward/backward time integration applying a
random initial perturbation. The evolution forward is governed by the operator L and is
followed by the integration backward governed by the adjoint operator, L∗. The latter is
derived in the next section. This approach involves both discrete and continuous parts of
the spectrum and results in the growth function value at a given time and the corresponding
optimal initial vector [43].

To validate the results, we apply the full three-dimensional DNS with the optimally
perturbed base flow as the initial condition. This validation shows that the second approach
that involves forward/backward time integrations yields the correct results.
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2.2. Adjoint form of the Orr-Sommerfeld, Squire, and Energy Equations

We derive the adjoint operator considering the derivation of the adjoint form of the
first- and second-order spatial derivatives and the first-order time derivatives. As noted
by [44], the direct and adjoint parabolic problems have opposite directions of stable time-
like evolution. From the definition (5a,b) and using (9) the adjoint operator L∗ can be
obtained as follows:
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where ∆2𝐷=
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𝜕𝑥2 +
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𝜕𝑦2 is the 2D Laplacian and 𝑈𝑧 is the first derivative of the velocity pro-
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]
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where ∆2D = ∂2

∂x2 + ∂2

∂y2 is the 2D Laplacian and Uz is the first derivative of the velocity

profile (Equation (2)). Evidently, the adjoint operator L∗ of the adjoint system ∂
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)∗
in terms of a periodical in the stream- and span-wise direction perturbation will

be expressed as

L∗ =

 L
∗
OS L∗ηw L∗Tw
0 L∗Sq 0
L∗wθ 0 L∗Sqθ

 (15)

where the entries of the matrices are

L∗OS = ∆−1
(
−2iαUz

∂

∂z
−
(

iαU + Re−1∆
)

∆
)

, L∗wθ = −Ri
(

α2 + β2
)

(16a)

L∗ηw = −∆−1iβUz, L∗Sq = −Re−1∆− iαU (16b)

L∗Tw = −∆−1Tz, L∗Sqθ = −Pe−1∆− iαU (16c)

Finally, in accordance with Equation (11), the time integration forward/backward
iterative procedure will result in the optimal initial vector, which maximizes growth at the
specified time and a given set of parameters (α, β, Re, Ri, Pe) [43,45].

3. Calculations Techniques

For the non-modal analysis, the linear system (Equation (5)) was discretized via
a second-order central finite difference method. The eigenvalues and eigenvectors of
matrix L were calculated using the QR algorithm. The verification of the method and
test calculation for the isothermal mixing layer can be found in [13]. Table 1 presents an
example of the convergence of four leading eigenvalues belonging to the discrete part of
the spectrum for a non-isothermal case. It is shown that the use of 1000 grid points yields
four converged decimal digits for the first mode; however, the convergence slows down
for the next modes. Despite this, it is shown that the growth function calculated by the
iterative integration method converges to the value of 21.71 already for 700 grid points.
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Table 1. Convergence of four least stable eigenvalues belonging to the discrete spectrum for stratified flow α = 0.5, β = 0,
Re = 1000, Ri = 0.8.

N
1st Mode 2nd Mode 3rd Mode 4th Mode Growth Function,

G (t = 10)λr λi λr λi λr λi λr λi

500 0.0260 ±0.3653 −0.0460 ±0.2653 −0.1379 ±0.2710 −0.1466 ±0.0778 21.70

600 0.0334 ±0.3986 −0.0460 ±0.2653 −0.1361 ±0.3004 −0.1466 ±0.0684 21.70

700 0.0324 ±0.4591 −0.0460 ±0.2653 −0.1352 ±0.3017 −0.1466 ±0.0650 21.71

800 0.0324 ±0.4597 −0.0459 ±0.2654 −0.1334 ±0.3112 −0.1454 ±0.0583 21.71

900 0.0324 ±0.4597 −0.0459 ±0.2654 −0.1317 ±0.3310 −0.1497 ±0.0287 21.71

1000 0.0324 ±0.4597 −0.0458 ±0.2654 −0.1250 ±0.3302 −0.1497 ±0.0259 21.71

1100 0.0324 ±0.4597 −0.0458 ±0.2654 −0.1250 ±0.3302 −0.1496 ±0.0259 21.71

1200 0.0324 ±0.4597 −0.0458 ±0.2653 −0.1262 ±0.3302 −0.1492 ±0.0256 21.71

1300 0.0324 ±0.4597 −0.0457 ±0.2653 −0.1262 ±0.3302 −0.1489 ±0.0256 21.71

1400 0.0324 ±0.4597 −0.0457 ±0.2652 −0.1262 ±0.3302 −0.1489 ±0.0255 21.71

1500 0.0324 ±0.4597 −0.0457 ±0.2652 −0.1262 ±0.3302 −0.1489 ±0.0255 21.71

The calculated spectrum was examined via analysis of its pseudospectrum [46]. The
ε-pseudospectrum was computed as the minimal singular value of the matrix (λI −L),
as was proposed in [47–49]. If us is the singular vector of the matrix corresponding to the
minimal singular value, then ε = ||(λI −L)us||2 estimates the accuracy of the calculation
of the eigenvalue λ. It was found that for the stratified mixing layer configuration, the
relatively large part of the eigenvalues corresponds to a relatively large ε-pseudospectrum
(ε = 10−2, 10−3), consequently, the eigenvalues calculation accuracy can be even more
demanding than in the isothermal case. Results of [13] show that only the eigenmodes with
the pseudospectrum ε < 10−6 contributed to the optimal growth in isothermal flow. This is
the main limitation of applying the SVD-based method [41] here. A series of tests show
that we cannot use the SVD-based method based on a full spectrum for the same reasons
as in the case of isothermal flow [10], i.e., we again have to separate part of the spectrum
that corresponds to a non-accurate replication of the continuous modes. Figure 1 shows
that the growth functions calculated based on extracting the vectors vanishing outside the
shear layer (Figure 1a) and based on extracting the vectors corresponding different ε values
(Figure 1b) do not yield converged consistent results within the SVD-based method. It is
emphasized, however, that despite the obvious scatter in the results shown in Figure 1,
they do show that significant non-modal growth can be expected even in cases of a strong,
stable stratification. It also supports the results of [32], indicating that optimal perturbation
can be located outside the shear layer.

We succeeded in obtaining reliable converged quantitative results using the iterative
integration method, which, similarly to the isothermal case [13], converges to within three
decimal places already on the 700 nodes grid. This method is used for the computation
of the results presented below. It should be noted that this method, compared to the
SVD-based one, requires much longer computational runs. To validate the non-modal
analysis results, the direct numerical simulations taking the optimal vector as an initial
condition were carried out. The fully non-linear time-dependent problem was solved using
the approach described in [13].
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Figure 1. Comparison of growth functions calculated using the singular value decomposition (SVD) method based on
extracted vectors (a) located in |z| < L, i.e., vanishing outside the shear zone and (b) corresponding to the values of their
pseudospectrum, for Ri = 0.9, Re = 1000, α = 0.5, β = 0.

4. Results

In the following, we describe results on non-modal growth in the stratified mixing
layer for Pr = 9, Re = 1000, and Rδ =

√
Pr = 3, assuming the fluid properties close to water,

where heat diffuses much slower than momentum. The test calculations (Table 2) show
that the least unstable eigenmode (or KH mode) is only slightly affected by the increase of
the Prandtl number. The results of [48] also show that for a bounded channel flow, heat
diffusivity does not affect linear stability. Conversely, the eigenvalues corresponding to
the oscillatory Holmboe modes change noticeably with the increase of the Prandtl number,
followed by a narrowing of the layer where the temperature varies.

Table 2. Least unstable eigenvalues at various Prandtl numbers for α = 0.5, β = 0, Re = 1000.

Pr KH Modes, Ri = 0.01 Holmboe Modes, Ri = 0.8

0.7 0.140 (1.45 × 10−3, ±0.5806)

1 0.139 (2.69 × 10−3, ±0.5455)

7 0.131 (3.84 × 10−3, ±0.4594)

9 0.129 (3.24 × 10−3, ±0.4597)

4.1. Non-Modal Instability as a Function of the Richardson Number

In this section, we present a characteristic case of non-modal energy growth for
varying Ri and fixed α, β, Pe, and Rδ. Results for the target time t = 10 are summarized in
Table 3 (2D case) and Table 4 (3D case). It is seen from Table 2 that the flow is unstable to 2D
perturbations (α = 0.5, β = 0, Re = 1000) for Ri≤ 0.8. At small Richardson numbers (Ri < 0.1),
the monotonic KH mode grows similarly to the isothermal case. With the increase of Ri, the
two KH modes turn into a pair of Holmboe modes [10]. Further increase of the Richardson
number, Ri > 0.8, makes the flow linearly stable; however, the non-modal growth remains
possible. Although all the eigenvalues are negative, the Holmboe modes remain to be the
least stable ones. An examination of the growth function, G, at a relatively short time, t = 10,
shows that the highest amplification occurs at a small Richardson number, and the growth
function decreases with the increase of Ri. Note that non-modal amplification reaches its
value, for example, 76.4, for Ri = 0.1, while amplification of the least unstable mode at
t = 10 is much smaller, approximately 1.4. This result may be important for the choice
of the initial vector for non-linear calculation where the least unstable mode is usually
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taken as the initial condition. Based on the foregoing results, we argue that at small times
the non-modal growth is expected to dominate, i.e., the optimal vector will grow faster
than just one least unstable eigenmode. With the steepening stratification, i.e., increase
of the Richardson number, a contribution of two-dimensional disturbances into transient
non-modal growth diminishes.

Table 3. The variations of the leading eigenvalues and values of amplification function, G, (at an
arbitrary time t = 10) with increasing Richardson number for α = 0.5, β = 0, Re = 1000 (2D case).

Richardson Number
Least Unstable/Leading Stable Mode

G (t = 10)
λreal λimag

0.01 0.129 0.00 97.2

0.1 3.76 × 10−2 ±0.16 76.4

0.5 4.42 × 10−2 ±0.34 22.9

0.8 3.24 × 10−2 ±0.46 21.7

0.9 −3.64 × 10−2 ±0.26 21.5

1.0 −2.93 × 10−2 ±0.26 20.9

2.0 −1.42 × 10−2 ±0.25 15.3

3.0 −1.29 × 10−2 ±0.25 12.4

Table 4. The leading eigenvalues, leading monotone and oscillatory (KH-, Holmboe-type) modes, and values of growth
function, G, at t = 10 for the increasing Richardson number at α = 0.5, β = 1, Re = 1000 (3D case). The linearly unstable
range is denoted by the gray color.

Richardson
Number

Ri

Least Unstable/Leading Stable Modes Monotone
Modes
λimag

Holmboe-Type Modes
G (t = 10)

λreal λimag λreal λimag

0.001 −1.42 × 10−4 ±0.50 −0.054 - - 132.6

0.01 −1.42 × 10−4 ±0.50 −0.11 −4.22 × 10−2 ±0.16 63.8

0.2 −1.42 × 10−4 ±0.50 −0.27 −6.06 × 10−2 ±0.29 43.4

0.3 −1.42 × 10−4 ±0.50 −0.25 −4.98 × 10−3 ±0.45 47.4

0.5 −1.43 × 10−4 ±0.50 −0.17 −4.43 × 10−3 ±0.29 53.5

0.7 5.35 × 10−3 ±0.30 −0.17 5.35 × 10−3 ±0.30 55.0

1.0 9.04 × 10−3 ±0.33 −0.17 9.04 × 10−3 ±0.33 73.9

2.0 −1.42 × 10−4 ±0.50 −0.27 −1.24 × 10−3 ±0.32 122

3.0 −1.42 × 10−4 ±0.50 −0.27 −2.74 × 10−3 ±0.34 158

4.0 −1.42 × 10−4 ±0.50 −0.27 −3.53 × 10−3 ±0.36 192

5.0 −1.42 × 10−4 ±0.50 −0.27 −4.88 × 10−3 ±0.40 221

10.0 −1.42× 10−4 ±0.50 −0.27 −5.60 × 10−3 ±0.42 378

Based on the results for the isothermal mixing layer [13], where the largest amplifica-
tion is yielded by 3D optimal disturbance, we examine a particular parameter set, α = 0.5,
β = 1, Re = 1000, and vary only the Richardson number. These parameters characterize the
perturbation that attains a large non-modal growth in the case of isothermal flow. Table 4
shows that the leading mode belongs to the continuous spectrum, Imag (λ) = ±α, so that
the leading monotone (λ = 0, KH) and oscillatory (λ 6= 0, Holmboe) modes are presented
in additional columns. It is seen that the oscillating Holmboe modes attain larger growth
rates than the monotone ones. Computations of the growth function G (t = 10), using
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the adjoint forward/backward time integration technique, show large non-modal growth
of linearly stable 3D disturbances for Ri < 0.01. The growth function decreases with the
increase of the Richardson number for Ri ≤ 0.2. Above the value Ri = 0.3, the growth
function G (t = 10) starts to increase. We observe that the value of G (t = 10) continues to
increase with increasing Ri.

It should be noted that for a relatively strong stratification, in the interval of 0.7 ≤ Ri ≤ 1,
we found an additional linear instability. A similar result was reported in [19], where it was
shown that stratified shear flow could be unstable to 3D disturbances propagating at an
angle to the mean flow. Linear instability at large Richardson numbers for 2D perturbation
was also reported in [37,50].

We emphasize that, similarly to the 2D case, the 3D non-modal growth at short times
can be significantly larger than the modal one. The least unstable modes in the linearly
unstable region are characterized by a minimal growth rate, making them almost neutral.
For example, for Ri = 0.7 and Ri = 1, non-modal amplification reaches values 55 and 73.9,
while exponential amplification of the least unstable mode at t = 10 is about unity in both
cases.

Similar to the isothermal case, the values of the growth function in the 3D case are
larger than in the 2D case for stratified flow so that the strongest amplification could be
reached via 3D optimal perturbation.

4.2. Transient Dynamics of Optimal Perturbation

We start exploring the optimal vector evolution from the two-dimensional case, β = 0,
and consider Ri = 1, for which only non-modal transient growth exists. Figure 2 shows
the amplitude of the initial optimal disturbances in terms of the temperature and u- and
w- velocity components. We observe that amplitudes of the optimal disturbances are
symmetric with respect to the mixing layer midline with the maxima of both of them
shifted from the symmetry plane z = 0. These shifts indicate that the non-normal growth is
governed mainly by the Holmboe modes, whose patterns are discussed in [10]. Contrary to
the isothermal case [13], the optimal vector components are not localized only in the shear
layer and are noticeably wider. This explains why the selection of vectors lying inside the
shear layer is not justified for the stratified model considered here.
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Figure 2. Amplitudes of the initial optimal disturbance for Ri = 1, Re = 1000, α = 0.5, β = 0
yielding the maximal transient growth at t = 10.
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To investigate the non-modal growth mechanism, we plot spatial patterns of optimal
vector time evolution. Figure 3 shows that the u-velocity component’s evolution is repre-
sented by two waves traveling in the opposite direction to the mean flow. Such a behavior
can be a replication of the well-known Holmboe instability mechanism [16].
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Figure 3. Evolution of the streamwise velocity component, u, of a two-dimensional optimal vector
calculated for the maximal growth at tmax = 10. Ri = 1, Re = 1000, α = 0.5, β = 0. Solid and dashed
lines represent positive and negative values of u. The plotted values are equally spaced between −2
and 2.
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Following [51,52] explanations of the linear stability dynamics using the “buoyancy-
vorticity wave interaction approach” in an inviscid flow, we presented the ηy− vorticity
component at four indicative time moments: initial state, growth, maximum at t = 10, and
further decaying (Figure 4). Note that similar to the isothermal case [13,14], results for the
stratified layer show that the initial optimal vector structures are elongated against the
shear in the streamwise direction. This allows us to attribute the initial amplification to the
Orr mechanism [14,53]. With the increase of time, the perturbation develops into two series
of vortices whose origins are located at the lines z = ±1, i.e., at the edges of the temperature
stratification layer. At the same time, we observe the development of another vortex series
with the origins located at the midline. These vortices attain larger amplitude and change
their patterns from elongating against the shear to tilting with the shear. Furthermore,
the maximal energy growth corresponds to the vertically positioned midline vortices
generating vertical velocity. Hence, our calculations confirm the suggestion of [51,52] that
vorticity growth occurs due to persistent vertical velocity produced by the propagated
waves in the two strong density gradient regions.
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Figure 4. Evolution of the spanwise vorticity component, ηy, of a two-dimensional optimal vector
calculated for the maximal growth at tmax = 10. Ri = 1, Re = 1000, α = 0.5, β = 0. Solid and
dashed lines represent positive and negative values of ηy.

Figure 5 illustrates snapshots of the temperature field where the base temperature
profile and the 2D optimal disturbance are superposed. The time evolution of optimal
temperature disturbance θ exhibits an extension of the initial temperature layer due to
two waves propagating in opposite directions along the x-axis. Such perturbation leads
to elevation of the cold fluid and moving down of the warm fluid, which is driven by the
vertical velocity component. During the evolution, the perturbation extracts energy from
the mean flow, followed by an increase of the growth function. After passing the maximal
growth stage, the cold fluid is naturally descending, which corresponds to the growth
function decrease. Owing to the small values of the Holmboe modes decay rates, these
up-and-down motions of the fluid persist for a relatively long time. The evolution at larger
times results in merged heated structures below and above the midplane, corresponding
to an increase in the amplitude of the oscillations and an increase of kinetic and potential
energy. At later times, the amplitude of the non-modal disturbance decreases, as expected.
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Figure 5. Snapshots of the base flow superposed with 2D optimal temperature perturbation calculated for the maximal
growth at tmax = 10. Ri = 1, Re = 1000, α = 0.5, β = 0. The blue color corresponds to cold fluid; the red color corresponds
to warm fluid.

Figure 6 illustrates the amplitudes of the optimal vector components for Ri = 2,
Re = 1000, α = 0.5, β = 1, the parameters characteristic for 3D transient growth. Similar
to the 2D case, the optimal vector amplitude has two symmetric maxima, indicating the
dominance of the Holmboe-like modes in the initial optimal disturbance. It is shown
that the spanwise vorticity component, ηy, has a maximum also at z = 0, supporting the
suggestions of [52]. The amplitude of all components of the 3D initial optimal vector decays
beyond z = ±10, making it narrower than the 2D optimal vector.
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Figure 6. Amplitudes of the initial optimal disturbance for Ri = 2, Re = 1000, α = 0.5, β = 1 yielding the maximal growth
at tmax = 10; (a) three components of velocity magnitude; (b) three vorticity components; (c) amplitude of the temperature
disturbance.

Growth function of the three-dimensional optimal temperature perturbation and
patterns of its time evolution are illustrated in Figures 7 and 8, respectively, for the case
α = 0.5, β = 1, Re = 1000, Ri = 2. It is shown that the growth function value at t = 10 is similar
to those obtained using the forward/backward time integration method, G = 122 (Table 4),
which justifies the results obtained using two approaches. As already mentioned, the
growth rates of the Holmboe modes are low so that the optimal perturbation energy slowly
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decays at longer times. Similar to the 2D case, the three-dimensional structures exhibit
two lines of vortices ordered along with the shear layer and tending to be tilted against
the shear slope at the initial stage, constantly changing inclination at later times. At each
time moment, corresponding to the maximum of the growth function, the temperature
layer’s width increases; however, it does not exceed the width observed in the 2D case.
Figure 9 shows the evolution of the streamwise velocity at the same times as in Figure 7.
The optimal perturbation is composed of two waves traveling in the opposite direction.
The wave’s amplitude grows and decreases, reflecting in the non-monotonic growth of
kinetic energy at longer times.
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Figure 7. Growth function of the 3D optimal temperature perturbation superposed with base flow
profile for Ri = 2, Re = 1000, α = 0.5, β = 1. The numbers represent different stages of increase and
decrease in growth function. The optimal disturbances corresponding to some of these stages are
shown in Figure 8.
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Figure 8. Time evolution of the 3D optimal temperature perturbation superposed with base flow profile for
Ri = 2, Re = 1000, α = 0.5, β = 1, yielding the maximal values at tmax = 10. The blue color corresponds to cold fluid; the red
color corresponds to warm fluid. The growth function increases at t = 0, 5, 20, 35, attains maximal values at t = 10, 25,
and decays at t = 15, 30.
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Figure 9. Time evolution of the streamwise velocity component of a three-dimensional optimal vector calculated for the
maximal growth at t = 10, Ri = 2, Re = 1000, α = 0.5, β = 1. The growth function increases at t = 0, 5, 20, 35, attains
maximal values at t = 10, 25, and decays at t = 15, 30.

Contrary to the 2D case, the spanwise vorticity component of initial optimal pertur-
bation appears as three lines of vortices with the centers located in the middle plane and
the z = ±1 planes. When the growth function increases, e.g., at times t = 0, 5, 20, 35, the
vortices are always oriented against the shear. The central vortex splits into two smaller
vortices, moves from the midline above and below, and scrolls. At times t = 10, 25, at which
the growth function attains a maximum, the vortices are strongly tilted with the shear, thus
supporting the distinctions between 2D and 3D non-modal growths.

5. Conclusions

The non-modal disturbances growth and transient dynamics of optimal perturbation
in stratified viscous mixing layers were investigated. The flow exhibits strong transient
growth for streamwise and spanwise wavenumbers, at which the flow is either asymptoti-
cally or neutrally stable. Comparing the calculated flow structures with those observed
in several previous experimental and numerical studies at the parameters corresponding
to linearly unstable regimes, we conclude that the mixing layer flow at early stages of
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the linear instability development can be strongly affected by the temporal disturbances
growth when the optimal perturbation is localized inside the shear zone. The main findings
of the performed study are as follows.

• It is known that increasing stratification stabilizes two-dimensional perturbations,
which are linearly unstable in the isothermal case. We found that with an increase of
the Richardson number, these perturbations exhibit a non-modal growth at relatively
short times. This non-modal growth is governed mainly by the Holmboe modes. The
non-modal growth weakens and then decays with a further increase of the Richardson
number.

• We examined the effect of stratification on linearly stable three-dimensional distur-
bances, which were found to attain large non-modal amplifications in the stably
stratified configuration. It was found that the largest amplification is reached by
3D optimal perturbations, whose growth functions are noticeably larger than those
computed for the 2D stability problem.

• It was shown that at short times the non-modal growth of the optimal disturbance
gains a larger amplitude than the leading eigenvector growing due to the linear
instability. This means that the optimal vector can be a better choice for the initial
conditions applied in fully non-linear computations.

In the case of stratified flow, we could not find a clear criterion to define which part of
the spectrum should be taken into account to obtain a correct and numerically converged
growth function. We could not obtain comparable results using SVD decomposition-
based approaches for studying the non-modal growth, trying different extractions of the
(seemingly) discrete part of the spectrum. This shows that the stratified mixing layer is a
significantly more complicated problem, and the question about which part of the spectrum
contributes to the non-modal growth is yet to be investigated.
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