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Abstract: We revisit some classical models for dilute polymeric fluids, and we show that
thermodynamically consistent models for non-isothermal flows of these fluids can be derived in a
very elementary manner. Our approach is based on the identification of energy storage mechanisms
and entropy production mechanisms in the fluid of interest, which, in turn, leads to explicit formulae
for the Cauchy stress tensor and for all of the fluxes involved. Having identified these mechanisms
and derived the governing equations, we document the potential use of the thermodynamic basis of
the model in a rudimentary stability analysis. In particular, we focus on finite amplitude (nonlinear)
stability of a stationary spatially homogeneous state in a thermodynamically isolated system.
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1. Introduction

Starting from the seminal work by Kramers [1] kinetic-type models have been widely
used in the mathematical modelling of polymeric fluids, see the monographs by Bird et al. [2],
Beris and Edwards [3], Öttinger [4], Huilgol and Phan-Thien [5], Dressler et al. [6], Öttinger [7]
Kröger [8], and the review paper by Lozinski et al. [9] to name a few (a mathematically inclined
reader—a specialist in theory of partial differential equations—is also referred to the concise
presentation in Le Bris and Lelièvre [10]). The overwhelming majority of the works, especially in the
field of numerical simulations, see, for example Lozinski and Chauvière [11], Knezevic and Süli [12]
or Mizerová and She [13], are however restricted to isothermal flows. In particular, the temperature
field is often tacitly assumed to be homogeneous in space, and an evolution equation describing
the temporal and spatial variations of the temperature field is rarely formulated, albeit some
approaches, such as the GENERIC formalism, see Öttinger [7], or Pavelka et al. [14], allow one to
do so. (regarding the classical macroscopic models, temperature evolution equations have been
formulated for example in Peters and Baaijens [15], Wapperom and Hulsen [16] and Dressler et al. [6],
see also Hron et al. [17] for further discussion). In the present contribution, we provide a
straightforward self-contained derivation of a simple kinetic-type model for non-isothermal flows
of compressible dilute polymeric fluids. The model is essentially the same as the model discussed
in Öttinger and Grmela [18], but the approach to the derivation of a thermodynamically consistent
model is substantially different.
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We only use elementary arguments easily accessible to everyone familiar with basic principles
of continuum mechanics such as the general form of balance equations. It turns out that, once one
correctly specifies the energy storage mechanisms and the entropy production mechanisms in the fluid
of interest, then some formulae, in particular the Kramers formula for the stress tensor, are natural
consequences of the basic principles (there is no need to assume these formulae a priori). The same holds
true in the derivation proposed by Öttinger and Grmela [18], where the authors claim that this fact
is a "quite remarkable" consequence of the GENERIC structure. While the GENERIC framework has
definitely its merits, we show that much more elementary arguments lead—regarding this issue—to the
same conclusion. Furthermore, having obtained a thermodynamically consistent model, we exploit
thermodynamic considerations in a rudimentary stability analysis in the spirit of Coleman [19],
see also Bulíček et al. [20] for a discussion.

The paper is organised, as follows. First we recall basic principles of continuum mechanics,
see Section 2, with particular attention placed on the basic tenets of the classical kinetic-type theory for
dilute polymeric fluids. The key assumption regarding dilute polymeric fluids is that the polymeric
chains do not effectively contribute to the mass of the solvent/polymer mixture, which means that the
density of the mixture coincides with the density of the solvent. Furthermore, the kinetic energy of the
polymeric chains is also neglected, the only mechanical energy contribution of the polymeric chains
being via the energy stored in the stretched polymeric chains.

In Section 3, we focus on the dynamics of polymeric chains. Regarding the chains, we do not model
them individually, but we again follow a kinetic-type theory, and we instead formulate a general form
of the Fokker–Planck equation for the configurational distribution function of the polymeric chains.
In our setting, the Fokker–Planck equation contains two unknown flux terms, namely the flux in
configurational space and the flux in physical space. The latter is essential if we want to model the
so-called centre-of-mass diffusion. Furthermore, we also comment on possible stationary solutions of
the Fokker–Planck equation, and we carefully discuss the interplay between boundary conditions in
the configurational space and asymptotic behaviour of the spring potential.

In Section 4, we give a formula for the specific Helmholtz free energy for the given fluid, which
is we specify possible energy storage mechanisms. Subsequently, we proceed in Section 5 with the
derivation of the constitutive relations, that is with the derivation of the equations relating the Cauchy
stress tensor, the energy flux, the fluxes in the Fokker–Planck equation, and the kinematical quantities.
The basic idea is that we look for closure relations that guarantee the nonnegativity of the entropy
production. In this sense, the identification of the entropy production mechanisms and energy storage
mechanisms provides a complete characterisation of the fluid of interest. A summary of the resulting
model is given in Section 5.4.

Once we obtain the constitutive relations we discuss, see Section 6, the implications of the
thermodynamic basis regarding the investigation of the stability of container flows (from the
thermodynamic point of view, the flow in a thermally and mechanically isolated container constitutes
an example of a thermodynamically isolated system). We show that the system of governing equations
has a “trivial” stationary solution, and using thermodynamic arguments, we explicitly construct a
nonnegative functional that decays in time and vanishes if and only if the system reaches the spatially
homogeneous stationary state. The construction of such a functional is clearly a precursor for a rigorous
stability analysis, which is, however, beyond the scope of the present contribution.
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2. Preliminaries

The classical balance equations for the mass and momentum and the evolution equation for the
internal energy of a continuous medium are

dρ

dt
+ ρdivxv = 0, (1a)

ρ
dv
dt

= divxT+ ρb, (1b)

ρ
de
dt

= T ∶D−divx je. (1c)

The symbol ρ denotes the density of the medium, v denotes the Eulerian velocity field,
D =def

1
2 (∇xv + (∇xv)⊺) denotes the symmetric velocity gradient, T denotes the Cauchy stress tensor,

e denotes the specific internal energy, je denotes the energy flux, and b denotes the external body force.
The symbol

d
dt

=def
∂

∂t
+ v ⋅ ∇x, (2)

denotes the material derivative, and the symbol A ∶B =def Tr (AB⊺) denotes the Frobenius norm.
The subscript x reminds us that the differential operator concerned is applied with respect to the spatial
variable x. Regarding the derivation of the balance equations, see, for example, Málek and Průša [21]
or any standard textbook on continuum mechanics, such as Müller [22] or Gurtin et al. [23].

The basic idea in a kinetic-type theory of dilute polymeric fluids is that the mass contribution of
the polymer chains is assumed to be negligible, hence we can replace the total density ρ in (1) by the
solvent density ρs. Moreover, the barycentric velocity of the solvent/polymer mixture coincides with
the velocity of the solvent, hence v in (1) can be interpreted as the velocity of the solvent only. The only
place where the polymeric chains enter the balance equations is the formula for the internal energy e,
the Cauchy stress tensor T and the energy flux je. All of these assumptions/simplifications are common
in kinetic-type theories of dilute polymeric fluids, and we also adopt them in the current contribution.

For further reference, we can therefore write the balance equations as

dρs

dt
+ ρsdivxv = 0, (3a)

ρs
dv
dt

= divxT+ ρsb, (3b)

ρs
de
dt

= T ∶D−divx je, (3c)

and we recall that the unknown fields ρs and v are functions of the spatial position x and time t.
We note that, if one wanted to develop a model wherein the mass of the polymeric

chains is not negligible, then one would need to use a variant of mixture theory, see, for
example, Rajagopal and Tao [24] or Hutter and Jöhnk [25], and also Souček et al. [26] for a
careful discussion.

3. Fokker–Planck Equation

We are in a position to describe the dynamics of the polymeric chains dispersed in the solvent.
In what follows, we deal with a very simple setting, and we assume that the whole polymeric
chain can be modelled as a single dumbbell (two beads connected with a spring), while more
sophisticated models are typically necessary in order to obtain quantitative agreement between
the model predictions and the experimental data (see the aforementioned monographs for a list of
such models. Additional references regarding viscoelastic models can be also found in Vinogradov
and Malkin [27], Larson [28] or Leonov and Prokunin [29]. A historical perspective is given in Tanner
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and Walters [30]). Note however that a generalisation to more complex polymeric chains/more
sophisticated models is straightforward.

The dynamics of the individual polymeric chain are governed by a stochastic differential
equation, which has the associated Fokker–Planck equation, see, for example, Le Bris and Lelièvre [10]
or Barrett and Süli [31] for details. If we consider dumbbells, their configuration is fully determined by
the end-to-end vector q, and the Fokker–Planck equation governs the evolution of the configurational
distribution function ϕ(t, x, q) in the configurational space D of all admissible end-to-end vectors.
The physical meaning of the configurational distribution function is clear, the integral

∫
D′⊂D

ϕ(t, x, q)dq (4)

gives the number of polymer chains at time t and spatial location x whose configuration vector lies in
the domain D′. The integral over the whole D gives the particle number density np(t, x),

np(t, x) =def ∫
D

ϕ(t, x, q)dq, (5)

and the integral over a spatial domain

∫
Ω′ ∫D

ϕ(t, x, q)dq dx, (6)

gives one the number of polymeric chains in the spatial domain Ω′.
In the case of Hookean dumbbells, the configurational space D is the whole R3, since the stretch

of the spring is not limited. In the case of the FENE dumbbell model (finitely extensible nonlinear
elastic spring) the configurational space D is a ball in R3 centred at the origin with a given radius,
and the radius determines the maximum stretch of the spring.

3.1. Fokker–Planck Equation in the Case of Velocity Field with Nonzero Divergence

The Fokker–Planck equation has, in our case, the form

∂ϕ

∂t
+divx(vϕ + jϕ,x)+divq((∇xv)qϕ + jϕ,q) = 0, (7)

where jϕ,x and jϕ,q are unknown flux terms. Our task will be to identify these flux terms using the
known energy storage mechanisms and entropy production mechanisms. We note that the spatially
dependent term reads divx(vϕ) and not vdivx ϕ (this subtle difference does not matter in the case of
incompressible fluids, but it is critical provided that we are working with a compressible fluid. See. for
example, Degond and Liu [32] for a careful discussion of the Fokker–Planck equation). For further
reference we also record that (7) can be rewritten as

dϕ

dt
+ ϕdivxv +divx jϕ,x +divq ((∇xv)qϕ + jϕ,q) = 0. (8)

3.2. Boundary Condition in the Configurational Space

The boundary condition on ∂D is the no-flux boundary condition

((∇xv)qϕ + jϕ,q) ● nq∣∂D = 0, (9)

where nq denotes the unit outward normal to the set of admissible end-to-end vectors D ⊂ R3 (in the
case of Hookean dumbbells where D = R3 the boundary condition is interpreted as a decay of the
corresponding function at infinity). This choice of boundary condition has several implications
regarding the evolution equation for polymer number density, see below, and regarding the behaviour
of the configurational distribution function on the boundary of D, see Section 3.4.
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3.3. Evolution Equation for Polymer Number Density

The evolution of the polymer number density np introduced in (5) is governed by the partial
differential equation

∂np

∂t
+divx (vnp +∫

D
jϕ,x dq) = 0. (10)

This equation is straightforward to obtain via integration of the Fokker–Plank equation with
respect to the configurational variable q. The boundary term in the configurational space vanishes by
virtue of (9). The last equation can be rewritten as

dnp

dt
+ npdivxv = −divx (∫

D
jϕ,x dq) , (11)

where d
dt denotes the standard material time derivative. Equation (11) shows that if jϕ,x /= 0 and

if the velocity field does not identically satisfy divxv = 0, then, in general, we cannot expect that
the polymer number density np at the given material point is preserved. This makes the study of
the dynamics of a compressible fluid with polymeric centre-of-mass diffusion substantially different
from the simpler case of an incompressible fluid without polymeric centre-of-mass diffusion, see, for
example, Barrett and Süli [33] and Feireisl et al. [34].

3.4. Force Potential

The force F in the spring connecting the beads is determined by a spherically symmetric potential

F =def ∇qU
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

, (12)

where qref is a characteristic length scale for the spring. (Note the sign convention in (12) and the sign
convention used later in (15).) For example, a popular choice for the force potential is the potential
that is introduced by Warner [35] for the FENE dumbbell model. The potential is given by the formula

UFENE(s) =def −
b
2

log(1− 2s
b
) . (13)

We note that the choice (13) predicts infinite force as s → b
2−. This means that an infinite force is

necessary to maximally stretch the spring, which is the expected behaviour in view of the fact that we
are dealing with a finitely extensible spring. The spring can not be extended beyond a certain length
no matter what force is applied.

In what follows, we will not work with a specific force potential, we will only assume that the
force potential U is composed of two parts U = Ue +Uη,θ , where

Ue = Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

, (14a)

Uη,θ =
θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

, (14b)

and where θref is a reference temperature, and qref is a characteristic length scale. The potential Uη,θ
is the “entropic” part of the spring potential, and it is proportional to the ambient temperature θs,
while the potential Ue is independent of the temperature (see, for example, Ericksen [36] for the
rationale of the nomenclature, and the fact that it makes sense to consider the potential proportional to
the temperature). If we are dealing with a finitely extensible spring, then the force tends to infinity
as the spring reaches its maximum length (see for example the FENE potential introduced in (13)).
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This suggests that the value of the configurational distribution function ϕ on the boundary of D should
be zero. We informally show that this property is in fact encoded in the no-flux boundary condition (9).

If we for a moment suppose that the Fokker–Planck Equation (7) reads

∂ϕ

∂t
+divx (vϕ − kBθs

2ζ
∇x ϕ)+divq ((∇xv)qϕ − 2F

ζ
ϕ − 2kBθs

ζ
∇q ϕ) = 0, (15)

that is if we consider specific formulae for the fluxes jϕ,q and jϕ,x, then (9) reduces to

((∇xv)qϕ − 2F
ζ

ϕ − 2kBθs

ζ
∇q ϕ) ● nq∣

∂D
= 0. (16)

Here, θs denotes the solvent temperature, ζ denotes the hydrodynamic drag coefficient and kB

denotes the Boltzmann constant. If D is a ball in R3, then q∣∂D = qmaxnq, and (16) reduces to

((∇xv)qmaxnq ϕ − 2F
ζ

ϕ − 2kBθs

ζ
∇q ϕ) ● nq∣

∂D
= 0. (17)

Furthermore, in the case of spherically symmetric potential, the force F is parallel to q, and if
we are dealing with a finitely extensible spring, then the potential is chosen in such a way that the
magnitude of F approaches infinity as the vector q approaches the boundary of D. Having this piece
of information in hand we inspect (17), and we see that if (17) holds, then the middle term 2F

ζ ϕ ● nq

constrains the configurational distribution function ϕ to decay to zero faster than the growth of the
force F as one approaches the boundary of D. Consequently, we can claim that (17) implies ϕ∣∂D = 0.

3.5. Stationary Solution of the Fokker–Planck Equation in a Spatially Homogeneous State at a
Given Temperature

If we assume for a moment that the fluxes in the general Fokker–Planck equation have been
successfully identified, and have the form discussed in (15), then we can explicitly identify the
stationary solution to the Fokker–Planck equation in the case of a spatially homogeneous temperature
field and configurational distribution function field (partial derivatives with respect to time and the
spatial variable x vanish). Under these assumptions, we see that the Fokker–Planck Equation (15)
reduces to

divq (2F
ζ

ϕ + 2kBθs

ζ
∇q ϕ) = 0. (18)

If we assume that the force in the spring is given in terms of a potential, see (12), and if we
substitute (12) into (18), then we get

divq
⎛
⎝

⎡⎢⎢⎢⎢⎣
∇qU

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

⎤⎥⎥⎥⎥⎦
ϕ + kBθs∇q ϕ

⎞
⎠
= 0. (19)

Using the formulae for the differential operators in a spherical coordinate system, we see that (19)
reduces to a single ordinary differential equation

1
q2

d
dq

⎡⎢⎢⎢⎢⎣
q2 ⎛

⎝
d
dq

U
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ + kBθs
dϕ

dq
⎞
⎠

⎤⎥⎥⎥⎥⎦
= 0, (20)

where we have used the notation q =def ∣q∣. We immediately see that the solution to (20) reads

ϕ = Ce
−

U( 1
2 ∣

q
qref
∣
2
)

kBθs , (21)
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where C is a constant. The constant is fixed by the condition np(t, x) = ∫D ϕ(t, x, q)dq, with ϕ now
independent of t and x here, and hence the configurational distribution function that solves the
stationary Fokker–Planck in the case of spatially homogeneous fields is given by the formula ϕ =
Mnp,θs , where

Mnp,θs =def np
e
−

U( 1
2 ∣

q
qref
∣
2
)

kBθs

∫D e
−

U( 1
2 ∣

q
qref
∣
2
)

kBθs dq

, (22)

and np is a positive constant. This configurational distribution function is the expected “equilibrium”
configurational distribution function in the case when the dilute polymeric fluid occupies a
thermodynamically isolated vessel. We return to this issue in Section 6.

4. Helmholtz Free Energy

Having discussed the Fokker–Planck equation that governs the evolution of the configurational
distribution function, we have completed the system of equations for the unknown fields ρs, v, θs

and ϕ. It remains to identify the fluxes, which are quantities that are unique for the given fluid
(they provide a unique characterisation of the given material or given class of materials). The first step
in this direction is the identification of energy storage mechanism, which is done by means of specific
Helmholtz free energy.

We assume that the Helmholtz free energy ψ, [ψ] = J/kg, is given by the formula

ψ(θs, ρs, ϕ) =def ψs(θs, ρs)+
1
ρs
∫

D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq + kBθs

ρs
∫

D

⎛
⎜⎜⎜
⎝

Uη ( 1
2 ∣ q

qref
∣
2
)

kBθref
ϕ + ϕ ln

ϕ

K

⎞
⎟⎟⎟
⎠

dq, (23)

where K is a constant to be specified later (so far its only purpose is to provide a normalisation
factor in the argument of the logarithm function, since we must have a dimensionless quantity under
the logarithm. We also recall the physical units of the configurational distribution function ϕ, [ϕ] = 1/m6,
particle number density np, [np] = 1/m3, potentials Ue, [Ue] = J, and Uη , [Uη] = J, and the Boltzmann
constant kB, [kB] = J/K). The inclusion of the potentials Ue and Uη into the formula for the Helmholtz
free energy is a standard one known from elasticity theory, while the term ϕ ln ϕ is a well known
contribution due to configurational entropy of the dumbbells. The solvent contribution ψs(θs, ρs) to
the specific Helmholtz free energy is left unspecified, since its particular form is not important for the
ongoing discussion. We however give a particular formula for ψs(θs, ρs) in Section 6, where it plays a
fundamental role.

Having introduced the formula for the Helmholtz free energy, we can find other thermodynamic
quantities of interest via differentiation. Namely, the formula for the specific entropy η reads

η(θs, ρs, ϕ) = −
∂ψ

∂θs
= −

∂ψs(θs, ρs)
∂θs

− kB

ρs
∫

D

⎛
⎜⎜⎜
⎝

Uη ( 1
2 ∣ q

qref
∣
2
)

kBθref
ϕ + ϕ ln

ϕ

K

⎞
⎟⎟⎟
⎠

dq, (24)

and the specific internal energy e is given by the formula

e(θs, ρs, ϕ) = ψ + θsη = ψs(θs, ρs)− θs
∂ψs(θs, ρs)

∂θs
+ 1

ρs
∫

D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq. (25)



Fluids 2020, 5, 133 8 of 29

5. Constitutive Relations

Once we have specified the Helmholtz free energy we can proceed with the derivation of
constitutive relations for the fluxes je, jη , jϕ,x, jϕ,q, and the Cauchy stress tensor T. Our first objective
is to identify the entropy flux jη and the entropy production ξ, such that the evolution equation for the
specific entropy has the form

ρs
dη

dt
+divx jη = ξ. (26)

The requirement on the nonnegativity of the entropy production then gives us a hint regarding
the choice of constitutive relations for the fluxes je, jη , jϕ,x, jϕ,q.

So far, we have identified an evolution equation for the internal energy (3c),

ρs
de
dt

= T ∶D−divx je, (27)

and we know that the relation between the Helmholtz free energy and the internal energy and the
entropy reads ψ(θs, ρs, ϕ) = e − θsη. Differentiation of this relation yields

∂ψ

∂θs

dθs

dt
+

∂ψ

∂ρs

dρs

dt
+

∂ψ

∂ϕ

dϕ

dt
= de

dt
− η

dθs

dt
− θs

dη

dt
. (28)

Making use of (27) and the fact that η = − ∂ψ
∂θs

, we then see that (28) reduces to

ρsθs
dη

dt
= T ∶D−divx je − ρs

∂ψ

∂ρs

dρs

dt
− ρs

∂ψ

∂ϕ

dϕ

dt
. (29)

Now we need to manipulate (29) into the form (26). The lengthy but essential algebraic
manipulations that allow us to achieve this objective are described in the following section,
see Section 5.1. In particular, the desired final form of the entropy evolution equation is given
in (51). The reader who is at the moment not interested in the necessary algebraic manipulations can
go directly to Section 5.2, where we discuss the implications of the entropy evolution Equation (51)
with respect to the choice of constitutive relations.

5.1. Evolution Equation for the Specific Entropy

Let us for a moment denote

F (θs, ϕ) =def ∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ + θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ + kBθs ϕ ln
ϕ

K

⎤⎥⎥⎥⎥⎦
dq. (30)

Using this notation the formula for the Helmholtz free energy reads

ψ(θs, ρs, ϕ) = ψs(θs, ρs)+
1
ρs
F (θs, ϕ) , (31)

and the evolution equation for the entropy (29) can be—with a slight abuse of notation—rewritten as

ρsθs
dη

dt
= T ∶D−divx je − ρs

∂ψs

∂ρs

dρs

dt
+ F

ρs

dρs

dt
− ∂F

∂ϕ

dϕ

dt
. (32)
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Let us first consider the term ∂F
∂ϕ

dϕ
dt . Making use of the Fokker–Planck Equation (8), we see that

∂F
∂ϕ

dϕ

dt
= ∫

D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+

θs

θref
Uη

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
dϕ

dt
dq

= −∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+

θs

θref
Uη

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
[ϕdivxv + divx jϕ,x + divq ((∇xv)qϕ + jϕ,q)] dq

= −∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+

θs

θref
Uη

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
[ϕdivxv + divx jϕ,x] dq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

−∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+

θs

θref
Uη

⎛
⎝

1
2
∣ q

qref
∣
2⎞
⎠+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
divq ((∇xv)qϕ + jϕ,q) dq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

. (33)

We will first focus on the term B that contains the divergence operator with respect to the q
variable. We see that

∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

npK
+ 1)

⎤⎥⎥⎥⎥⎦
[divq ((∇xv)qϕ + jϕ,q)] dq

= ∫
D

divq

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
((∇xv)qϕ + jϕ,q)

⎫⎪⎪⎬⎪⎪⎭
dq

−∫
D
∇q

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
● [(∇xv)qϕ + jϕ,q] dq. (34)

The first integral vanishes by virtue of the Stokes theorem and the boundary condition (9) on ∂D.
In the second term we first evaluate the gradient, and then we proceed, as follows

∫
D
∇q

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
● [(∇xv)qϕ + jϕ,q] dq

= ∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
+ kBθs

∇q ϕ

ϕ

⎤⎥⎥⎥⎥⎥⎦
● [(∇xv)qϕ + jϕ,q] dq

= ∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
∶ (∇xv)dq +∫

D
[kBθs∇q ϕ] ● [(∇xv)q] dq

+∫
D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

= ∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
∶Ddq +∫

D
[kBθs∇q ϕ] ● [(∇xv)q] dq

+∫
D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq. (35)

Furthermore, the second term on the right-hand side can be manipulated, as follows

∫
D
[kBθs∇q ϕ] ● [(∇xv)q] dq = ∫

D
divq [kBθs ϕ(∇xv)q] dq −∫

D
kBθs ϕ∇xv ∶ ∇qq dq

= −∫
D

kBθs ϕdivxv dq = −kBθsnpdivxv, (36)
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where we have again used the fact that the Stokes theorem and the boundary condition in
configurational space (9) imply that the first term vanishes. As a matter of fact, we have used that
ϕ∣∂D = 0, which is a consequence of the particular choice of the flux jϕ,q, see Section 3.4 for details.
So far, we do not, however, have a formula for the flux jϕ,q, and therefore we can not decide whether
the term really vanishes. We will simply assume that the term vanishes, derive the formula for the
flux jϕ,q, and then we retrospectively check, that the derived formula for the flux jϕ,q and boundary
condition (9) are consistent with this assumption (this is indeed the case). We also note that the critical
term can also be rewritten as

∫
D

divq [kBθs ϕ(∇xv)q] dq = ∫
∂D

kBθs ϕ(∇xv)q ● nq dq = ∫
∂D

kBθsqmax ϕ(∇xv)nq ● nq dq

= [∫
∂D

kBθsqmax ϕnq ⊗ nq dq] ∶D, (37)

hence, if we wanted to keep it in the equations, we could easily do so. If we summarise the partial
results, we therefore see that

B = −∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
∶Ddq + kBθsnpdivxv

−∫
D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq. (38)

Next we focus on the term A in (33). We see that

∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
[ϕdivxv +divx jϕ,x] dq

= ∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ + θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ + kBθs ϕ ln
ϕ

K
+ kBθs ϕ

⎤⎥⎥⎥⎥⎦
divxv dq

+∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
divx jϕ,x dq

= Fdivxv + kBθsnpdivxv +∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
divx jϕ,x dq, (39)

and, hence

A = Fdivxv + kBθsnpdivxv + ∫D [Ue ( 1
2 ∣ q

qref
∣
2
)+ θs

θref
Uη ( 1

2 ∣ q
qref

∣
2
)+ kBθs (ln ϕ

K + 1)]divx jϕ,x dq. (40)

Now, we can finally return to the formula (32) for the material time derivative of entropy, and we
find that

ρsθs
dη

dt
= T ∶D − divx je − ρs

∂ψs

∂ρs

dρs

dt
+ F

ρs

dρs

dt
− ∂F

∂ϕ

dϕ

dt
= T ∶D − divx je + ρ2

s
∂ψs

∂ρs
divxv −Fdivxv + A + B, (41)
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which reduces to

ρsθs
dη

dt
= T ∶D−divx je + ρ2

s
∂ψs

∂ρs
divxv + 2kBθsnpdivxv

−∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
∶Ddq

−∫
D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

+∫
D

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ kBθs (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎦
divx jϕ,x dq, (42)

where we have used the evolution equation for the solvent density (3a). We divide (42) by the
solvent temperature, and manipulate the energy flux term divx je in the usual manner. We also split
the term containing divx jϕ,x into a part with a temperature-independent coefficient and a part with a
temperature-dependent coefficient, and after some manipulations we get

ρs
dη

dt
= 1

θs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T−∫

D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣2
+ θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣2
⎞
⎟
⎠

q
qref

⊗ q
qref

ϕ

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶D

+ 1
θs

[ρ2
s

∂ψs

∂ρs
+ 2kBθsnp]divxv

− 1
θs
∫

D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣2
+ θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣2
⎞
⎟
⎠

q
q2

ref

ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

+∫
D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
divx jϕ,x dq +∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

divx jϕ,x dq −divx ( je

θs
)− je ●∇xθs

θ2
s

. (43)

We introduce the notation

P =def ∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
dq, (44)

and we split the Cauchy stress tensor T into the mean normal stress m and the traceless part Tδ,

T = mI+Tδ, (45)

where m =def
1
3 TrT and Tδ =def T − 1

3 (TrT) I (this standard manipulation allows
us to treat the volume-changing and volume-preserving deformations separately, see for
example Málek and Průša [21] for details). We also do the same for the tensor P, and we rewrite (43) as

ρs
dη

dt
= 1

θs
{[Tδ −Pδ] ∶Dδ + [m − 1

3
TrP+ ρ2

s
∂ψs

∂ρs
+ 2kBθsnp]divxv}

− 1
θs
∫

D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣2
+ θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣2
⎞
⎟
⎠

q
q2

ref

ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

+∫
D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
divx jϕ,x dq +∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

divx jϕ,x dq −divx ( je

θs
)− je ●∇xθs

θ2
s

. (46)
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Now, we are ready to manipulate the part with the temperature independent coefficient

∫
D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

divx jϕ,x dq = divx

⎡⎢⎢⎢⎢⎢⎢⎣
∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

jϕ,x dq

⎤⎥⎥⎥⎥⎥⎥⎦

−∫
D
∇x

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

● jϕ,x dq. (47)

Substituting (47) back into (43) yields

ρs
dη

dt
= 1

θs
{[Tδ −Pδ] ∶Dδ + [m − 1

3
TrP+ ρ2

s
∂ψs

∂ρs
+ 2kBθsnp]divxv}

− 1
θs
∫

D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

+∫
D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
divx jϕ,x dq −∫

D

kB

ϕ
∇x ϕ ● jϕ,x dq

−divx

⎛
⎜⎜⎜
⎝

je

θs
−∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

jϕ,x dq
⎞
⎟⎟⎟
⎠
−

je ●∇xθs

θ2
s

. (48)

We rewrite the last equation as

ρs
dη

dt
+divx

⎛
⎜⎜⎜
⎝

je

θs
−∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

jϕ,x dq
⎞
⎟⎟⎟
⎠

= 1
θs

{[Tδ −Pδ] ∶Dδ + [m − 1
3

TrP+ ρ2
s

∂ψs

∂ρs
+ 2kBθsnp]divxv}

− 1
θs
∫

D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

+∫
D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
divx jϕ,x dq −∫

D

kB

ϕ
∇x ϕ ● jϕ,x dq −

je ●∇xθs

θ2
s

, (49)

which helps us to identify the fluxes and entropy production terms. It remains to manipulate the term
with the potential Ue. We see that

∫
D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
divx jϕ,x dq = divx

⎛
⎜⎜⎜
⎝
∫

D

Ue ( 1
2 ∣ q

qref
∣
2
)

θs
jϕ,x dq

⎞
⎟⎟⎟
⎠
+
∇xθs ● ∫D Ue ( 1

2 ∣ q
qref

∣
2
) jϕ,x dq

θ2
s

. (50)
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This manipulation implies that we can rewrite (49) in the final form as

ρs
dη

dt
+divx

⎛
⎜⎜⎜
⎝

je

θs
−∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)+

Ue ( 1
2 ∣ q

qref
∣
2
)

θs

⎤⎥⎥⎥⎥⎥⎥⎦

jϕ,x dq
⎞
⎟⎟⎟
⎠

= 1
θs

{[Tδ −Pδ] ∶Dδ + [m − 1
3

TrP+ ρ2
s

∂ψs

∂ρs
+ 2kBθsnp]divxv}

− 1
θs
∫

D

1
ϕ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
● jϕ,q dq

−∫
D

kB

ϕ
∇x ϕ ● jϕ,x dq −

[je − ∫D Ue ( 1
2 ∣ q

qref
∣
2
) jϕ,x dq] ●∇xθs

θ2
s

. (51)

5.2. Entropy Production and Constitutive Relations

Now, we are in a position to choose jη , je, jϕ,x, jϕ,q, m and Tδ in such a way that the right-hand
side is nonnegative. We start with the flux jϕ,x in physical space, the nonnegativity of the term
− ∫D

kB
ϕ ∇x ϕ ● jϕ,x dq is granted if we make, for example, the simple choice

jϕ,x =def −
kBθs

2ζ
∇x ϕ, (52)

where ζ denotes the hydrodynamic drag coefficient, [ζ] = N
m
s

(the presence of the hydrodynamic drag
coefficient is motivated by the insight into the microscopic dynamics of the polymeric chains, see for
example Barrett and Süli [31] for details). The choice (52) in turn implies that we have to fix the energy
flux as

je =def −κ∇xθs +∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

jϕ,x dq = −κ∇xθs −
kBθs

2ζ ∫D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
∇x ϕ dq. (53)

We note that (53) is the same energy flux as in Öttinger and Grmela [18]. We also note that
only the “energetic” part Ue of the potential U enters the formula for the energy flux je, which is an
expected result.

Next, we fix the constitutive relation for the flux jϕ,q in the configurational space; we set

jϕ,q =def −
2
ζ

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
, (54)

where the coefficient 2
ζ is again motivated by the microscopic dynamics of the polymeric chains.

In particular, we want to keep the link between the Fokker–Planck equation and the associated
stochastic process, see, for example, Barrett and Süli [31] for details. If we recall the relation between
the force and the corresponding potential (12), we see that (54), in fact, reads

jϕ,q = −
2
ζ
[Fϕ + kBθs∇q ϕ] , (55)

where

F =def ∇q
⎛
⎝

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
⎞
⎠

, (56)
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which, together with (52), gives upon substitution into (7) the Fokker–Planck equation in the form

∂ϕ

∂t
+divx (vϕ − kBθs

2ζ
∇x ϕ)+divq ((∇xv)qϕ − 2F

ζ
ϕ − 2kBθs

ζ
∇q ϕ) = 0. (57)

This is the specific Fokker–Planck equation that we have used in Section 3.
From the left-hand side of (51) we can infer the entropy flux jη . If we use the formula for je, we see

that the term under the divx operator reads

jη =def −
κ∇xθs

θs
−∫

D

⎡⎢⎢⎢⎢⎢⎢⎣

Uη ( 1
2 ∣ q

qref
∣
2
)

θref
+ kB (ln

ϕ

K
+ 1)

⎤⎥⎥⎥⎥⎥⎥⎦

jϕ,x dq, (58)

where jϕ,x is given by (52). We note that the term with the “energetic” part Ue of the potential U
has cancelled, and only the entropic part Uη enters the entropic flux, which is an expected result.

Finally, we fix the constitutive relation for the Cauchy stress tensor, namely for the mean
normal stress m and the deviatoric part Tδ. We need a choice that makes the term [Tδ −Pδ] ∶Dδ +
[m − 1

3 TrP+ ρ2
s

∂ψs
∂ρs

+ 2kBθsnp]divxv on the right-hand side of (51) nonnegative. If we want to model
the solvent as a classical compressible Navier–Stokes fluid, then we set

Tδ =def 2νDδ +Pδ, (59a)

m =def
1
3

TrP− ρ2
s

∂ψs

∂ρs
− 2kBθsnp + λ̃divxv, (59b)

where ν and λ̃ are the positive constants referred to as the shear viscosity and bulk viscosity. If we
use (59), then the full formula for the Cauchy stress tensor reads

T = −ρ2
s

∂ψs

∂ρs
I+ λ (divxv) I+ 2νD− 2kBθsnpI+P, (60)

where λ̃ = 3λ+2ν
3 . The first three terms on the right-hand side of (60) are the familiar ones. In particular,

we recognise the formula for the thermodynamic pressure

pth,s(θs, ρs) =def ρ2
s

∂ψs

∂ρs
; (61)

hence, we can rewrite (60) as

T = −pth,sI+ λ (divxv) I+ 2νD− 2kBθsnpI+P. (62)

The polymeric contribution Tpolymer to the Cauchy stress tensor T is given by the last two terms
in (62). If we recall the definition of the tensor P, see (44), we see that

Tpolymer = −2kBθsnpI+∫
D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗
q

qref
ϕ

⎤⎥⎥⎥⎥⎥⎦
dq. (63)

This is the Kramers expression for the polymeric contribution to the Cauchy stress tensor. We note
that the Kramers expression has not been assumed a priori: it is a consequence of the choice of
energy storage and entropy production mechanisms. The same formula also follows from the
GENERIC formalism, see Öttinger and Grmela [18], where it is also a consequence of the proposed
modelling approach and it is not assumed a priori.
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5.3. Temperature Evolution Equation

A cautious reader might notice that the energy flux je and the entropy flux jη depend on the
potentials Ue and Uη and on the normalisation constant K. However, if one shifts the value of a
potential by a constant, then this operation should have no impact on the dynamics of the system.
The same should hold for the constant K. Its particular choice should have no impact on the dynamics.

We show that this is indeed true. First, we observe that the shift of the value of the potentials
and the choice of K have no impact on the balance of mass (3a) (evolution equation for the solvent
density ρs) and on the balance of linear momentum (78b) (evolution equation for the velocity field v).
Indeed, the Cauchy stress tensor, see (60), depends on the gradients of the potentials. Next we observe
that the Fokker–Planck equation (evolution equation for ϕ) in the form (57) also contains only gradients
of the potentials. It remains to check the evolution equation for the last quantity of interest, namely for
the temperature.

In order to do so, we first need to explicitly formulate the evolution equation for the temperature.
We start with the evolution equation for the entropy in the form (29), which is

ρsθs
dη

dt
= T ∶D−divx je − ρs

∂ψ

∂ρs

dρs

dt
− ρs

∂ψ

∂ϕ

dϕ

dt
. (64)

Because the entropy is given as the derivative of the Helmholtz free energy with respect to the
temperature, η = − ∂ψ

∂θs
, we can use the chain rule on the left-hand side of (64), and with a slight abuse

of notation we get

ρsθs
dη

dt
= ρsθs (−

∂2ψ

∂θ2
s

dθs

dt
−

∂2ψ

∂θs∂ρs

dρs

dt
−

∂2ψ

∂θs∂ϕ

dϕ

dt
) . (65)

Making use of (65) in (64) yields

− ρsθs
∂2ψ

∂θ2
s

dθs

dt
= ρsθs

∂2ψ

∂θs∂ρs

dρs

dt
+ ρsθs

∂2ψ

∂θs∂ϕ

dϕ

dt
+T ∶D−divx je − ρs

∂ψ

∂ρs

dρs

dt
− ρs

∂ψ

∂ϕ

dϕ

dt
. (66)

On the left-hand side, we have obtained the material time derivative of the temperature field θs,
and we can explicitly evaluate all terms on the right-hand side. We take into account the particular
structure of the Helmholtz free energy (23), which is

ψ(θs, ρs, ϕ) =def ψs(θs, ρs)+
1
ρs
∫

D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq + kBθs

ρs
∫

D

⎛
⎜⎜⎜
⎝

Uη ( 1
2 ∣ q

qref
∣
2
)

kBθref
ϕ + ϕ ln

ϕ

K

⎞
⎟⎟⎟
⎠

dq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψp

(67)

and we arrive at

− ρsθs
∂2ψs

∂θ2
s

dθs

dt
= ρs (θs

∂2ψs

∂θs∂ρs
−

∂ψs

∂ρs
)

dρs

dt
+T ∶D−divx je

+ ρsθs
∂2ψp

∂θs∂ρs

dρs

dt
+ ρsθs

∂2ψp

∂θs∂ϕ

dϕ

dt
− ρs

∂ψp

∂ρs

dρs

dt
− ρs

∂ψp

∂ϕ

dϕ

dt
. (68)

By virtue of the linearity of the polymeric part ψp with respect to temperature, we get

− ρsθs
∂2ψs

∂θ2
s

dθs

dt
= ρs (θs

∂2ψs

∂θs∂ρs
−

∂ψs

∂ρs
)

dρs

dt
+T ∶D−divx je

+ 1
ρs

⎛
⎝∫D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq
⎞
⎠

dρs

dt
−∫

D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

dϕ

dt
dq. (69)
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Next, we recall that the expression on the left-hand side of (69) is the classical definition of the
specific heat at constant volume cV,s for the solvent only,

cV,s(θs, ρs) =def −θs
∂2ψs

∂θ2
s

, (70)

we use the definition of the thermodynamic pressure pth,s for the solvent, see (61), the balance of
mass (3a), and we get

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv + pth,sdivxv +T ∶D−divx je

−
⎛
⎝∫D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq
⎞
⎠

divxv −∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

dϕ

dt
dq. (71)

Now, we are in a position to use the formula for the energy flux je, see (53), and the Fokker–Planck
Equation (8) for the configurational distribution function ϕ, which yields

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv + pth,sdivxv +T ∶D+divx (κ∇xθs)

+∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

divq ((∇xv)qϕ + jϕ,q) dq. (72)

Let us now focus on the last term. Integration by parts in the last term together with the boundary
condition (9) and the constitutive relation (54) for jϕ,q then gives us

∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

divq ((∇xv)qϕ + jϕ,q) dq = ∫
D

divq

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
((∇xv)qϕ + jϕ,q)

⎤⎥⎥⎥⎥⎦
dq

−∫
D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
● ((∇xv)qϕ + jϕ,q) dq

= −∫
D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
● ((∇xv)qϕ + jϕ,q) dq

= −
⎡⎢⎢⎢⎢⎣
∫

D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
qref

⊗
q

qref
ϕ dq

⎤⎥⎥⎥⎥⎦
∶D−∫

D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
● jϕ,q dq

= −
⎡⎢⎢⎢⎢⎣
∫

D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
qref

⊗
q

qref
ϕ dq

⎤⎥⎥⎥⎥⎦
∶D

+ 2
ζ ∫D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

⎤⎥⎥⎥⎥⎥⎦
dq

= −
⎡⎢⎢⎢⎢⎣
∫

D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
qref

⊗
q

qref
ϕ dq

⎤⎥⎥⎥⎥⎦
∶D

+ 2
ζ ∫D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ dq

+ 2kBθs

ζ ∫
D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●∇q ϕ dq. (73)
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If we want to, we can also integrate by parts in the last term on the right-hand side, and we get

2kBθs

ζ ∫
D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●∇q ϕ dq

= 2kBθs

ζ ∫
D

divq
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
ϕ
⎞
⎟
⎠

dq − 2kBθs

ζ ∫
D

divq
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref

⎞
⎟
⎠

ϕ dq

= −2kBθs

ζ ∫
D

divq
⎛
⎝
∇qUe

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
⎞
⎠

ϕ dq = −2kBθs

ζ ∫
D

⎛
⎝

∆qUe
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
⎞
⎠

ϕ dq, (74)

where we have again exploited the fact that ϕ∣∂D = 0. Now, we substitute back into (72), and we
arrive at

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv + pth,sdivxv +T ∶D+divx (κ∇xθs)

−
⎡⎢⎢⎢⎢⎣
∫

D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
qref

⊗
q

qref
ϕ dq

⎤⎥⎥⎥⎥⎦
∶D

+ 2
ζ ∫D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ dq

− 2kBθs

ζ ∫
D

⎛
⎝

∆qUe
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
⎞
⎠

ϕ dq. (75)

Finally, we use the formula for the Cauchy stress tensor (62), which is

T = −pth,sI+ λ (divxv) I+ 2νD− 2kBθsnpI+ ∫D

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

dUe
ds ∣

s= 1
2 ∣

q
qref

∣
2 + θs

θref

dUη

ds ∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
qref

⊗ q
qref

ϕ

⎤⎥⎥⎥⎥⎥⎦
dq, (76)

which, upon substitution into (75), yields

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv +divx (κ∇xθs)+ λ (divxv)2 + 2νD ∶D

− 2kBθsnpdivxv +
⎡⎢⎢⎢⎢⎢⎣
∫

D

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
qref

⊗
q

qref
ϕ dq

⎤⎥⎥⎥⎥⎥⎦
∶D

+ 2
ζ ∫D

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2

q
q2

ref
●
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ dq

− 2kBθs

ζ ∫
D

⎛
⎝

∆qUe
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
⎞
⎠

ϕ dq. (77)

This is the sought evolution equation for the temperature field. A brief inspection of (77) reveals
that the evolution equation for the temperature is not affected by shifts of the values of the potentials
Ue and Uη and the value of scaling constant K.



Fluids 2020, 5, 133 18 of 29

5.4. Summary

The system of governing equations for the solvent density ρs(t, x), velocity v(t, x),
solvent temperature θs(t, x), and configurational distribution function ϕ(t, x, q) read, as follows:

dρs

dt
+ ρsdivxv = 0, (78a)

ρs
dv
dt

= divxT+ ρsb, (78b)

∂ϕ

∂t
+divx (vϕ − kBθs

2ζ
∇x ϕ)+divq ((∇xv)qϕ − 2F

ζ
ϕ − 2kBθs

ζ
∇q ϕ) = 0, (78c)

where the spring force F is given via the potentials Ue and Uη by the formula

F = ∇q

⎡⎢⎢⎢⎢⎣
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠
+ θs

θref
Uη

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

⎤⎥⎥⎥⎥⎦
=
⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
, (78d)

and the Cauchy stress tensor T is given by the formula

T = −pth,sI+ λ (divxv) I+ 2νD− 2kBθsnpI+∫
D

F ⊗ qϕ dq. (78e)

The temperature evolution equation reads

ρscV,s
dθs

dt
= −θs

∂pth,s

∂θs
divxv +divx (κ∇xθs)+ λ (divxv)2 + 2νD ∶D− 2kBθsnpdivxv

+ [∫
D
(∇q

θs

θref
Uη)⊗ qϕ dq] ∶D+ 2

ζ ∫D
(∇qUe) ●∇q (Ue +

θs

θref
Uη) dq

− 2kBθs

ζ ∫
D
[∆qUe] ϕ dq, (78f)

and the thermodynamic pressure pth,s and the specific heat at constant volume cV,s are given in terms
of the derivative of the solvent specific Helmholtz free energy ψs, as follows:

pth,s(θs, ρs) = ρ2
s

∂ψs

∂ρs
, (78g)

cV,s(θs, ρs) = −θs
∂2ψs

∂θ2
s

, (78h)

We recall that the solvent density ρs is in the given model identified with the density of the whole
solvent-polymeric chains mixture. We note that if the spring potential only contains the entropic part,
that is if Ue = 0, then the governing equations simplify considerably. This system of governing
equations is essentially the same as that reported by Öttinger and Grmela [18], albeit the model has
been derived in a different manner. In fact our approach is similar to that used in the derivation of
macroscopic viscoelastic rate-type models, see especially Rajagopal and Srinivasa [37], Málek et al. [38],
Hron et al. [17], Málek et al. [39], Málek et al. [40], and Dostalík et al. [41]. For a coupling between
microscopic and macroscopic models, see also Souček et al. [42].

The boundary condition in the configurational space D reads

[(∇xv)qϕ − 2F
ζ

ϕ − 2kBθs

ζ
∇q ϕ] ● nq∣

∂D
= 0, (79)



Fluids 2020, 5, 133 19 of 29

see discussion in Section 3.2. Because we are working with a model with centre-of-mass diffusion,
we also need a boundary condition for the configurational distribution function in the physical space.
If we consider a vessel Ω with an impermeable rigid wall, we set

jϕ,x ● nx∣∂Ω = 0, (80)

which, by virtue of (52), means that ∇x ϕ ● nx∣∂Ω = 0. Regarding the remaining boundary conditions
in physical space, we can opt for any standard boundary conditions. Because we have access
to the velocity field v as well as to the Cauchy stress tensor T, we can choose from plethora
of boundary conditions used for flows of polymeric fluids, see, for example, Hatzikiriakos [43]
or Málek and Průša [21].

6. Stability

Following Coleman and Greenberg [44] and Coleman [19], see also Gurtin [45,46],
Grmela and Öttinger [47] and Bulíček et al. [20] for further discussion, we can exploit the
thermodynamic basis of the derived model in a rudimentary stability analysis of thermo-mechanical
processes described by the corresponding governing equations. In particular, it is straightforward to
investigate the finite amplitude (nonlinear) stability of the spatially homogeneous stationary states in
a thermodynamically isolated container.

The spatially homogeneous equilibrium stationary state θs,eq, ρs,eq, ϕeq and veq is, in our case,
given as

θs,eq = θ̂s, (81a)

ρs,eq = ρ̂s, (81b)

ϕeq = Mn̂p,θ̂s
, (81c)

veq = 0. (81d)

The symbol n̂p is the spatially homogeneous polymer number density, which is n̂p = N
∣Ω∣ , where

N is the total number of polymeric chains in the container and ∣Ω∣ is the volume of the container,
the solvent density ρ̂s is the spatially homogeneous density, which is ρ̂s = M

∣Ω∣ , where M is the total

mass of the solvent in the container. The symbol θ̂s denotes a spatially homogeneous temperature
field, and Mn̂p,θ̂s

stands for the equilibrium configurational distribution function (22) discussed in
Section 3.5. Clearly, the quadruple (81) is a solution to the governing equations subject to boundary
conditions

v∣∂Ω = 0, (82a)

∇x ϕ ● nx∣∂Ω = 0, (82b)

∇xθs ● nx∣∂Ω = 0, (82c)

that guarantee that the energy flux je, jη , and jϕ,x, see (53), (58), and (52), vanish on the container wall.
We also have the standard boundary condition in the configurational space (9), which is

((∇xv)qϕ + jϕ,q) ● nq∣∂D = 0, (82d)



Fluids 2020, 5, 133 20 of 29

where jϕ,q is given by (54). If we denote

Sθ̂ =def ∫
Ω

ρsθ̂sη dv, (83a)

S =def ∫
Ω

ρsη dv, (83b)

Etot =def ∫
Ω
(ρse + 1

2
ρs ∣v∣2) dv, (83c)

then using the governing equations it is straightforward to see that, since all of the fluxes through the
vessel wall vanish, the net total energy Etot is constant and the net total entropy S is a nondecreasing
function in time. Moreover, the total mass of the solvent and the number of polymeric chains are also
preserved in time.

Consequently, the following functional is a reasonable candidate for a Lyapunov type functional
for the analysis of the stability of the stationary spatially homogeneous state with temperature θ̂s,

Vmeq = −{Sθ̂s
− (Etot − Êtot)} , (84)

see, for example, Bulíček et al. [20] for details, where Êtot denotes the net total energy at the spatially
homogeneous stationary state (we use the nomenclature Lyapunov type functional, since we will
only show the decay along trajectories and non-negativity of the functional everywhere except at
the equilibrium. We will not investigate the link between the proposed functional and a suitable norm
in the given state space, as this is beyond the scope of the current contribution). The rationale for the
choice of such a functional is apparent from the following manipulation

dVmeq

dt
= − d

dt
{Sθ̂ − (Etot − Êtot)} = −θ̂

dS
dt

= −θ̂∫
Ω

ξ dv, (85)

where ξ denotes the entropy production, which is a nonnegative quantity that vanishes at the spatially
homogeneous stationary state (81). In the current case, we are forced however to modify the functional
by explicitly adding zero terms

Vmeq = −{Sθ̂s
− (Etot − Êtot)}+ λ2 ∫

Ω
(ρs − ρ̂s) dv+ λ3 ∫

Ω
(np − n̂p) dv, (86)

which help us to articulate the constraints of mass conservation and the conservation of total number
of polymeric chains. While the values of Lagrange multipliers can be found a priori, see, for
example, Coleman [19] for a discussion in the case of a compressible fluid, we shall not proceed
in that direction (in fact we have already tacitly identified one of the multipliers: the equilibrium
temperature θ̂s is the multiplier that enforces the conservation of net total energy). We shall find instead
the multipliers on-the-fly. Indeed, from the pragmatic point of view, we will need the additional zero
terms (after the integration) to show the nonnegativity of the integrands in Vmeq.

Finally, we note that, in order to ensure that the functional vanishes at the equilibrium, we need
to shift the functional by a constant value. We will denote the shifted functional by the same symbol,
since this shift has no impact on the time evolution of the functional: it is just a matter of normalisation.

6.1. Outline of the Construction of the Lyapunov Like Functional

We see that the explicit formula for Vmeq reads

Vmeq = ∫
Ω
(g (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂)+ 1

2
ρs ∣v∣2) dv (87)

where
g (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) =def − [ρsθ̂sη(θs, ρs, ϕ)− ρs (e(θs, ρs, ϕ)− e(θ̂s, ρ̂s, ϕ̂))] . (88)
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By virtue of (24) and (25), we can further split the internal energy and the entropy into their
respective solvent part and polymeric part:

e (θs, ρs, ϕ) = es (θs, ρs)+ ep (θs, ρs, ϕ) , (89a)

η (θs, ρs, ϕ) = ηs (θs, ρs)+ ηp (θs, ρs, ϕ) , (89b)

where

ep (θs, ρs, ϕ) =def
1
ρs
∫

D
Ue

⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq, (90a)

ηp (θs, ρs, ϕ) =def −
kB

ρs
∫

D

⎛
⎜⎜⎜
⎝

Uη ( 1
2 ∣ q

qref
∣
2
)

kBθref
ϕ + ϕ ln

ϕ

K

⎞
⎟⎟⎟
⎠

dq. (90b)

Next, we split the function g into a solvent and a polymeric part as well

g (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) = gs (θs, ρs∥ θ̂s, ρ̂s, )+ gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) , (91)

where

gs (θs, ρs∥ θ̂s, ρ̂s) =def − [ρsθ̂sηs(θs, ρs)− ρs (es(θs, ρs)− es(θ̂s, ρ̂s))] , (92a)

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) =def − [ρsθ̂sηp(θs, ρs, ϕ)− ρs (ep(θs, ρs, ϕ)− ep(θ̂s, ρ̂s, ϕ̂))] , (92b)

and, finally, we also split the whole functional, which is we write

Vmeq = ∫
Ω

1
2

ρs ∣v∣2 dv+∫
Ω

gs (θs, ρs∥ θ̂s, ρ̂s) dv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Vmeq,s

+∫
Ω

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) dv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Vmeq,p

. (93)

We shall first find an explicit formula for the polymeric contribution, see Section 6.2, and then
we introduce an explicit equation of state for the solvent, and we find the formula for the
solvent contribution, see Section 6.3.

6.2. Polymeric Part

First, we choose the characteristic temperature θref in the polymeric part of the Helmholtz free
energy (23) as θ̂s, which is we set

θref =def θ̂s. (94)

We are using the fact that the temperature field θ̂s at equilibrium is constant in space and time.
Straightforward substitution of (90) into (92b) then yields

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) = kBθ̂s ∫
D

⎛
⎜⎜⎜
⎝

Uη ( 1
2 ∣ q

qref
∣
2
)

kBθ̂s
ϕ + ϕ ln

ϕ

K

⎞
⎟⎟⎟
⎠

dq

+∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ dq −∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ̂ dq. (95)
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Now, we can combine the terms with the potentials to deduce that

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) = kBθ̂s ∫
D

ϕ ln

⎛
⎜⎜⎜⎜
⎝

ϕ

Ke
−

Uη( 1
2 ∣

q
qref
∣
2
)+Ue( 1

2 ∣
q

qref
∣
2
)

kB θ̂s

⎞
⎟⎟⎟⎟
⎠

dq − ∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ̂ dq. (96)

Because the choice of the normalisation factor K has no impact on the dynamics of the system,
we choose it to serve our objective. We fix the normalisation factor K as

K =def
n̂p

∫D e
−

Uη( 1
2 ∣

q
qref
∣
2
)+Ue( 1

2 ∣
q

qref
∣
2
)

kB θ̂s dq

, (97)

Using the notation introduced in (22), we see that (96) with the constant K chosen as in (97)
reduces to

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) = kBθ̂s ∫
D

ϕ ln
⎛
⎝

ϕ

Mn̂p,θ̂s

⎞
⎠

dq −∫
D

Ue
⎛
⎝

1
2
∣

q
qref

∣
2⎞
⎠

ϕ̂ dq. (98)

The last term is a constant in time and space, hence we can safely ignore it. It only shifts the
value of gp and consequently of the functional Vmeq. If we ignore it, we get in the end a functional that
vanishes at equilibrium, which is a desired property. We see that

1
Mn̂p,θ̂s

= 1
Mnp,θ̂s

np

n̂p
, (99)

and by virtue of the normalisation constraint (5), it follows that

kBθ̂s ∫
D

ϕ ln
⎛
⎝

ϕ

Mn̂p,θ̂s

⎞
⎠

dq = kBθ̂s ∫
D

ϕ ln
⎛
⎝

ϕ

Mnp,θ̂s

np

n̂p

⎞
⎠

dq

= kBθ̂s ∫
D

ϕ ln
⎛
⎝

ϕ

Mnp,θ̂s

⎞
⎠

dq + kBθ̂s ∫
D

ϕ ln(
np

n̂p
) dq

= kBθ̂s ∫
D

Mnp,θ̂s

⎡⎢⎢⎢⎢⎣

ϕ

Mnp,θ̂s

ln
⎛
⎝

ϕ

Mnp,θ̂s

⎞
⎠
−

ϕ

Mnp,θ̂s

+ 1
⎤⎥⎥⎥⎥⎦

dq + kBθ̂snp ln(
np

n̂p
) . (100)

It is straightforward to check that the function in the square bracket, f (x) =def x ln x − x + 1, is for
x ∈ (0,+∞) nonnegative and vanishes if and only if x = 1, which is if

ϕ

Mnp,θ̂s

= 1. (101)

Therefore, the corresponding term is related to the equilibration of the configurational distribution
function ϕ to Mnp,θ̂s

. We note that Mnp,θ̂s
depends on the local particle number density np and not on

the equilibrium particle number density n̂p. Consequently, from this term only, we cannot monitor the
progress of np to n̂p. This piece of information must be inferred from elsewhere.

Now, we are in a position to construct the functional Vmeq,p. In order to guarantee the
nonnegativity of the functional we need to add a term that reflects the additional constraints imposed
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on the closed system, namely, the constraint on the constant total number of polymeric chains. See the
discussion in the introductory part of this section. We set

Vmeq,p = ∫
Ω

gp (θs, ρs, ϕ∥ θ̂s, ρ̂s, ϕ̂) dv− kBθ̂s ∫
Ω
(np − n̂p) dv, (102)

which, by virtue of (98) and (100), yields

Vmeq,p = kBθ̂s ∫
Ω

⎛
⎝∫D

Mnp,θ̂s

⎡⎢⎢⎢⎢⎣

ϕ

Mnp,θ̂s

ln
⎛
⎝

ϕ

Mnp,θ̂s

⎞
⎠
−

ϕ

Mnp,θ̂s

+ 1
⎤⎥⎥⎥⎥⎦

dq
⎞
⎠

dv

+ kBθ̂s ∫
Ω

n̂p [
np

n̂p
ln(

np

n̂p
)−

np

n̂p
+ 1] dv. (103)

A brief inspection of the last term reveals that the term is nonnegative, and that it vanishes if and
only if

np

n̂p
= 1 (104)

everywhere in the domain Ω. Consequently, we are done with the polymeric contribution to the
functional Vmeq,p and we can proceed to the solvent contribution.

6.3. Solvent Part: Noble–Abel Stiffened-Gas Equation Of State

Regarding the solvent part, we need to choose an equation of state. In the current contribution,
we opt for the Noble–Abel stiffened-gas equation of state (NASG), see Le Métayer and Saurel [48],
which is a recently formulated equation of state that is easy to deal with analytically, and that
can describe, by a suitable choice of parameters, both gaseous and liquid substances (see
also Chiapolino and Saurel [49] for further elaboration of NASG). Let us follow Le Métayer and
Saurel [48], and let us first recall various formulae of the Noble–Abel stiffened-gas equations of state.
The quantities of interest in engineering practice are given by the formulae

pth,s(θs, ρs) =
cV,s (γ − 1) ρsθs

1− bρs
− p∞, (105a)

es(pth,s, ρs) =
pth,s + γp∞
pth,s + p∞

cV,sθs + q, (105b)

ηs(pth,s, ρs) = cV,s ln
⎡⎢⎢⎢⎢⎣
( θs

θs,ref
)

γ

(
pth,s + p∞

pref
)

1−γ⎤⎥⎥⎥⎥⎦
+ q′, (105c)

where pth,s, θs, ρs, es, and ηs are, respectively, the thermodynamic pressure, the temperature, the density,
the specific internal energy, and the specific entropy. The symbols cV,s, γ, b, p∞, q, and q′ denote
constant material parameters that are specific for the given fluid. The symbols θs,ref and pref denote
constant reference temperature and constant reference pressure. These quantities can be chosen at will,
as they serve only for normalisation purposes. Combining the Formulae (105), we obtain

es (θs, ρs) = cV,sθs + ( 1
ρs
− b) p∞ + q, (106a)

ηs (θs, ρs) = cV,s ln( θs

θs,ref
)+ cV,s (1− γ) ln [

cV,s (γ − 1) ρs

1− bρs

θs,ref

pref
]+ q′. (106b)
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Finally, using (106), we obtain the specific Helmholtz free energy ψs defined by the thermodynamic
relation ψs(θs, ρs) = es(θs, ρs)− θsηs(θs, ρs). The explicit formula for the specific Helmholtz free energy
as a function of its natural variables reads

ψs(θs, ρs) = −cV,sθs [ln ( θs
θs,ref

)− 1]− cV,sθs (1− γ) ln [ cV,s(γ−1)ρs
1−bρs

θs,ref
pref

]− q′θs + ( 1
ρs
− b) p∞ + q, (107)

and using this formula in (23) gives us a complete thermodynamic characterisation of the given fluid.
We are now in a position to construct the functional Vmeq,s, see (93). As in the previous section,

we first choose the characteristic temperature of the solvent θs,ref as θ̂s, which is we set

θs,ref =def θ̂s. (108)

We are using the fact that the temperature field θ̂s at equilibrium is constant in space and time.
With this choice of the reference temperature field θs,ref, we use the formulae for the specific internal
energy es, and the specific entropy ηs, see (106), and we get

Vmeq,s = −∫
Ω
(ρscV,sθ̂s ln(θs

θ̂s
)+ ρscV,s (1− γ) θ̂s ln [

cV,s (γ − 1) ρs

1− bρs

θ̂s

pref
]+ ρsq′θ̂s) dv

+∫
Ω
(ρscV,sθs + (1− bρs) p∞ + ρsq) dv−∫

Ω
(ρ̂scV,sθ̂s + (1− bρ̂s) p∞ + ρ̂sq) dv. (109)

Now, we need to manipulate the right-hand side of (109), and we need to show that it
is nonnegative. This can be done, as follows. First, we exploit conservation of mass, which implies
that ∫Ω (ρs − ρ̂s) dv = 0. See also the discussion in the introductory part, in particular the discussion
following (86). This observation allows for us to write ∫Ω ρscV,sθ̂s dv = ∫Ω ρ̂scV,sθ̂s dv. Second, we fix
the reference pressure as

pref =def
ρ̂s (γ − 1) cV,sθ̂s

1− bρ̂s
e
− q′

cV,s(γ−1) , (110)

and regroup the terms of (109) arriving at

Vmeq,s = ∫
Ω

ρscV,sθ̂s [
θs

θ̂s
− 1− ln(θs

θ̂s
)] dv+∫

Ω
ρscV,s (γ − 1) θ̂s ln(

ρs

ρ̂s

1− bρ̂s

1− bρs
) dv

+∫
Ω
(ρs − ρ̂s) (q − bp∞) dv. (111)

We note that the choice (110) leads to vanishing entropy at the equilibrium state. In this sense,
the choice (110) is tantamount to the convenient fix of the entropy value at the equilibrium. Next we
again exploit conservation of mass, which allows us to eliminate the last term on the right-hand side
of (111), and yields

Vmeq,s = ∫
Ω

ρscV,sθ̂s [
θs

θ̂s
− 1− ln(θs

θ̂s
)] dv+∫

Ω
ρscV,s (γ − 1) θ̂s ln(

ρs

ρ̂s

1− bρ̂s

1− bρs
) dv. (112)

Moreover, by adding the zero term

−∫
Ω

cV,s (γ − 1) θ̂s

1− bρ̂s
(ρs − ρ̂s) dv, (113)

to the right-hand side of (112), we arrive at

Vmeq,s = ∫
Ω

ρscV,sθ̂s [
θs

θ̂s
− 1− ln(θs

θ̂s
)] dv+∫

Ω
cV,s(γ − 1)θ̂s [ρs ln(

ρs

ρ̂s

1− bρ̂s

1− bρs
)−

ρs − ρ̂s

1− bρ̂s
] dv. (114)
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Because the function f (x) =def x − 1− ln x, is nonnegative for x ∈ (0,∞) and vanishes if and only
if x = 1, we obtain the desired nonnegativity of the first term on the right-hand side of (114).

Finally, we denote

gρ̂s,b(ρs) =def ρs ln(
ρs

ρ̂s

1− bρ̂s

1− bρs
)−

ρs − ρ̂s

1− bρ̂s
, (115)

where ρs ∈ (0, 1
b). Clearly, gρ̂s,b(ρ̂s) = 0. Moreover, by calculating the first and the second derivatives of

the function gρ̂s,b one obtains that, irrespective of the values of b > 0 and ρ̂s ∈ (0, 1
b), the function gρ̂s,b is

nonnegative and vanishes if and only if ρs = ρ̂s. The second term on the right-hand side of (114) is thus
nonnegative as well. We also note that the function gρ̂s,b(ρs) blows-up as ρs → 1

b−.
Consequently, we have shown that the functional Vmeq,s is nonnegative and vanishes if and only if

θs = θ̂s and ρs = ρ̂s, which is in the case when the temperature and density fields reach their respective
equilibrium values. The final formula for the solvent contribution reads

Vmeq,s = ∫
Ω

ρscV,sθ̂s [
θs

θ̂s
− 1− ln(θs

θ̂s
)] dv+∫

Ω
cV,s(γ − 1)θ̂s [ρs ln(

ρs

ρ̂s

1− bρ̂s

1− bρs
)−

ρs − ρ̂s

1− bρ̂s
] dv. (116)

6.4. Summary

We are now in a position to collect all partial results. The explicit formula for the
functional (87) reads

Vmeq = ∫
Ω

1
2

ρs ∣v∣2 dv+Vmeq,p +Vmeq,s

= ∫
Ω

1
2

ρs ∣v∣2 dv+ kBθ̂s ∫
Ω

⎛
⎝∫D

Mnp,θ̂s

⎡⎢⎢⎢⎢⎣

ϕ

Mnp,θ̂s

ln
⎛
⎝

ϕ

Mnp,θ̂s

⎞
⎠
−

ϕ

Mnp,θ̂s

+ 1
⎤⎥⎥⎥⎥⎦

dq
⎞
⎠

dv

+ kBθ̂s ∫
Ω

n̂p [
np

n̂p
ln(

np

n̂p
)−

np

n̂p
+ 1] dv+∫

Ω
ρscV,sθ̂s [

θs

θ̂s
− 1− ln(θs

θ̂s
)] dv

+∫
Ω

cV,s(γ − 1)θ̂s [ρs ln(
ρs

ρ̂s

1− bρ̂s

1− bρs
)−

ρs − ρ̂s

1− bρ̂s
] dv (117)

From the construction of the functional, it is clear that it decreases in time and that it is zero
at equilibrium. In fact, we have an explicit formula for the time derivative of the functional:

dVmeq

dt
= −θ̂∫

Ω
ξ dv. (118)

The entropy production ξ can be identified from the right-hand side of (51), provided that we
substitute for the fluxes jϕ,x, jϕ,q, je and the Cauchy stress tensor T while using the formulae (52)–(54)
and (62), which yields

ξ = 1
θs

(2νDδ ∶Dδ + λ̃ (divxv)2)

+ 2
θsζ ∫D

1
ϕ

RRRRRRRRRRRRRR

⎛
⎜
⎝

dUe

ds
∣
s= 1

2 ∣
q

qref
∣
2 +

θs

θref

dUη

ds
∣
s= 1

2 ∣
q

qref
∣
2

⎞
⎟
⎠

q
q2

ref
ϕ + kBθs∇q ϕ

RRRRRRRRRRRRRR

2

dq

+
k2

Bθs

2ζ ∫D

1
ϕ

∣∇x ϕ∣2 dq + κ
∣∇xθs∣2

θ2
s

. (119)

The first term in (117) monitors the approach of the velocity field to its equilibrium value (zero),
the second term does the same regarding the configurational distribution function, the third term
takes care of the polymer number density, the fourth term deals with the temperature field, and the
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last term monitors the approach of the density to the equilibrium density. However, we recall that
we have not discussed the relation between the functional and a metric structure on the state space;
hence, the functional does not, at the moment, deserve to be referred to as the Lyapunov functional.
See also Dostalík et al. [50,51] for a similar application in the case of macroscopic viscoelastic rate-type
models, where the authors have actually found a relation between the proposed Lyapunov type
functionals and a metric on the state space.

Inspecting (119) and (118), we also note that the time derivative of Vmeq is proportional to the
net entropy production that vanishes at the stationary spatially homogeneous equilibrium state (81).
These observations conclude our rudimentary stability analysis.

Finally, we note that, on the right-hand side of (119), we explicitly see all entropy production
mechanisms that are active in the given fluid. Because the entropy production terms, in fact,
determine the fluxes in the sense of the discussion in Section 5.2, we see that the identification of the
entropy production and the identification of the Helmholtz free energy indeed provide a complete
characterisation of the fluid of interest.

7. Conclusions

We have provided a simple derivation of a model for non-isothermal flows of dilute
polymeric fluids. The analysis outlined above shows that if the microscopic dynamics of the polymeric
chains is governed by the Fokker–Planck equation with a centre-of-mass diffusion term, then it is
possible to find a corresponding evolution equation for the temperature field in such a way that the
whole system of governing equations is compatible with the first and second law of thermodynamics.

However, we note that, although the derivation outlined above seems to be completely
self-consistent, some of the steps require insight into the microscopic dynamics of the polymeric chains.
In particular, the interpretation of the coefficient ζ as hydrodynamic drag, see especially Formula (55)
for the flux jϕ,q, would be impossible without the insight into the microscopic nature of the model (this
is however true also for the derivation proposed by Öttinger and Grmela [18]). Without such an insight,
one could easily misidentify the flux jϕ,q and lose the connection between the Fokker–Planck type
equation and the underlying stochastic process at the level of individual polymeric chains.

While the presence of the centre-of-mass diffusion term is motivated by physical considerations, see for
example El-Kareh and Leal [52], Bhave et al. [53], Schieber [54] and Degond and Liu [32], it turns out that its
presence can be gainfully exploited in the mathematical analysis of the corresponding governing equations in
the purely mechanical setting as well, see especially Barrett and Süli [31,33,55,56,57] or Feireisl et al. [34].
(See also Bulíček et al. [58], Bulíček et al. [59] and Bathory et al. [60] in the context of macroscopic
models with a stress diffusion term.) One might hope that once thermodynamically consistent models
for the full thermo-mechanical coupling are derived, similar rigorous mathematical results might also
be obtained for the corresponding full system of governing equations, that is including the governing
equation for the temperature.

In particular, the knowledge of the thermodynamic background leads to natural a priori
estimates, and to the design of natural functionals that might be used to monitor the stability
of steady equilibrium or non-equilibrium states or to analyse weak-strong uniqueness. (See for
example Feireisl and Novotný [61], Feireisl et al. [62] and Feireisl and Pražák [63] for the discussion in
the case of a compressible Navier–Stokes–Fourier fluid. In the context of purely mechanical models of
dilute polymeric fluids and stability of the corresponding flows, see especially Jourdain et al. [64].)
Indeed, we formally—that is under the assumption that the governing equations posses a strong
solution—identify such a functional, which might be of use in such analyses.
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