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Abstract: A recent predictive scenario of premixed flame propagation in unobstructed passages is
extended to account for obstructions that can be encountered in facilities dealing with explosive
materials such as in coalmines. Specifically, the theory of globally-spherical, self-accelerating premixed
expanding flames and that of flame acceleration in obstructed conduits are combined to form a new
analytical formulation. The coalmining configuration is imitated by two-dimensional and cylindrical
passages of high aspect ratio, with a comb-shaped array of tightly placed obstacles attached to the
walls. It is assumed that the spacing between the obstacles is much less or, at least, does not exceed
the obstacle height. The passage has one extreme open end such that a flame is ignited at a closed end
and propagates to an exit. The key stages of the flame evolution such as the velocity of the flame front
and the run-up distance are scrutinized for variety of the flame and mining parameters. Starting with
gaseous methane-air and propane-air flames, the analysis is subsequently extended to gaseous-dusty
environments. Specifically, the coal (combustible, i.e., facilitating the fire) and inert (such as sand,
moderating the process) dust and their combinations are considered, and the impact of the size and
concentration of the dust particles on flame acceleration is quantified. Overall, the influence of both
the obstacles and the combustion instability on the fire scenario is substantial, and it gets stronger
with the blockage ratio.

Keywords: flame acceleration; gaseous-dusty combustion; obstructed passages; combustion instabilities;
coal mine fire safety; computational simulations

1. Introduction

Historically, coal mining exhibits one of the highest fatality and injury rates among the industries
dealing with flammable gases and combustible dust, with occupational hazards occurring on a regular
basis [1]. For instance, not long ago an unfortunate mining accident in Soma, Turkey took hundreds of
lives [2]. Among the causes of disasters, a spontaneous accidental explosion can lead to a catastrophic
consequence. This happens, in particular, because methane is often present in the coal seams and can
be accumulated inside a coal mining passage during the coal extraction process. If sufficient ventilation
is not provided, a risk of violent methane/air/coal-dust explosion is viable. Consequently, in order to
foresee potential risks and to install any safety measures against a fire accident, an understanding of
the processes in a burning accident is essential. A predictive scenario of a coal mining fire [3] was a
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step in this direction. Specifically, the key characteristics of a fire such as the evolution of the shape and
velocity of a premixed flame front, as well as the flame run-up distance were predicted by combining
the mechanism of flame acceleration due to a “finger” flame shape [4] with another flame acceleration
mechanism [5] devoted to self-similar accelerative outward propagation of a global spherical flame
front, which is wrinkled because of the Darrieus–Landau (DL) instability (see [5] for more details on
the dynamic and scalar fields associated with flame propagation and the fluid ahead of the flame front).
However, [3] assumed smooth walls of a passage, while it was subsequently recognized by [6] that
obstructions, which are inevitably present in a coal mine (such as mining equipment, belt conveyor
systems, and piles of rubble), can block a noticeable part of the passage, thereby providing a significant
impact on a fire scenario. Therefore, there is, a critical need to account for obstacles in a predictive coal
mining fire scenario as addressed in the present work.

Previously, Silvestrini et al. [7] developed a simplified formulation for evaluating the flame
run-up distance for smooth tubes, and then extended it to account for obstacles, and obtained that
the obstacles promote flame acceleration, thereby leading to shorter run-up distances. Ciccarelli
and Dorofeev [8] reviewed the knowledge on flame acceleration in smooth and obstructed channels,
emphasizing the formation of a cellular flame structure due to the DL instability, as observed in the
small-scale experiments for the flames in the obstructed channels [8]. Houim and Oran [9] considered
a channel with smooth walls, filled with a coal dust or ash particles layered at the bottom of the
channel. They demonstrated, computationally, that the flame interaction with the coal dust formed
hot spots ahead of the flame front; and autoignition of these hot spots produced the jumps in the
flame position and sharp spikes in the flame velocity. Seshadri et al. [10] considered the structure of a
premixed flame propagating in environments where combustible particles were uniformly distributed
and identified the effective equivalence ratio and laminar burning velocity of the mixture in terms
of particle size and concentration. Xie et al. [11] showed, experimentally, that a small size of the
combustible coal particles promoted the overall equivalence ratio of the fuel mixture, as well as the
laminar flame speed in this mixture. Zheng et al. [12] investigated the effect of a distribution of
a methane-air fuel mixture composition inside a two-dimensional (2D) obstructed channel on the
deflagration-to-detonation transition (DDT), with the finding that the inhomogeneous distributions
either did not produce a detonation or resulted in a detonation that was decoupled into a flame and a
shock earlier as compared with the homogeneous distribution. The wall restrictions in the confined
enclosures, as well as the shape and layout of the obstacles can significantly influence flame acceleration
in the obstructed channels. In unconfined spaces, Ogawa et al. [13] showed that an array of square
obstacles led to continuous detonation propagation. Bychkov et al. [14] provided an explanation of a
physical mechanism of flame acceleration in a 2D obstructed channel, equipped with a comb-shaped
array of tightly placed obstacles. Specifically, delayed burning in the pockets between the obstacles
caused a jet flow along the centerline of the channel, thereby providing extremely powerful flame
acceleration [14]. Subsequently, Valiev et al. [15] extended a 2D study [14] into cylindrical-axisymmetric
geometry, with much stronger flame acceleration occurring in the cylindrical tubes [15] as compared
with the 2D channels [14]. Unlike finger-flame acceleration [4], acceleration due to obstacles [14,15] is
unlimited in time and it can eventually trigger a DDT constituting an extra, shock-based disaster for
personnel and equipment in underground enclosures such as coal mines or subway tunnels.

In the present work, the coal mining passage is imitated by an obstructed channel/tube [14,15].
Specifically, we combine the formulation of a globally-spherical, self-accelerating expanding flame
front, distorted by the DL instability [5] and the formulation of fast flame acceleration due to the
obstacles in a channel/tube [14,15], thus, revisiting a predictive scenario of a burning accident in a
coal mining passage [3]. It is shown that the obstacles play a key role in the coal mining fire scenario,
and that the DL instability can significantly promote obstacle-based acceleration.
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Starting with a homogeneous methane-air fuel mixture, the analysis is subsequently extended
to a gaseous-dusty environment using a modified Seshadri formulation [3,10]. The parametric study
involves variations of the blockage and equivalence ratios, α and φ, as well as the size of the dust
particles and their type (inert such as sand, combustible such as coal, and their combination).

2. Formulation

Here, we present our formulation, starting with the 2D geometry in Section 2.1, and then its
counterpart, the approach for cylindrical-axisymmetric geometry in Section 2.2. First, we recall the
basics of flame acceleration mechanism for a globally-spherical, expanding flame front corrugated due
to the DL instability. Indeed, any large-scale premixed flame front is prone to this mode of instability
such that the radius of a globally-spherical, expanding flame obeys the time-dependent power law [5]:

R f (t) = R0 + Ctn
≈ Ctn, (1)

where a small quantity R0 can be considered to be a fitting parameter that can account for the ignition
uncertainty in the experiments or a critical flame radius at which self-similar acceleration visually
starts [5]. In the present work, we neglect this parameter as negligible as compared with a passage
height or an obstacle length, R0 � αH < H. The factor C in Equation (1) can be evaluated as [3,5]:

C = kn−1
DL

(
ΘU f /n

)n
, (2)

with the thermal expansion ratio Θ ≡ ρ f uel/ρburnt and the DL cutoff wavenumber kDL ≡ 2π/λDL (λDL is
the DL critical wavelength), which is assumed to obey the relation (see [16] for details):

λDL = 2πL f

1 +
(Θ + 1)

(Θ − 1)2 Θ ln Θ

; kDL = L−1
f

1 +
(Θ + 1)

(Θ − 1)2 Θ ln Θ

−1

, (3)

where L f ≡ Dth/U f is the conventional definition of the flame thickness, and Dth is the thermal
diffusivity coefficient of the fuel mixture. In the present work, Equation (3) is chosen because it was
used in our previous works, such as in [3], and therefore it is natural to use the same formula here,
for better comparison. It is nevertheless noted that there exist alternative formulas for λDL as discussed
in [17] and references therein. In this light, the present formulation is flexible with respect to the choice
of the formula for λDL, such that Equation (3) can be readily replaced by any alternative. The DL cutoff

wavelength λDL is a quantity, proportional to the flame thickness, λDL ∝ L f , with a proportionality
factor of the order of 101

∼ 102 depending on thermal-chemical flame properties such as the expansion
ratio Θ [16,17]. Equation (3) is an example of such a dependence. Obviously, if L f → 0 , then λDL → 0 ,

In [5], the authors developed an analytical theory describing self-similar accelerative outward
propagation of a globally-spherical flame front. It is wrinkled because of the DL instability and obeys
Equation (1). In particular, the dynamic and scalar fields associated with flame propagation, and the
flow ahead of the flame, were analyzed, with a particular focus on (although not limited to) the
flame-generated compression waves and the time evolution of the radial flow velocity. The exponent n
in Equation (1) has been reported to be in the range 4/3 ≤ n ≤ 3/2 [18–22]. Similar to [3], in the present
work, we employed n = 1.4 in the majority of cases, although the impact of varying n was also analyzed.
According to Equation (1), instead of the unstretched laminar flame velocity U f , the instantaneous
radial flame velocity with respect to the fuel mixture is

UDL(t) =
nC
Θ

tn−1. (4)
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2.1. Two-Dimensional (2D) Geometry

We consider a 2D passage (channel) of width 2H = 2.1 m as illustrated in Figure 1, which is closed
at one end, with a premixed flame front propagating towards the open end. The passage is blocked by
the obstacles of length, αH, such that the central segment of the channel of width, 2(1− α)H, remains
unobstructed. Theoretically, we adopt a limit of tightly placed obstacles, ∆z � αH, which allows
treating the flow between the obstacles as laminar. Nevertheless, it is noted that the Bychkov model [14]
is applicable even far beyond the restriction ∆z� αH; namely, it is valid as long as ∆z ≤ αH or even
∆z ≤ H as validated in the computational study [23]. Thus, it should be enough to keep the obstacle
spacing less than the obstacle height, thereby having their ratio not exceeding unity, ∆z/αH < 1
(although the tighter the better, of course). In this respect, the assumption of a laminar flow between
the obstacles can be waved, to some extent. For instance, the Eulerian assumption of a non-viscous
flow might lead to a similar x-direction velocity profile without imposing tightly placed obstacles.
However, in that case, there would be additional effects of a vertical motion between the obstacles,
presumably, leading to pulsations, which would need to be studied. Therefore, as of now, we assume a
laminar flow in the pockets between the obstacles.
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Figure 1. Illustration of flame acceleration inside an obstructed passage (a) and delayed burning
between obstacles (b).

With such a laminar flow approach, the flame front inside the pockets can be taken as locally
planar all the time, thus, spreading in the x-direction with the instantaneous global flame velocity
UDL(t). As the burnt matter expands with a thermal expansion ratio Θ, the flow is pushed out of the
“pockets”. Coming into a central part of the passage, the flow changes its direction and pushes the
flame forward in the z-direction towards the exit. This creates a positive feedback between the flame
and the pockets as the flame is pushed forward, thereby creating new pockets behind it.

It is emphasized that the flame dynamics and morphology are controlled by the processes
occurring in the obstructed segment of the passage and not in its unobstructed, central part. Indeed,
although the flame tip is driven by a powerful jet flow; such a jet flow is generated due to delayed
burning in the pockets between the obstacles. Moreover, the total burning rate (which grows extremely
fast) correlates well with the total surface area of the flame front, which is mainly provided by the
flame segments in the pockets between the obstacles. Consequently, the shape (surface area) of the
flame tip does not seem to play a role in the flame surface area, and therefore the total burning rate
(even if the tip would be very corrugated, this would not change the total flame surface area and the
total burning rate). For this reason, the shape of the flame tip can be assumed to be planar all the
time [14,15]. With this assumption, we can potentially neglect the effect of the flame growth at the
initial stages of burning. Nevertheless, we accounted for the evolution of flame “skirt” R f described by
Demir et al. [3], with a point ignition in our analysis,

R f (t) =
ΘH

(Θ − 1)

{
1− exp

[
−
(Θ − 1)

ΘH

(
kn−1

DL

(ΘU f

n

)n)
tn

]}
. (5)
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With methane-air and propane-air laminar burning velocities not exceeding U f = 0.3 ∼ 0.4 m/s [24]
and the respective speeds of sound circa c0 ∼ 350 m/s, the initial Mach number associated with flame
propagation appears to be very small, Ma ≡ U f /c0 ∼ 10−3

� 1. This guides us to employ a low
Mach number model of an incompressible flow, Ma→ 0 , similar to [3]. This model has been widely
employed analytically and verified by fully compressible computational simulations in our previous
works [4,15]. The model has been justified to work well at the initial, essentially subsonic stage of
flame acceleration, and to provide reasonable evaluations even in the case of compressible flows.
Nevertheless, it is recognized that the model would break when the burning velocity approaches
near-sonic values. Such a limitation of the model and the way to overcome is commented on in
Section 3.1. For a 2D geometry, the incompressible continuity equation reads as:

∂ux

∂x
+
∂uz

∂z
= 0 (6)

Similar to the Bychkov model [14,15], here, we employed the assumption of a potential flow in the
burnt gas, which has been validated by the computational simulations in [15]. It is nevertheless noted
that, in a real passage, obstacles generate vorticity at least in the central region close to the obstacles.
At the same time, according to [23], although the flow in the burnt gas is generally rotational in practice,
because of the curved flame shape, it can be treated as potentially close to the wall when the flame
front is locally planar, which is enough to certify the Bychkov approach [23].

The question about vorticity and rotational region has been addressed, in part, in [23,25].
According to the simulations [25], vorticity provides a notable impact on the Bychkov mechanism
only if the obstacle spacing exceeds the passage radius, ∆Z > R, with the Bychkov model being
fully broken if ∆Z = 2R. Obviously, such ∆Z is much larger than what usually means tightly placed
obstacles, ∆Z ≤ αR, say ∆Z/R = 0.2 ∼ 0.6 [23], thereby justifying the potential flow approach. As a
result, considering the potential flow in the free part of the passage, with the boundary condition
|ux| = −(Θ − 1)UDL(t) at x = ±(1− α)H, we find the velocity profiles in the burnt gas,

(ux; uz) =
(Θ − 1)UDL(t)

(1− α)H
(−x; z). (7)

The flame tip Ztip obeys the evolution equation

dZtip

dt
= uz(Ztip) + ΘUDL(t). (8)

which mathematically expresses the fact that the flame tip velocity in the laboratory reference frame
equals the velocity of the burnt matter flow taken at the flame tip location, uz

(
Ztip

)
, plus the flame

tip velocity with respect to this flow, ΘUDL(t). Accounting for Equation (7), Equation (8) can be
rewritten as:

dZtip

dt
=

(Θ − 1)
(1− α)

UDL(t)
H

Ztip(t) + ΘUDL(t). (9)

While both terms in the right-hand-side (RHS) of Equation (9) are, initially, of the same order, the first
(“flow”) term soon dominates over the second (“flame”) term, because the value Ztip(t) grows promptly
with time. With the initial condition Ztip(0) = 0, the solution to Equation (9) reads as:

Ztip =
Θ(1−α)H
(Θ−1)

{
exp

[
(Θ−1)
(1−α)H

C
Θ tn

]
− 1

}
=

Θ(1−α)H
(Θ−1)

{
exp

[
(Θ−1)
(1−α)H (kDLΘ)n−1

(
U f
n

)n
tn

]
− 1

} (10)
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Then, the velocity of the flame tip is given by:

dZtip

dt
= Utip = nCtn−1 exp

[
(Θ − 1)
(1− α)H

C
Θ

tn
]
. (11)

In the case of n = 1, the DL instability disappears and Equations (7)–(11) reproduce their
counterparts of [14]. We next recognize that the DL instability should not provide an increase in the
flame surface/velocity infinitely because the characteristic cross-sectional size of the flame eventually
stops growing. Specifically, the characteristic length scale of the flame radius does not grow further
after a flame skirt touches an obstacle in the case of point ignition. This instant tobs can be calculated
from a condition R f (tobs) = (1− α)H in Equation (5), namely:

tobs =
n

ΘU f

ΘHk1−n
DL

Θ − 1
ln

[
Θ

1 + α(Θ − 1)

]
1/n

(12)

after which the instantaneous global flame velocity UDL remains constant. The respective flame tip
position and the instantaneous global flame velocity at this instant are

Ztip(tobs) =
Θ(1− α)H
(Θ − 1)

( Θ
1 + α(Θ − 1)

)1/(1−α)

− 1

, (13)

UDL(tobs) =
nC
Θ

tn−1
obs . (14)

Then, instead of the time-dependent quantity UDL(t) in Equation (9), we have a constant value UDL(tobs)

dZtip

dt
=

(Θ − 1)
(1− α)

UDL(tobs)

H
Ztip + ΘUDL(tobs). (15)

Integrating Equation (15) for t > tobs, with the matching condition (13), we find

Ztip =
Θ(1− α)H
(Θ − 1)


[

Θ
1 + α(Θ − 1)

]1/(1−α)

exp
[
(Θ − 1)
(1− α)H

UDL(tobs)(t− tobs)

]
− 1

, (16)

dZtip

dt
= Utip = ΘUDL(tobs)

[
Θ

1 + α(Θ − 1)

]1/(1−α)

exp
[
(Θ − 1)
(1− α)H

UDL(tobs)(t− tobs)

]
. (17)

We also determine the flame run-up time, trud, which we evaluate as the time at which the flame
velocity reaches the speed of sound of the reactants, c0. Namely, Equation (17) gives the run-up time as:

trud = tobs +
(1− α)H

(Θ − 1)UDL(tobs)
ln

 c0

ΘUDL(tobs)

[
1 + α(Θ − 1)

Θ

]1/(1−α)
, (18)

with the corresponding run-up distance Zrud being

Zrud =
Θ(1− α)H
(Θ − 1)


[

Θ
1 + α(Θ − 1)

]1/(1−α)

exp
[
(Θ − 1)
(1− α)H

UDL(tobs)(trud − tobs)

]
− 1

 (19)
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2.2. Cylindrical Geometry

We next derive a similar formulation for the cylindrical geometry. Similarly, the passage radius is
taken as R = 1.05 m. Evolution of the flame skirt in an unobstructed section is described as [3]:

R f (t) =
ΘR
β

tanh
(
β

Θ
Ctn

R

)
, (20)

where β =
√

Θ(Θ − 1). The incompressible continuity equation in a cylindrical-axisymmetric
geometry reads:

1
r
∂
∂r

(rur) +
∂uz

∂z
= 0, (21)

with a symmetric boundary condition |ur| = −(Θ − 1)UDL(t) at r = ±(1− α)R. Assuming that the flow
in the unobstructed part of the passage is potential (and the shape of the flame front is not of significant
importance), the velocity profile reads:

(ur; uz) =
(Θ − 1)UDL(t)

(1− α)R
(−r; 2z). (22)

The propagation velocity of the flame tip with respect to burnt gas is given by:

dZtip

dt
= uz(Ztip) + ΘUDL(t) = 2

(Θ − 1)UDL(t)
(1− α)R

Ztip + ΘUDL(t). (23)

Furthermore, an additional increase in the flame shape occurs in a cylindrical geometry, because the
flame in an axisymmetric pocket expands with the radius as [15]:

R f ,o = (1− α)R + U f
[
t− t f (z)

]
, (24)

where t f (z) is the instant at which the fresh gas in the pocket between the obstacles at the position
z starts burning and R f ,o represents the radial coordinate of flame skirt in an obstructed passage.

Averaging the last term in Equation (24) as
〈
t− t f (z)

〉
= (1− α)R/2U f (Θ − 1) (see [15] for details),

we arrive at the following modified version of the evolution Equation (23) for Ztip:

dZtip

dt
= 2

(Θ − 1)UDL(t)
(1− α)R

(
1 +

1
2(Θ − 1)

)
Ztip + ΘUDL(t) =

(2Θ − 1)UDL(t)
(1− α)R

Ztip + ΘUDL(t). (25)

Integrating Equation (25) with the initial condition Ztip(0) = 0, we find the solution in the form:

Ztip =
Θ(1− α)R
(2Θ − 1)

{
exp

[
(2Θ − 1)
(1− α)R

C
Θ

tn
]
− 1

}
, (26)

with the velocity of the flame tip being

dZtip

dt
= Utip = nCtn−1 exp

[
(2Θ − 1)
(1− α)R

C
Θ

tn
]
. (27)

Again, as in the 2D case, if n = 1, then the DL instability disappears, and the present formulation
reproduces that of [15]. Furthermore, similar to the 2D formulation of the previous subsection,
the average-in-mean radial flame size does not grow after the instant tobs, which can be determined
from the condition R f (tobs) = (1− α)R in Equation (20), namely:



Fluids 2020, 5, 115 8 of 25

tobs =
n

ΘU f

ΘRk1−n
DL

2β
ln

[
Θ + (1− α)β
Θ − (1− α)β

]
1/n

. (28)

The respective flame tip position and the instantaneous global flame velocity at this instant are

Ztip(tobs) =
Θ(1− α)R
(2Θ − 1)


[

Θ + (1− α)β
Θ − (1− α)β

] (2Θ−1)
2(1−α)β

− 1

 (29)

UDL(tobs) =
nC
Θ

tn−1
obs . (30)

Then, instead of the time-dependent quantity UDL(t) in Equation (25), we have a constant
value UDL(tobs)

dZtip

dt
=

(2Θ − 1)UDL(tobs)

(1− α)H
+ ΘUDL(tobs). (31)

Integrating the Equation (31) for t > tobs, with the matching condition (29), we find

Ztip =
Θ(1− α)R
(2Θ − 1)


[

Θ + (1− α)β
Θ − (1− α)β

] (2Θ−1)
2(1−α)β

exp
[
(2Θ − 1)
(1− α)R

UDL(tobs)(t− tobs)

]
− 1

, (32)

dZtip

dt
= Utip = ΘUDL(tobs)

[
Θ + (1− α)β
Θ − (1− α)β

] (2Θ−1)
2(1−α)β

exp
[
(2Θ − 1)
(1− α)R

UDL(tobs)(t− tobs)

]
. (33)

Similar to the 2D analysis, from the condition Utip ∼ c0 the run-up time in the cylindrical geometry
can be evaluated from Equation (33) as:

trud = tobs +
(1− α)R

(2Θ − 1)UDL(tobs)
ln

 c0

ΘUDL(tobs)

[
Θ − (1− α)β
Θ + (1− α)β

] (2Θ−1)
2(1−α)β

, (34)

with the corresponding run-up distance

Zrud =
Θ(1− α)R
(2Θ − 1)


[

Θ + (1− α)β
Θ − (1− α)β

] (2Θ−1)
2(1−α)β

exp
[
(2Θ − 1)
(1− α)R

UDL(tobs)(trud − tobs)

]
− 1

. (35)

Finally, it is recognized that a number of effects remained beyond consideration in the present
work. For instance, only the DL flame instability is accounted for as the agent triggering unsteadiness,
without considering turbulence or other combustion instability modes such as the diffusional-thermal
(DT), Rayleigh–Taylor (RT), or Kevin–Helmholtz (KH) instabilities. In the future, these features could
be potentially incorporated into the analysis by replacing the quantities λDL (Equation (3)) and UDL(t)
(Equation (4)) by the respective DT/RT/KH/turbulence-induced parameters. In addition, analysis of
partly open obstructed duct, as in the pioneering Taylor–Bimson (TB) model [26], would be of interest.
However, all such extensions of our work will be performed elsewhere.

3. Results and Discussion

In this section, we present and discuss the results of an intensive parametric study performed.
Specifically, the first subsection is devoted to homogeneously-gaseous, methane-air and propane-air
burning with the thermal-chemical parameters (such as Θ and U f ) being the functions of the equivalence
ratio φ, as tabulated in Table 1; see also [3,24]. In the second subsection, the analysis is extended to a
gaseous-dusty environment.
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Table 1. The parameters for methane-air and propane-air combustion: the thermal expansion ratio, Θ,
the laminar burning velocity, U f , and the sound speed in the fuel mixture, c0, versus the equivalence
ratio, φ.

Methane-Air Fuel Mixtures

φ 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Θ ≡ ρu/ρb 5.54 6.11 6.65 7.12 7.48 7.55 7.43 7.28 7.09
U f (m/s) 0.089 0.169 0.254 0.325 0.371 0.383 0.345 0.250 0.137
c0 (m/s) 351.5 352.1 352.7 353.3 353.9 354.5 355.1 355.6 356.2

Propane-Air Fuel Mixtures

φ 0.63 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Θ ≡ ρu/ρb 6.04 6.56 7.15 7.66 8.02 8.08 8 7.88 7.74
U f (m/s) 0.147 0.217 0.303 0.374 0.418 0.429 0.399 0.322 0.226
c0 (m/s) 343 342.3 341.6 340.8 340.1 339.5 338.8 338.1 337.5

3.1. Gaseous Combustion

We start with Figure 2 presenting the time evolutions of the flame tip position, Ztip, Figure 2a,
and its velocity, Utip, Figure 2b, in a 2D geometry, for stoichiometric methane (CH4)-air burning,
as well as that of propane (C3H8)-air, for comparison, with various blockages α = 0, 1/3, 1/2, 2/3
employed. The horizontal dotted lines in Figure 2b show the speeds of sound for the methane-air,
354 m/s, and propane-air, 340 m/s, mixtures (Table 1). The case of no obstacles, α = 0, reproduces,
completely, the situation of “finger + DL” flame acceleration [3]. It is noted that this acceleration
is limited in time such that the flame would start decelerating when its skirt contacts a sidewall at
t ∼ 0.089 s and 0.072 s for methane-air and propane-air burning, respectively. It is also noted that by
these times, the propane-air flame overcomes the sound threshold 340 m/s, whereas the methane-air
flame stops at Utip ∼ 288 m/s. In contrast, in an obstructed channel, α > 0, acceleration is unlimited in
time until the flame approaches the speed of sound and can eventually trigger a detonation. We should
recall, at this point, that approaching the near-sonic values by the flame front will eventually break
the incompressible approach, adopted in Equation (6), and the entire present formulation. Indeed,
to describe the DDT stage accurately, we have to incorporate the impacts of gas compressibility into
the present analysis. This can be done by considering the formulation of Section 2 as the zeroth-order
approach in Ma→ 0 , and then extending it to account for the finite Ma according to the methodology
employed earlier for unobstructed [27] and obstructed [28] geometries. However, such a rigorous
extension of the present formulation to account for the compressibility effects requires a separate work
and is presented elsewhere [29]. It is also noticed that the analytical incompressible formulation of
Section 2 does not involve pressure as a parameter (except for the fact that pressure comes indirectly
through the thermal-chemical parameters such as U f or Θ, which are taken for ambient, atmospheric
pressure indeed in the present section). However, if the present formulation is extended to account for
a finite Ma, as discussed above, then pressure, its variations and gradient, are directly involved in a
revised formulation, with the ambient, atmospheric pressure imposed as the initial conditions and a
boundary condition in the open side of the passage.

Figure 3 is a counterpart of Figure 2 for the cylindrical geometry. It is seen that the flame accelerates
faster in this case. Opposite to the situation of α = 0 and methane-air burning in a 2D geometry, here,
at the same conditions, the flame would overcome the sound speed at t ∼ 0.058 s, i.e., slightly prior
the deceleration stage starting at t ∼ 0.0735 s. To demonstrate this more clearly, in Figure 4 we have
compared the results obtained in the 2D and cylindrical-axisymmetric geometries. Overall, Figures 2–4
show that the obstacles influence a coal mine fire scenario significantly, making acceleration potentially
unlimited in contrast to the case of no obstacles, which was considered in [3]. In addition, flame
acceleration in Figures 2–4 exceeds that of the original theories [14,15] by orders of magnitude, thereby
certifying that the DL instability facilitates obstacle-based acceleration.



Fluids 2020, 5, 115 10 of 25

Fluids 2020, 5, x 10 of 25 

  
(a) (b) 

Figure 2. Time evolution of the flame tip position ܼ௧௜௣ (a) and velocity ௧ܷ௜௣ (b) in a 2D geometry for 
stoichiometric (߶ = 1) methane (CH4)-air and propane (C3H8)-air burning with various blockage 
ratios ߙ = 0, 1 3,⁄ 1 2,⁄ 2 3⁄ . 

Figure 3 is a counterpart of Figure 2 for the cylindrical geometry. It is seen that the flame 
accelerates faster in this case. Opposite to the situation of ߙ = 0 and methane-air burning in a 2D 
geometry, here, at the same conditions, the flame would overcome the sound speed at 0.058~ݐ s, i.e., 
slightly prior the deceleration stage starting at 0.0735~ݐ s. To demonstrate this more clearly, in 
Figure 4 we have compared the results obtained in the 2D and cylindrical-axisymmetric geometries. 
Overall, Figures 2–4 show that the obstacles influence a coal mine fire scenario significantly, making 
acceleration potentially unlimited in contrast to the case of no obstacles, which was considered in [3]. 
In addition, flame acceleration in Figures 2–4 exceeds that of the original theories [14,15] by orders of 
magnitude, thereby certifying that the DL instability facilitates obstacle-based acceleration. 

(a) (b) 

Figure 3. Time evolution of the flame tip position ܼ௧௜௣  (a) and velocity ௧ܷ௜௣  (b) in a cylindrical-
axisymmetric geometry for stoichiometric CH4-air and C3H8-air burning with various blockage ratios, ߙ = 0, 1 3,⁄ 1 2,⁄ 2 3⁄ . 

Figure 2. Time evolution of the flame tip position Ztip (a) and velocity Utip (b) in a 2D geometry for
stoichiometric (φ = 1) methane (CH4)-air and propane (C3H8)-air burning with various blockage ratios
α = 0, 1/3, 1/2, 2/3.

Fluids 2020, 5, x 10 of 25 

  
(a) (b) 

Figure 2. Time evolution of the flame tip position ܼ௧௜௣ (a) and velocity ௧ܷ௜௣ (b) in a 2D geometry for 
stoichiometric (߶ = 1) methane (CH4)-air and propane (C3H8)-air burning with various blockage 
ratios ߙ = 0, 1 3,⁄ 1 2,⁄ 2 3⁄ . 

Figure 3 is a counterpart of Figure 2 for the cylindrical geometry. It is seen that the flame 
accelerates faster in this case. Opposite to the situation of ߙ = 0 and methane-air burning in a 2D 
geometry, here, at the same conditions, the flame would overcome the sound speed at 0.058~ݐ s, i.e., 
slightly prior the deceleration stage starting at 0.0735~ݐ s. To demonstrate this more clearly, in 
Figure 4 we have compared the results obtained in the 2D and cylindrical-axisymmetric geometries. 
Overall, Figures 2–4 show that the obstacles influence a coal mine fire scenario significantly, making 
acceleration potentially unlimited in contrast to the case of no obstacles, which was considered in [3]. 
In addition, flame acceleration in Figures 2–4 exceeds that of the original theories [14,15] by orders of 
magnitude, thereby certifying that the DL instability facilitates obstacle-based acceleration. 

(a) (b) 

Figure 3. Time evolution of the flame tip position ܼ௧௜௣  (a) and velocity ௧ܷ௜௣  (b) in a cylindrical-
axisymmetric geometry for stoichiometric CH4-air and C3H8-air burning with various blockage ratios, ߙ = 0, 1 3,⁄ 1 2,⁄ 2 3⁄ . 

Figure 3. Time evolution of the flame tip position Ztip (a) and velocity Utip (b) in a cylindrical-
axisymmetric geometry for stoichiometric CH4-air and C3H8-air burning with various blockage ratios,
α = 0, 1/3, 1/2, 2/3.Fluids 2020, 5, x 11 of 25 

(a) (b) 

Figure 4. Comparison of the 2D and cylindrical-axisymmetric geometries. Time evolution of the flame 
tip position ܼ௧௜௣ (a) and velocity ௧ܷ௜௣ (b) for stoichiometric CH4-air burning with various blockage 
ratios ߙ = 0, 1 3,⁄ 1 2,⁄ 2 3⁄ . 

It should be mentioned that everywhere except for Figure 5 we employed the exponent ݊ of 
Equation (1) to be the same as that in [3], i.e., ݊ = 1.4. This is in order to compare the present work 
with the “unobstructed burning accident” theories [3] (as well as with the original Bychkov theories 
[14,15], which did not consider the DL instability, thereby having ݊ = 1 by default). It is noted, in 
this respect, that an appropriate choice of the factor ݊ is not yet finalized. Indeed, while various 
experimental studies such as Gostintsev et al. [18], Bradley et al. [19], Molkov et al. [20], Kim et al. 
[21] have reported ݊ ≈ 1.5 , the Princeton experiments in a dual chamber at elevated pressures 
suggested ݊ = 1.3~1.33; see Jomaas et al. [22] and numerous references therein. The theoretical work 
[30] has provided an attempt to explain such a discrepancy between various experiments by the 
flame-acoustic coupling, which modifies ݊. Moreover, the quantity of ݊ can also be potentially 
modified by turbulence and other combustion instability modes such as Rayleigh–Taylor instability 
(assuming that the general trend of Equation (1) remains). 

We have considered ݊ in the range 4/3 ≤ ݊ ≤ 3/2 and scrutinized its impact on the present 
formulation. Specifically, Figure 5 compares the time evolutions of the flame tip positions (a, c) and 
velocities (b, d) for stoichiometric methane-air burning considering ݊ = 1.33, 1.4 and 1.5., and both 
2D (Figure 5a,b) and cylindrical (Figure 5c,d), geometries are studied. It is seen that the variations of ݊  impact the flame position, velocity and acceleration substantially, although the effect is 
quantitative but not qualitative. As expected, flame acceleration in the case of ݊ = 1.5 proceeds 
noticeably faster than for ݊ = 1.4, whereas a flame with ݊ = 1.33 accelerates noticeably slower as 
compared with that with ݊ = 1.4 (of course, provided that other combustion characteristics are kept 
the same). Nevertheless, without the final answer to the question about an appropriate choice for ݊, 
in the rest of this work we keep using its median value, ݊ = 1.4, the same as that in the unobstructed 
theories [3]. This allow us to make a comparison with [3], thereby separating the impact of obstacles.  
  

Figure 4. Comparison of the 2D and cylindrical-axisymmetric geometries. Time evolution of the flame
tip position Ztip (a) and velocity Utip (b) for stoichiometric CH4-air burning with various blockage
ratios α = 0, 1/3, 1/2, 2/3.



Fluids 2020, 5, 115 11 of 25

It should be mentioned that everywhere except for Figure 5 we employed the exponent n of
Equation (1) to be the same as that in [3], i.e., n = 1.4. This is in order to compare the present work with
the “unobstructed burning accident” theories [3] (as well as with the original Bychkov theories [14,15],
which did not consider the DL instability, thereby having n = 1 by default). It is noted, in this respect,
that an appropriate choice of the factor n is not yet finalized. Indeed, while various experimental
studies such as Gostintsev et al. [18], Bradley et al. [19], Molkov et al. [20], Kim et al. [21] have reported
n ≈ 1.5, the Princeton experiments in a dual chamber at elevated pressures suggested n = 1.3 ∼ 1.33;
see Jomaas et al. [22] and numerous references therein. The theoretical work [30] has provided an
attempt to explain such a discrepancy between various experiments by the flame-acoustic coupling,
which modifies n. Moreover, the quantity of n can also be potentially modified by turbulence and other
combustion instability modes such as Rayleigh–Taylor instability (assuming that the general trend of
Equation (1) remains).

We have considered n in the range 4/3 ≤ n ≤ 3/2 and scrutinized its impact on the present
formulation. Specifically, Figure 5 compares the time evolutions of the flame tip positions (a, c) and
velocities (b, d) for stoichiometric methane-air burning considering n = 1.33, 1.4 and 1.5, and both 2D
(Figure 5a,b) and cylindrical (Figure 5c,d), geometries are studied. It is seen that the variations of n
impact the flame position, velocity and acceleration substantially, although the effect is quantitative but
not qualitative. As expected, flame acceleration in the case of n = 1.5 proceeds noticeably faster than
for n = 1.4, whereas a flame with n = 1.33 accelerates noticeably slower as compared with that with
n = 1.4 (of course, provided that other combustion characteristics are kept the same). Nevertheless,
without the final answer to the question about an appropriate choice for n, in the rest of this work we
keep using its median value, n = 1.4, the same as that in the unobstructed theories [3]. This allow us to
make a comparison with [3], thereby separating the impact of obstacles.

Next, we extend the stoichiometric (φ = 1) gaseous methane-air combustion considered in
Figures 2–4 to the equivalence ratios in the range 0.6 ≤ φ ≤ 1.4, see Figures 6–9. In particular, Figure 6
presents the 2D configuration with various α = 0, 1/3, 1/2, 2/3 for φ = 0.8, 1, 1.2. It is seen that
a slightly fuel-lean flame with φ = 0.8 accelerates much slower than the φ ≥ 1 flames, especially
in the cases of α = 1/3 and 1/2. This is because of a much lower U f (and thereby higher L f and
lower kDL) inherent to such a slightly lean condition. However, it is recalled that flame acceleration
in an obstructed passage is unlimited in time, and therefore it can eventually trigger a detonation in
the case of sufficiently long passage and time. In particular, in this geometry, the approximate run-up
times until the detonation initiation for the φ = 0.8 flame are evaluated as trud ∼ 0.18 s for α = 1/3
and trud ∼ 0.1 s for α = 1/2. In the case of no obstacles, α = 0, no detonation is predicted for a φ = 0.8
flame in a 2D passage. Overall, among all equivalence ratios considered, the fastest flame acceleration
is observed for a slightly rich flame of φ = 1.1.

The flame will propagate slower if we deviate further from stoichiometry, as depicted in Figure 7,
showing the evolutions of the position and velocity of the φ = 0.6 and φ = 1.4 methane-air flames
(to avoid messy, we split the plots for various equivalence ratios between Figures 6 and 7). It is
also seen that the duration of acceleration of the highly lean/rich flames in Figure 7 exceeds that
of the stoichiometric or slightly lean/rich flames in Figure 6. In particular, without obstructions,
the φ = 0.6 flame stops accelerating after advancing 5.8 m and attaining the maximal velocity of
24.6 m/s, before the flame skirt contacts the wall. Obviously, this acceleration scenario does not
end thereafter, if the obstacles are added to the passage wall. In contrast, the flame front will keep
accelerating until its speed reaches the speed of sound and, eventually, the detonation is triggered. It is
noted that the obstacles facilitate flame acceleration as compared with that in an unobstructed passage,
and the impact of obstacles seems to be more important for the φ = 0.6 flames than for the φ = 1.4
flames: the lines for φ = 0.6 with various α go more widely than those for φ = 1.4. It is also seen in
Figure 7 that the rich flames, φ = 1.4, accelerate faster than the lean flames, φ = 0.6. With respect to
the latter, the situation of highly non-stoichiometric combustion in Figure 7 qualitatively resembles
slightly non-stoichiometric burning in Figure 6.
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Figure 6. Time evolution of the flame tip position Ztip (a) and velocity Utip (b) in a 2D geometry for
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Figure 7. Time evolution of the flame tip position Ztip (a) and velocity Utip (b) in a 2D geometry
for highly-lean (φ = 0.6) and highly-rich (φ = 1.4) CH4-air burning with various blockage ratios
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Figures 8 and 9 are the cylindrical-axisymmetric counterparts of Figures 6 and 7, respectively.
Here, most of the 2D results discussed above remain qualitatively the same, although, quantitatively,
the flames accelerate faster in the cylindrical passages. Here, the approximate run-up times until
the detonation initiation for the φ = 0.8 flames appear trud ∼ 0.1 s for α = 1/3 and trud ∼ 0.08 s for
α = 1/2. A key difference between the two geometries is that whereas no detonation is predicted for
the φ = 0.8 flame in a 2D case without obstacles, α = 0, in the cylindrical configuration with α = 0,
the φ = 0.8 methane-air flame was able to reach the speed of sound, 353 m/s, at t ∼ 0.12 s, thereby
making a detonation possible. Again, further away from stoichiometry, see Figure 9, the φ = 0.6 and
φ = 1.4 flames accelerate slower and the acceleration time lasts longer as compared to the φ = 0.8 ∼ 1.2
flames in Figure 8. For example, in the case of α = 0, the φ = 0.6 flame stops accelerating when
advancing 11.2 m and reaches the maximal velocity of 84.7 m/s at the instant when the flame skirt
contacts the side wall of the cylindrical passage. Similar to a 2D geometry, the highly rich flames
(φ = 1.4) accelerate faster than the highly lean flames (φ = 0.6) in the cylindrical case, and the impact
of obstacles seems to be more important for the φ = 0.6 flames (the lines corresponding to various
blockage ratios go more widely).
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geometry for lean (φ = 0.8), stoichiometric (φ = 1), and rich (φ = 1.2) CH4-air burning with various
blockage ratios α = 0, 1/3, 1/2, 2/3.
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Figure 9. Time evolution of the flame tip position Ztip (a) and velocity Utip (b) in a cylindrical-axisymmetric
geometry for highly-lean (φ = 0.6) and highly-rich (φ = 1.4) CH4-air burning with various blockage
ratios α = 0, 1/3, 1/2, 2/3.

Using Table 1, we next analyze the run-up times trud, Equations (18) and (34), and the respective
run-up distances Zrud, Equations (19) and (35), for the methane (CH4)-air and propane (C3H8)-air
flames of various equivalence ratios. Specifically, Figure 10 presents Zrud versus φ for various blockage
ratios, including the case of no obstacles, α = 0, in the 2D (Figure 10a) and cylindrical (Figure 10b)
geometries. Overall, Figure 10 agrees with our analysis above in that the shortest run-up distances are
observed for a slightly fuel-rich methane-air flame of φ ∼ 1.1. In the 2D case, Figure 10a, we have
Zrud ∼ 8.19 m, 7 m, and 5.46 m for α = 1/3, 1/2, and2/3, respectively. The case of α = 0 in a 2D
geometry is not relevant because a flame skirt contacts a sidewall and stops accelerating before the
DDT event for all φ considered, which is in line with the findings of [3]. For the lean or rich methane-air
flames, the run-up distances are much higher, namely, up to 80 m for φ = 0.6 and up to 35 m for
φ = 1.4 (still in the 2D geometry). In the cylindrical-axisymmetric configuration, for the fastest
methane-air flames with φ = 1.1 we found the run-up distances as small as Zrud ∼ 5.31 m, 4.11 m,
3.45 m, and 2.64 m for α = 1/3, 1/2, and2/3, respectively. For lean or rich methane-air burning,
the run-up distances are much higher in the cylindrical geometry, i.e., up to 40 m for φ = 0.6 and up to
18 m for φ = 1.4. It is noted that, unlike the 2D configuration, in the cylindrical-axisymmetric case,
the detonation is predicted for methane-air burning even in the case of α = 0, when the equivalence
ratio is in the range 0.8 ≤ φ ≤ 1.3, which generally agrees with [3]. Overall, for the same geometry,
α and φ, the run-up distances are dramatically shorter for the C3H8-air flames as compared with the
CH4-air flames; this would overcome the sound threshold for additional equivalence ratios in the case
of α = 0, being within the ranges 1 ≤ φ ≤ 1.2 and 0.7 ≤ φ ≤ 1.4 for the 2D and cylindrical-axisymmetric
geometries, respectively.
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We have compared our analytical predictions with the data available in the literature such as the 
experiments by [31] and computational simulations (FAST and ALLA) in [6]. The results are shown 
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Figure 10. The flame run-up distance versus the equivalence ratio φ for CH4-air and C3H8-air burning
at various blockage ratios: α = 0, 1/3, 1/2, 2/3 in a 2D (a) and cylindrical-axisymmetric (b) geometries.

3.2. Validation of Gaseous Formulation

We have compared our analytical predictions with the data available in the literature such as the
experiments by [31] and computational simulations (FAST and ALLA) in [6]. The results are shown in
Figures 11 and 12, where the flame tip velocity is shown versus its position, for various blockage ratios,
such that the linear trend represents exponential acceleration. The simulation results [6] are shown by
circles while the square markers present the experimental data [31]. The solid/dashed lines are devoted
to the theoretical predictions. We observe reasonably good quantitative agreement between the 2D
theory and the literature data. As for the cylindrical theory, our qualitative linear theoretical trend fits
that of the markers very well.
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3.3. Extension to Gaseous-Dusty Environment

Starting with homogeneously gaseous combustion in the previous subsection, we next extend our
analysis to a gaseous-dusty environment by using a modified version of the Seshadri formulation [10],
which expresses the laminar flame velocity as a function of local thermal-chemical properties of the gas
and dust particles (inert, such as sand; combustible, i.e., coal; and combined) in the form U f → Ud, f [3]:

Ud, f = U f

√
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where φs is the modified equivalence ratio of the gaseous-dusty-air mixture in the presence of
combustible dust particles:

φs =
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MCH4 and Mair are the respective molar masses; mm
CH4

, mm
air and mm

f uel are the original masses per unit
volume for a given equivalence ratio; CT = CP + CsnsVsρs/ρ is the specific heat of the whole mixture,
containing the components for the gas, CP, and dust particles, Cs; ρs is the density of a single dust
particle, while ρ = ρu + cs is that for the gaseous-dusty fuel-air mixture, with the density of the gas
ρu and the concentration of the dust particles cs; ns = (cs/ρs)/Vs is the number of particles per unit
volume, with Vs = 4πr3

s /3 being the volume of a single particle of radius rs; Ru = 8.314 J/(mol·K)

is the universal gas constant; Tu = 300 K is the reactants temperature and Tb is the adiabatic flame
temperature based on the purely methane-air equivalence ratio. Similar to [3], here, Tb is calculated as
a fifth-order polynomial function of the equivalence ratio φ [32]:

Tb = (−2.21× 104)φ5 + (8.042× 104)φ4 + (−1.171× 105)φ36pt
+(8.471× 104)φ2 + (−2.854× 104)φ+ 4.89× 103 (38)

valid in the range 0.6 ≤ φ ≤ 1.6 [32]. Knowing φs from Equation (37) and calculating a new flame
temperature for the dusty-gaseous mixture, T∗f , one can find Ud, f , Equation (36), to be employed in the
formulation in the previous section.
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We next employ the methodology of [3,11]. Unlike a combustible dust, an inert particle acts as a
heat sink because it absorbs some heat from the flame and reduces the flame temperature. For φ ≤ 1,
methane-air combustion, the global chemical reaction is described by the equation:

φCH4 + 2(O2 + 3.76N2)⇒ φCO2 + 2φH2O + 7.52N2 + 4(1−φ)O2 (39)

such that the heat release in the process of burning of φ moles of CH4 and 2× (1 + 3.76) = 9.52 moles
of air is given by [3,11]:

Qφ = (Tb − Tu)
∑

Cp nproduct, (40)

where nproduct is the number of moles of the burning products, which depends on the equivalence
ratio φ. Assuming that the entire heat released from the reaction is used to raise the temperature of the
mixture, Equation (40) can be modified into an expression for the volumetric heat release from CH4-air
combustion of a given φ as follows [3]:

Q =
[
(Tb − Tu)

∑
CP.nproduct

] nair

9.52
(
VCH4 + Vair

) . (41)

Next, it is assumed that a flame with particles releases the same amount of heat while it is also
influenced by the temperature rise of particles [11]. Then Equation (41) can be extended as [3]:

Q =
[(

T∗∗f − Tu

)∑
CP.nproduct

] nair

9.52
(
VCH4 + Vair

) + csCs

(
T∗∗f + Tu

)
+ Lv, (42)

where Lν = 0.01wν∆hCH4 [11] is the heat of gasification per unit volume. From the last equation,
the secondly revised flame temperature, T∗∗f , is calculated as:

T∗∗f =
Q− Lv

nair
9.52(VCH4+Vair)

∑
Cpnproduct + csCs

+ Tu. (43)

Finally, the effect of the combination of the inert and combustible dust particles are accounted for
by averaging the adiabatic flame temperature over those values associated with both effects separately,

T∗∗∗f =
(
T∗f + T∗∗f

)
/2. Similar to a combustible dust case, T∗∗f and T∗∗∗f are used in Equation (36) to find a

new laminar flame speed Ud, f for the inert and combined dust particle incorporations, respectively.
As of now, all the particles are assumed to be distributed uniformly inside a coal mining passage;
non-uniform dust distributions can be considered elsewhere, for instance, following the method of [33].

It is even a more interesting question with respect to what happens with the DL cutoff wavelength
λDL when we go from the gaseous to the gaseous-dusty environment. To be self-consistent with
the Seshadri formulation (which actually imitates a multi-phase system by an “effective” fluid with
modified properties, adjusted due to the presence of solid particles), here, λDL is considered to be
the quantity devoted to such an effective fluid. Consequently, λDL is given by the same formula,
Equation (3), although the variables in this formula (Θ, L f ) are adjusted due to the presence of
dust particles.

We can also provide another justification for this approach, namely, because λDL ∝ L f , if the flame
thickness does not change much when the dust particles are laden, then the value λDL, as well as the
onset and emergence of the DL instability would also not change much. Nevertheless, we recognize
that a rigorous analysis of the DL instability of gaseous-dusty flames would require a separate study,
with extra features to be incorporated. In particular, the transport processes such as heat transfer could
be modified in an intriguing way, in particular, due to radiation.
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Figure 13 depicts the situation of gaseous-dusty combustion, with the dust of concentration
cs = 50g/m3 and of dust particles radius rs = 75 µm in the 2D (a, b) and cylindrical-axisymmetric (c, d)
geometries. We employed the lean (φ = 0.7) methane-air fuel mixture and various blockage ratios α,
including the case of no obstacles, α = 0. It is seen that combined (combustible + inert) and inert
dust moderate flame acceleration, whereas combustible particles slightly facilitate flame propagation.
The effect of obstacles is also noticeable (as compare with an unobstructed passage).
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Next, we increase the dust concentration. Namely, in Figure 14, it is promoted to ܿ௦ = 120 g mଷ⁄  
keeping the same particle radius, ݎ௦ = 75 μm, and other characteristics and geometry, as in Figure 13. 
It is observed that combustible dust promotes flame acceleration, whereas inert dust and its 
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Figure 13. Time evolution of the flame tip position Ztip (a,c) and velocity Utip (b,d) in a 2D (a,b) and
cylindrical-axisymmetric (c,d) geometries for lean CH4-air burning of φ = 0.7, without and with
dust particles (combustible, inert, and combined) of particle radius rs = 75 µm and concentration
cs = 50 g/m3, for various blockage ratios, α = 0, 1/3, 2/3.
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Next, we increase the dust concentration. Namely, in Figure 14, it is promoted to cs = 120 g/m3

keeping the same particle radius, rs = 75µm, and other characteristics and geometry, as in Figure 13. It is
observed that combustible dust promotes flame acceleration, whereas inert dust and its combination
with combustible dust moderate the acceleration process for the particles of radius rs = 75 µm.
The impact of the blockage ratio is noticeable, especially in the cylindrical geometry. The flame velocity
in the case of inert particles and α = 2/3 is equivalent to the event of combustible dust but with no
obstacles, α = 0, for t ∼ 0.136 s; and thereafter the flame accelerates faster in the presence of inert
particles (Figure 14d). A relatively high concentration was also considered. Specifically, Figure 15
presents the case of cs = 250 g/m3, with the particle size rs = 75 µm, the same as in Figures 13 and 14.
This investigation reveals that if the dust particle size is kept constant while increasing the number
of particles (i.e., the concentration), the effect of particles becomes more important. This is observed
in Figures 13–15 that the flames in gaseous-dusty environments departs from the case of no dust
particles more widely as the concentration increases. Similar to the cases of cs = 50 and 120 g/m3,
the combustible particles promote flame acceleration, whereas the combined (combustible + inert) and
inert particles also suppress it in the situation of cs = 250 g/m3.
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Figure 14. Time evolution of the flame tip position Ztip (a,c) and velocity Utip (b,d) in a 2D (a,b) and
cylindrical-axisymmetric (c,d) geometries for lean CH4-air burning of φ = 0.7, without and with
dust particles (combustible, inert, and combined) of particle radius rs = 75 µm and concentration
cs = 120 g/m3, for various blockage ratios, α = 0, 1/3, 2/3.
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Figure 15. Time evolution of the flame tip position Ztip (a,c) and velocity Utip (b,d) in a 2D (a,b) and
cylindrical-axisymmetric (c,d) geometries for lean CH4-air burning of φ = 0.7, without and with
dust particles (combustible, inert, and combined) of particle radius rs = 75 µm and concentration
cs = 250 g/m3, for various blockage ratios, α = 0, 1/3, 2/3.

Figure 16a–d is the counterpart of Figure 14a–d, respectively, for a smaller particle radius,
rs = 10 µm. It is observed, here, that smaller particles have a stronger impact on flame propagation.
In the 2D geometry, while the flame velocities did not exceed 38 m/s for the particles of size rs = 75 µm,
in the case of rs = 10 µm, the sound threshold of 352 m/s for φ = 0.7 methane-air burning was reached
in the combustible coal gaseous-dusty environment with α = 2/3 at the time instant t ∼ 0.114 s
(Figure 16b). In the cylindrical-axisymmetric geometry, the coal particles deviate noticeably larger
from the case of no particles (Figure 16c,d). In fact, a particle type appears to be the most influential
factor for flame acceleration in the obstructed passages. Namely, in any case of combustible dust
present in any obstructed passages considered, 1/3 ≤ α ≤ 2/3, we obtained faster acceleration than
in both respective cases of other dusts and no dust (Figure 16d). In contrast to the rs = 75 µm case
in Figure 14, the combined combustible-inert particles promoted flame acceleration in the case of
rs = 10 µm, Figure 16. These findings show that the impact of heat release on flame acceleration in a
coal mining passage is significant, i.e., it facilitates the fire process, and, furthermore, it dominates over
the impact of a heat sink when the particles are smaller. As for the inert particles, similar to the case of
rs = 75 µm in Figure 14, they also suppress flame acceleration for rs = 10 µm. The aforementioned
effects of all particles, i.e., combustible, inert, and combined, and particle sizes are found to grow with
the blockage ratio α.
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Figure 16. Time evolution of the flame tip position Ztip (a,b) and velocity Utip (c,d) in a 2D (a,b)
and cylindrical-axisymmetric (c,d) geometries for lean CH4-air burning of φ = 0.7 with and without
dust particles (combustible, inert, and combined) of particle radius rs = 10 µm and concentration
cs = 120 g/m3, for various blockage ratios, α = 0, 1/3, 2/3.

4. Conclusions

Therefore, we have undertaken a step towards a predictive scenario of a burning accident
in obstructed coal mining passage by developing a theoretical formulation, which combines the
mechanism of flame acceleration in obstructed pipes [14,15] with that due to the DL instability [5].
Specifically, the 2D planar and cylindrical-axisymmetric geometries were considered, along with an
assumption of incompressible flow for various passage configurations and the compositions of the
combustible premixture. The newly identified flame propagation scenario was studied in terms of
the evolution of the flame tip position Ztip and its velocity (in the laboratory reference frame) Utip.
The role of the obstacles, as well as the DL instability, on a fire scenario are found to be significant,
with a stronger effect observed in the cylindrical geometry. Closer to the stoichiometric condition,
a flame propagates and accelerates faster; and acceleration is also promoted with an increase in the
blockage ratio α. Starting with homogeneously gaseous combustion, the analysis was subsequently
extended to incorporate dust particles in the passage. Namely, inert and combustible dust, as well as
their combination, were considered. We found that the combustible dust particles of radii 10 ∼ 75 µm
facilitate flame acceleration, while acceleration is moderated by the inert particles. The effect of
particle size is significant in a manner that smaller particles lead to faster flame acceleration. While a
combination of combustible and inert dust, of dust particle radius rs = 75 µm, moderates flame
acceleration as compared with purely gaseous combustion, a combustible-inert combination of the
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particles of smaller radius, rs = 10 µm, promotes flame acceleration. The effect of a type and size of the
particles increases with the blockage ratio.
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Nomenclature

R f radius of a global spherical expanding flame front
C constant defined in Equation (1)
t time
n Darrieus–Landau instability exponent
kDL Darrieus–Landau cutoff wavenumber
U f laminar flame velocity
ρ f uel density of fuel mixture
ρburnt density of burnt gas
L f flame thickness
Dth thermal diffusivity coefficient
UDL instantaneous radial flame velocity
H half-width of a two-dimensional (2D) passage
R radius of a cylindrical passage
∆z obstacle spacing
x, r radial direction
z axial direction
R f (t) flame “skirt”
∆z obstacle spacing
ux, ur radial velocity
uz axial velocity
Ztip flame tip position
Utip flame tip velocity
tobs the time flame skirt touches an obstacle
R f (tobs) flame “skirt” radius at tobs
Ztip(tobs) flame tip position at tobs
UDL(tobs) global flame velocity at tobs
trud flame run-up time
c0 speed of sound
Zrud flame run-up distance
R f ,o flame “skirt” in [15]
t f (z) the time instant at which the fresh gas between obstacles at the position z starts burning
Ud, f laminar flame velocity in an “effective” gaseous-dusty environment
Cp specific heat of gaseous air-fuel mixture
CT entire specific heat
T f flame temperature with particles
Tb adiabatic flame temperature based on purely methane-air equivalence ratio
Tu unburnt gas temperature
E activation energy
Ru gas constant
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M molar masses
m original masses
Cs specific heat of dust particles
ns number of particles per unit volume
Vs volume of a single particle
ρs density of dust
ρ density of gaseous-dusty fuel-air mixture
ρu density of gas
cs concentration of the particles
rs radius of a particle
Q volumetric heat release
Lv heat of gasification per unit volume
nair number of moles of air per unit volume
VCH4 volume of methane
Vair volume of air
nproduct number of moles of the burning products
α blockage ratio
φ equivalence ratio
λDL Darrieus–Landau critical wavelength
Θ ≡ ρu/ρb thermal expansion ratio
β defined as

√
Θ(Θ − 1)

φs modified equivalence ratio in the gaseous-dusty air mixture
f flame
DL Darrieus–Landau
f uel fuel mixture
burnt burnt gas
th thermal
tip tip
obs obstacle
rud run-up distance
0 initial
f , o flame in obstructed passage
d dust
s particle
T total
b burnt
u unburnt
act actual
st stoichiometric
product product
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