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Abstract: The main objective of this study is to develop a semi-analytical formulation for the radiation
problem of a fully immersed spheroid in a liquid field of infinite depth. The term “spheroid” refers
herein to the oblate geometry of arbitrary eccentricity and to the axisymmetric case, where the axis of
symmetry is normal to the free surface. The proposed numerical approach is based on the method of
image singularities, and it enables the accurate and fast calculation of the hydrodynamic coefficients
for the translational degrees of freedom of the oblate spheroid. The excellent agreement of the results,
with those of other investigators for the limiting case of the sphere and with those obtained using a
respected boundary integral equation code, demonstrates the accuracy of the proposed methodology.
Finally, extensive calculations are presented, illustrating the direct impact of the immersion depth
and the slenderness of the spheroid on the hydrodynamic coefficients.
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1. Introduction

The interaction of surface waves with submerged spheres and spheroids presents a characteristic
problem in the field of hydrodynamics. Considering the case of perfectly symmetric spherical
geometries, Linton [1], for example, studied the diffraction and the radiation problem of a submerged
sphere in waters of finite depth, while Wu et al. [2] extended Linton’s work by including the calculation
of drift forces. Rahman [3] studied the exciting forces of a submerged sphere, and estimated the
wave elevation above the sphere due to monochromatic incident waves. All these studies employed
Thorn’s [4] multipole expansions, in order to expand the potential into series of spherical harmonics.
On the other hand, in the case of spheroidal geometries, most existing studies focus on prolate spheroids,
while relevant analytical solutions have been developed by utilizing the so-called system of image
singularities. Briefly, the system of image singularities of an arbitrary exterior potential field within a
spheroid allows the expression of the fundamental solution of the Laplace equation, i.e., the sources, in
terms of spheroidal harmonics. Accordingly, it enables the implementation of a full hydrodynamic
analysis based explicitly on the associated coordinate system. The analysis sought is performed by
constructing the involved velocity potentials in terms of spheroidal harmonics.

The theorem on the system of image singularities for a spheroidal geometry, and the associated
homonymous method, were first developed, and employed, by Havelock [5], who studied the moment,
due to surface waves, applied on a fully submerged, moving prolate spheroid. Havelock [6] used
the same method to investigate both the forces and the moments acting on a submerged moving
prolate spheroid as the body is subjected to regular waves. In both cases, he studied, without a proof
of the relevant theorem, the non-axisymmetric case, where the axis of symmetry of the spheroid is
parallel to the undisturbed free surface. The proof of the theorem for a prolate spheroid was later
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given by Miloh [7]. Subsequently, this theorem was employed by Chatjigeorgiou and Miloh [8–12],
who investigated the diffraction, radiation and the wave resistance problems, for immersed prolate
spheroids and for the non-axisymmetric case (symmetrical axis parallel to the undisturbed free surface).
It should be noted that the works of Chatjigeorgiou and Miloh [8–12] preceded the studies of Wu and
Eatock Taylor [13,14], who based their research on a Fredholm integral equation of the second type,
involving a source/sink distribution over the surface of the spheroid. In terms of the “symmetric”
placement of a prolate spheroid relative to the free surface, i.e., symmetrical axis normal to the free
surface, it appears that the only relevant study is that of Chatjigeorgiou [15], who, however, started
from Thorn’s [4] multipoles in spherical coordinates, and developed rigorous addition theorems to
transform the governing expansions into prolate spheroidal coordinates.

The relevant theorems, associated with the system of image singularities for an oblate geometry,
were first reported in the book of Chatjigeorgiou [16]. Chatjigeorgiou et al. [17] utilized for the first
time the method of image singularities in oblate geometry, to enable the solution of the diffraction
problem for an immersed oblate spheroid in infinite water depth. The axisymmetric placement of
the spheroid (symmetrical axis normal to the free surface) was considered. Indeed, the diffraction
problem provides the path for the solution of the radiation problem, the case that is considered
herein. The present investigation is a follow-up of the study conducted in [17], which, contrary to [17],
determines and discusses the variation of the most important hydrodynamic parameters of added
masses and hydrodynamic damping. The same formulation can be effectively extended to finite water
depth as well.

A question which easily arises is whether the formulation(s) developed and analyzed herein
can be immediately extended to prolate geometries with symmetrical placement relative to the
undisturbed free surface. The answer cannot be strict and unconditional, given the different starting
points of the existing (and reported) “image singularity systems” in prolate and oblate geometries.
The former (e.g., [7]) rely on the uniform distribution of singularities along the major axis of the spheroid
between the two foci, while the latter rely on the distribution of singularities on the fundamental
disk of the oblate spheroid (e.g., [16]). The formulations are not by default equivalent, while the
verification that they could coincide with only simple transformations would require some further
mathematical elaborations.

The present paper focuses on the semi-analytical formulation of the radiation problem, for a fully
submerged axisymmetric oblate spheroid in a liquid field of infinite water depth. The study employs
the theorem of image singularities connected with the concerned geometry. The body is assumed to
undergo small amplitude oscillations in all three translational modes of motion, while the rotational
modes are considered ideally restricted. The solution of the problem relies on the use of the governing
Green’s function, and its transformation into oblate spheroidal coordinates via the evaluation of the
Green’s function multipoles. The velocity potentials for the radiation problem are expressed in a
series of multipoles, which are appropriately truncated; thus, a semi-analytical formulation of the
examined problem is realized. Simple formulas are, finally, derived, enabling the calculation of the
hydrodynamic coefficients for the translational modes of motion. For demonstrating the reliability,
the accuracy, and the robustness of the developed method, results are, initially, compared with those
of Wu [18] for the limiting case of a sphere, and with those obtained using the respected Boundary
Integral Equation (BIEM) code WAMIT [19]. Results are also presented focusing on the effect of the
immersion depth and the slenderness of the spheroid on the hydrodynamic coefficients. Although the
proposed method requires several mathematical processes/computations, its value is significant since
it provides results in practically ‘no time’, and thus, it is characterized by computational efficiency.
Moreover, the proposed numerical formulation can be extended for calculating the hydrodynamic
coefficients of a semi-immersed oblate or arrays of oblates (fully submerged or semi-immersed). This is
very important, as the oblate spheroid represents a promising configuration/shape for wave energy
converters [20].
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This study is organized as follows: In Section 2, the oblate spheroidal coordinate system, utilized
throughout this work, is presented. Section 3 describes the examined boundary value problem, while in
Section 4 we derive the formulas of the radiation velocity potentials. Section 5 includes the expressions
of the added mass and the radiation damping coefficients. In Section 6 the results of this paper are
presented and discussed in detail, while, finally, in Section 7 the main conclusions of the present
investigation are cited along with suggestions for future work.

2. The Oblate Spheroidal Coordinate System

We study the axisymmetric configuration of the spheroid. The term “axisymmetric” refers to the
case where the symmetrical axis of the spheroid is normal to the free surface. The center of the spheroid
is assumed to be immersed at a distance f below the undisturbed free surface. A Cartesian (global)
coordinate system (x, y, z) is assumed fixed on the undisturbed free surface, with its vertical z axis
pointing in the gravity direction. The origin of the local Cartesian system (x, y, z∗) is taken fixed at the
center of the body, with the vertical z∗ axis pointing, again, downwards, so that z = z∗ + f (Figure 1).
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The transformation formulas between local Cartesian coordinates and oblate spheroidal
coordinates are (e.g., [21]):

x = c cosh u sinθ cosψ (1)

y = c cosh u sinθ sinψ (2)

z∗ = csinhu cosθ (3)

where 0 ≤ u ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π. Moreover, c denotes the semi focal distance given by
c =

√
(a2 − b2), while a, b correspond to the semi-major and the semi-minor axis of the spheroid,

respectively (Figure 1b).
Employing Nicolson notations [22], namely, ξ = sinhu and µ = cosθ, the transformation formulas

can be written as:
x = c

√
1 + ξ2

√
1− µ2 cosψ (4)

y = c
√

1 + ξ2
√

1− µ2 sinψ (5)

z∗ = cξµ (6)
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3. The Boundary Value Problem

The present study deals with the radiation problem of an oblate spheroid, immersed in a liquid field
of infinite water depth. The body is assumed to undergo small amplitude oscillations q j, in surge ( j = 1),
sway, ( j = 2) and heave ( j = 3). Within the realm of the linear potential theory [23], the resulting velocity
and pressure fields can be described in terms of the velocity potential Φ(x, y, z, t) = Re

[
φ(x, y, z)e−iωt

]
,

where t is the time, ω denotes the circular frequency of body’s oscillation, i =
√
−1 and φ(x, y, z) is the

spatial complex total radiation potential, which is expressed as:

φ = −iω
3∑

j=1

q jφ j (7)

In Equation (7) φ j, j = 1, . . . , 3, correspond to the unit-amplitude radiation potentials.
The aforementioned potentials φ j satisfy, in the entire infinite liquid domain, the Laplace equation

given by:
∇

2φ j = 0 (8)

Moreover, the radiation potentials satisfy the following linearized boundary conditions on the
free surface (Equation (9)) and on the wetted surface of the submerged body (Equation (10)):

Kφ j +
∂φ j

∂z
= 0, z = 0 (9)

∂φ j

∂n
= n j (10)

where K = ω2/g, g is the gravitational acceleration and n = (n1, n2, n3) is the unit vector normal to the
boundary of the body.

In the axisymmetric configuration, the surge motions are equivalent to the sway motions, and
accordingly only the j = 1 and 3 modes are investigated. The unit normals n1 and n3, expressed in
oblate spheroidal coordinates, will read:

(n1, n3) =

ξ0
(
1− µ2

)1/2
cosψ(

ξ2
0 + µ2

)1/2
,

µ
(
ξ2

0 + 1
)1/2

(
ξ2

0 + µ2
)1/2

 (11)

where ξ0 = tanh−1(b/a) with a = c cosh ξ0 and b = csinhξ0.
Except from the above equations, the unit radiation velocity potentials must be zero at infinity

away from the free surface (i.e., φ j → 0, z→∞ ). The overall boundary value problem is completed
taking into account the radiation condition for outgoing waves at infinity.

4. Formulation of the Radiation Velocity Potentials

The components φ j, j = 1 and 3 of the total radiation potential will be formulated by utilizing the
underlying Green’s function, connected with the aforementioned boundary value problem. The Green’s
function (see e.g., [8–12]) can be written as:

G(x− x′, y− y′, z− f )
= 1√

(x−x′)2+(y−y′)2+(z− f )2

−
1

2π

∞∫
0

π∫
−π

K+k
K−k e−k(z+ f )eik[(x−x′)cosa+(y−y′)sina]dadk

(12)
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where (x, y, z− f ) are the coordinates of the source point and (x′, y′, 0) are the coordinates of the
field point.

Clearly, Equation (12) satisfies the Laplace equation (Equation (8)), the free-surface condition
(Equation (9)) and the far-field condition as z→∞ . Nevertheless, the Green’s function does not satisfy
the radiation condition for outgoing waves at infinity. This task is accomplished by interpreting the
infinite improper integral as a Cauchy principal value integral, namely, by introducing in Equation (12)
the following notations [16]:

∞∫
0

F(k)
K − k

dk = PV

∞∫
0

F(k)
K − k

dk− iπF(K) (13)

where PV denotes the Cauchy principal value integral.
The Green’s function (Equation (12)) must be properly elaborated in order to be expanded in

multipoles. The multipoles [4] of the Green’s function are obtained by employing the image singularity
system for an oblate spheroid. The aforementioned theorem for the axisymmetric configuration of an
oblate spheroid is expressed by the following formula [16]:

Pm
n (µ)Q

m
n (iξ)cosmψ =

(−1)m

2πPm
n (i0)

(n + m)!
(n−m)!

2π∫
0

1∫
0

Pm
n (µ

′)cosmψ′

(x− x′)2 + (y− y′)2 + z2
dµ′dψ′ (14)

where Pm
n and Qm

n are the nth degree and mth order associate Legendre functions, of the first and
the second kind, respectively. In the succeeding discussion, the orientation of the local vertical z∗

axis (Figure 1b) will be reversed, and it will be associated with the global z axis with the relationship
z = f − z∗.

Substituting Equation (14) into Equation (12), the multipoles of the Green’s function (auxiliary
potentials), coined herein Gm

n , take the form:

Gm
n (x− x′, y− y′, z)

= Pm
n (µ)Qm

n (iξ)cosmψ− 1
(2π)2

(−1)m

Pm
n (i0)

(n+m)!
(n−m)!

×

∞∫
0

π∫
−π

2π∫
0

1∫
0

K+k
K−k e−k(z+ f )eik[(x−x′)cosa+(y−y′)sina]Pm

n (µ
′)cosmψ′dadkdµ′dψ′

(15)

It is evident that Equation (15) must be elaborated further, in order to express the second term of
the equation into oblate spheroidal coordinates. This is achieved by employing the following expansion
of the exponential term into spheroidal coordinates [16]:

ekz∗+ik(xcosa+ysina) =
∞∑

s=0

s∑
t=0

(
At

s cos tψ+ Bt
s sin tψ

)
Pt

s(µ)P
t
s(iξ0) (16)

where (
At

s
Bt

s

)
= (−1)sis−tεt

(s− t)!
(s + t)!

(2s + 1)

√
π

2kc
Js+1/2(kc)

(
costa
sinta

)
(17)

and Jλ denotes the Bessel function of the first kind with fractional order λ.
Therefore, the final expression for the auxiliary multipole expansions of the Green’s function for

the oblate spheroid reads:

Gm
n (iξ,µ,ψ) = Pm

n (µ)Q
m
n (iξ) cos mψ+

∞∑
s=0

s∑
t=0

Cmt
ns Pm

n (µ)P
m
n (iξ) cos tψ (18)
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with
Cmt

ns = − 1
4c (−1)n+sin+s−m−t 2π

εm
εt

(n+m)!
(n−m)!

(s−t)!
(s+t)! (2s + 1)

×δtm(PV
∞∫
0

K+k
K−κ e−2k f 1

k Jn+1/2(kc)Js+1/2(kc)dk

−2πie−2K f Jn+1/2(Kc)Js+1/2(Kc)
) (19)

In Equation (19), εm is the Newman symbol (ε0 = 2, εm = 1 for = 1, 2, 3, . . .), δtm is the Kronecker’s
delta function, and PV denotes the Cauchy principal value integral.

Having defined the auxiliary multipole expansions of the Green’s function, Gm
n , the jth velocity

potential is immediately obtained from:

φ j =
∞∑

n=0

n∑
m=0

Fm
n Gm

n (20)

where Fm
n are unknown coefficients to be obtained by employing the body boundary condition.

The final form for each velocity potential j = 1 and 3 will read:

φ j =
∞∑

n=0

n∑
m=0

Fm
n Pm

n (µ)Q
m
n (iξ) cos mψ+

∞∑
n=0

n∑
m=0

Fm
n

∞∑
s=0

s∑
t=0

Cmt
ns Pt

s(µ)P
t
s(iξ) cos tψ (21)

The velocity potentials are fully determined by calculating the coefficients Fm
n . To achieve this goal,

the body boundary condition (Equation (10)) is applied for each mode of oscillation, using Equation (21)
as the expression for the velocity potential. The body conditions for the radiation problem read:

∂φ1

∂ξ

∣∣∣∣∣∣
ξ=ξ0

= n1 = −bP1
1(µ) cosψ (22)

∂φ3

∂ξ

∣∣∣∣∣∣
ξ=ξ0

= n3 = aP0
1(µ) (23)

Taking into account Equations (22) and (23), and making use of the orthogonality properties of
the trigonometric and the associated Legendre functions (see e.g., [16]), the following linear system
of equations are obtained to be solved, using standard matrix techniques, in terms of the expansion
coefficients Fm

n :

Fr
l +

∞∑
n=0

n∑
m=0

ar
l F

m
n Cmr

nl = i
b
a
δ1rδ1l
.

Q
r
l (iξ0)

(24)

Fr
l +

∞∑
n=0

n∑
m=0

ar
l F

m
n Cmr

nl = −i
δorδ1l
.

Q
r
l (iξ0)

(25)

where ar
l =

.
P

r
l (iξ0)/

.
Q

r
l (iξ0) and the upper dot denotes differentiation with respect to the argument.

5. Hydrodynamic Coefficients in Surge and Heave

Having calculated the radiation potentials, the sought hydrodynamic parameters are obtained via
the surface integral:

µi j −
i
ω
λi j = −ρ

∫
S0

φin jdS (26)

where µi j and λi j, i, j = 1 and 3 denote the added mass and hydrodynamic damping coefficients,
respectively, while ρ is the water density. The integration is performed on the wetted surface S0 of
the spheroid.



Fluids 2020, 5, 75 7 of 11

The differential area, dS, in spheroidal coordinates for an oblate spheroid is written as:

dS = a
(
ξ2

0 + µ2
)1/2

dµdψ (27)

Substituting the radiation potentials (Equation (21)) and the unit normals (Equation (11)) into
Equation (26), one gets, after evaluating the surface integral over S0, the following:

µ11 −
i
ω
λ11 =

1

a
.
P

1
1(iξ0)

 i b P1
1(iξ0)

a
+

2F1
1

ξ2
0 + 1

 (28)

µ33 −
i
ω
λ33 =

1

b
.
P

0
1(iξ0)

i P0
1(iξ0) +

F0
1

ξ2
0 + 1

 (29)

It is recalled that for the axisymmetric case of the spheroid, µ11 = µ22 and λ11 = λ22. Clearly,
the off-diagonal terms µ31, µ13, λ31, λ13 are zero. In the following section, the added mass and
hydrodynamic damping coefficients are normalized by 4/3πρba2 and 4/3πρba2ω respectively, unless
otherwise mentioned.

6. Results and Discussion

For demonstrating the accuracy of the developed semi-analytical formulation, results of the
present method are compared against the results of Wu [18] for the limiting case of a sphere, and against
calculations obtained using the code WAMIT [19], which is based on the well-known Boundary Integral
Equation Method (BIEM). In the case of Wu [18], who studied the diffraction and the radiation problem
of a single and a group of immersed spheres, the oblate spheroid is simulated as a sphere assuming
a→ b , and comparisons are made for an immersion depth f equal to 1.5a. The corresponding results
are shown in Figure 2, where the added mass and the damping coefficients are normalized by 4/3πρa3

and 4/3πρa3ω respectively. The abbreviation ISS, which stands for Image Singularity System, is used
to denote the present analytical formulation. In the case of WAMIT [19], comparisons are made for an
oblate spheroid of slenderness a/b = 1.25, and for two immersion depths, f , equal to 1.01a and 1.5a.
The immersion of f = 1.01a has been selected so that the body touches the free surface. The relevant
results are shown in Figures 3 and 4. From Figures 2–4, it is immediately apparent that the results of the
present method demonstrate an excellent agreement with both the results of Wu [18] for the limiting
case of the sphere (average relative error smaller than 0.1%), as well as with the results obtained using
WAMIT [19].
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Figure 3. Normalized hydrodynamic coefficients in surge for a/b = 1.25: (a) Surge added mass;
(b) Surge hydrodynamic damping.
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The numerical computations of Figures 2–4 have been realized by utilizing n = 5 modes (in the
semi-analytical formulation), which was proven sufficient to achieve a convergence up to the fifth
decimal digit (Tables 1 and 2).

Table 1. Convergence sequence of the normalized surge added mass and damping coefficients for
several mode numbers (Oblate spheroid with a/b = 1.25 and immersion f = 1.5a ).

Ka
n = 2 n = 5 n = 8

µ11 λ11 µ11 λ11 µ11 λ11

0.1 0.45812 0.00043 0.45814 0.00043 0.45814 0.00043
0.2 0.47086 0.00797 0.47090 0.00797 0.47090 0.00797
0.3 0.47923 0.02498 0.47929 0.02499 0.47929 0.02499
0.4 0.47986 0.03533 0.47994 0.03535 0.47994 0.03535
0.5 0.47356 0.05548 0.47367 0.05555 0.47367 0.05555
0.6 0.46727 0.06394 0.46739 0.06405 0.46739 0.06405
0.7 0.45089 0.07578 0.45099 0.07599 0.45099 0.07599
0.8 0.44182 0.07898 0.44190 0.07924 0.44190 0.07924
1.0 0.41590 0.07908 0.41579 0.07943 0.41579 0.07943
2.0 0.37901 0.02195 0.37876 0.02154 0.37876 0.02154
3.0 0.39457 0.00249 0.39477 0.00231 0.39477 0.00231
4.0 0.40317 0.00016 0.40330 0.00014 0.40330 0.00014
5.0 0.40691 0.00001 0.40698 0.00001 0.40698 0.00001
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Table 2. Convergence sequence of the normalized heave added mass and damping coefficients for
several mode numbers (Oblate spheroid with a/b = 1.25 and immersion f = 1.5a ).

Ka
n = 2 n = 5 n = 8

µ33 λ33 µ33 λ33 µ33 λ33

0.1 0.72471 0.00371 0.7248 0.00371 0.7248 0.00371
0.2 0.75182 0.02264 0.75196 0.02265 0.75196 0.02265
0.3 0.77128 0.05792 0.77148 0.05795 0.77148 0.05795
0.4 0.77458 0.10229 0.77487 0.10239 0.77487 0.10239
0.5 0.75989 0.14589 0.76026 0.14613 0.76026 0.14613
0.6 0.73095 0.18078 0.73134 0.18123 0.73134 0.18123
0.7 0.69406 0.20307 0.69437 0.20377 0.69437 0.20377
0.8 0.65526 0.2126 0.65537 0.21352 0.65537 0.21352
0.9 0.61886 0.21142 0.61866 0.21249 0.61866 0.21249
1.0 0.58728 0.2024 0.58673 0.20349 0.58673 0.20349
2.0 0.51126 0.05129 0.51061 0.05002 0.51061 0.05002
3.0 0.55043 0.00593 0.55104 0.0054 0.55103 0.00539
4.0 0.57154 0.0004 0.57194 0.00033 0.57194 0.00033
5.0 0.58083 0.00002 0.58107 0.00001 0.58107 0.00001

Figures 5 and 6 show the effect of the immersion depth on the surge and heave hydrodynamic
coefficients respectively, for an oblate spheroid with slenderness ratio a/b = 1.1. More specifically,
three different immersion depths, f , are examined equal to 1.01a, 1.5a and 2a. It can be easily observed
that the increase of f leads to a smoother variation of the surge (Figure 5a) and the heave (Figure 6a)
added mass in the examined Ka interval. As expected, by increasing the distance between the
spheroid and the undisturbed free surface, the surge and the heave hydrodynamic damping coefficients
(Figures 5b and 6b, respectively) decrease. In general, as f increases, both added mass and damping
tend to become frequency-independent hydrodynamic quantities. Analogous conclusions can be
drawn for a/b = 1.25 (Figures 3 and 4). It is also interesting to note that, for a given immersion depth,
the increase of the slenderness of the spheroid decreases the damping coefficients, while the added
mass exhibits a reversed behavior. This can be demonstrated by comparing the curves of f = 1.01a and
f = 1.5a, in Figures 3 and 4 (a/b = 1.25), with the corresponding ones of Figures 5 and 6 (a/b = 1.1).
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7. Conclusions

In the present paper, a semi-analytical formulation has been developed for solving the radiation
problem of a fully submerged oblate spheroid in a liquid field of infinite depth. The placement of
the examined body is “axisymmetric”; namely, the symmetrical axis is normal to the free surface.
The radiation problem is solved for all translational degrees of freedom, and formulas for calculating
the corresponding hydrodynamic coefficients are derived. The employed method is based on the
expansion of the governing Green’s function into spheroidal harmonics, using the method of ultimate
image singularities. The excellent agreement of results with those of Wu [18] for the limiting case of a
sphere, and with those obtained using a well-known BIEM code, demonstrates the accuracy, reliability,
and robustness of the developed semi-analytical solution.

Moreover, the results of the present paper illustrated that the immersion depth and the slenderness
of the oblate spheroid have a direct impact on the hydrodynamic coefficients. Specifically, for a given
slenderness, the placement of the spheroid at a greater distance from the free surface leads to a more
smooth variation of the added mass coefficients, as well as to a reduction of the damping coefficients.
The increase of the slenderness of the spheroid for a given immersion depth affects the hydrodynamic
coefficients in a similar manner, i.e., the damping coefficient decreases, and the added mass exhibits a
decrease of the absolute difference between the observed maximum and minimum values.

The present numerical formulation, combined with the corresponding solution of the diffraction
problem [17], could be further exploited for calculating the translational motions of submerged
spheroids, with potential application to wave energy hydrodynamic problems, i.e., numerical modelling
of submerged point absorbers.
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