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Abstract: The focus of this paper is on Rapid Distortion Theory on transversely sheared mean flows,
which is often used to investigate turbulence-solid surface interactions. The main purpose of the
paper is to bring together and present in a consistent fashion a general theory that has been developed
in several different papers that have been published in the Journal of Fluid Mechanics. The equations
for the unsteady pressure and velocity flections (which decouple from the entropy fluctuations) are
rewritten in terms of a gauge function in order to obtain expressions that involve two arbitrarily
convected quantities. A pair of very general conservation laws are used to derive upstream boundary
conditions that relate these quantities to the actual physical variables. The entropy fluctuations can
be determined after the fact once the solutions for the pressure and velocity fluctuations are known.
The result involves a third arbitrary convected quantity that is equal to the entropy fluctuations at
upstream infinity and can, therefore, be specified as an additional upstream boundary condition.
A secondary purpose of the paper is to summarize a number of applications of the theory that have
also appeared in the literature and show how they compare with an experiment.
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1. Introduction

The interaction of turbulent shear flows with solid surfaces is clearly of great engineering
interest [1–3] and too many papers have been written on the subject to be listed here. So, we mention
only the well-known paper by Tufts, Wang and Wang [2] who used numerical methods to analyze the
acoustic radiation produced by the interaction of an aerofoil with a turbulent shear layer. However,
these types of interactions can also be studied analytically by using Rapid Distortion Theory (RDT).

RDT was developed to analyze relatively fast changes in turbulent flows such as those that occur
in turbulence/solid surface interactions. It applies when the turbulence intensity is small and the
interactions take place over length (or time) scales that are short compared to the decay time (or length)
of the turbulent eddies [4–8]. These requirements make it possible to identify a distance that is very
large (in fact, infinitely large when interpreted asymptotically) on the interaction scale, but still small
on the length scale over which the turbulent eddies decay. The resulting flow will then be inviscid
and non-heat conducting and will therefore be governed by the Euler equations linearized about an
arbitrary nonlinear solution (often referred to as the base flow) to those equations.

1.1. The Kovasznay Result

The basic ideas are best understood by considering a uniform base flow. This case was first
analyzed in the seminal paper by Kovasznay [9] which decomposed the unsteady isentropic motion on
this flow into a vortical component that carries no pressure fluctuations and a solenoidal component
that accounts for the pressure fluctuations. Möhring [10] pointed out that the latter, which is determined
by a second-order wave equation in compressible flows, accounts for the acoustic component of the
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motion of these flows [10]. The former, which is a purely convected quantity in the sense that it moves
downstream at the mean flow velocity, can then be interpreted as the hydrodynamic part of the motion.
Two of its velocity components can be arbitrarily specified as (usually time-stationary) upstream
boundary conditions for the unsteady motion. The Kovasznay decomposition has turned out to be
very useful for analyzing turbulence/solid surface interactions on uniform mean flows [11–13], or on
flows that become uniform far upstream [4–6], since the hydrodynamic component of the solution can
be used to represent the incident turbulence in these analyses.

1.2. The Orr Result

The analysis becomes much more interesting when the entire base flow is allowed to be
non-uniform. The simplest case is arguably a two-dimensional and incompressible flow with uniform
mean shear so that the mean velocity, say U, is of the form

U = Λy2, (1)

with constant Λ ≡ dU/dy2 and
{
y1, y2, y3

}
denoting Cartesian coordinates, with y1 in the mean flow

direction. The unsteady motion is then determined by the linearized incompressible vorticity equation
(the compressible case was analyzed by Möhring [10])

(∂/∂τ+ U∂/∂y1)ω
′
3 = 0 (2)

with τ denoting the time and ω′3 denoting the spanwise vorticity perturbation. It was first pointed out
by Orr [14,15] that Equation (2) or, equivalently, the two-dimensional Rayleigh equation

∂
∂y1

(
∂
∂τ

+ U
∂
∂y1

)
ω′3 =

(
∂
∂τ

+ U
∂
∂y1

) ∂2

∂y2
1

+
∂2

∂y2
2

v′2 = 0, (3)

which determines the unsteady cross-gradient velocity perturbation, v′2(y2, τ), can be integrated to
show that the spanwise vorticity perturbation ω′ 3 can be an arbitrary function, say ωc(τ− y1/Λy2, y2),
of the indicated arguments and that v′2 is determined by ∂2

∂y2
1

+
∂2

∂y2
2

v′2 =
∂
∂y1

ωc

(
τ−

y1

Λy2
, y2

)
, (4)

Orr [14] calculated the velocity and pressure fluctuations evolving from an initial state by solving
an initial value problem associated with this equation. However, these solutions (or their long time
limits) are not all that relevant to the time-stationary turbulent flows being considered here since the
corresponding solutions to the full nonlinear equations can develop internal shear layers that can no
longer be treated inviscidly and can support Kelvin–Helmholtz instabilities [16–18]. It is, however, not
unreasonable to use the time-stationary or steady-state solutions given by Equation (4) to represent the
turbulence in these flows. The relevant solution can then be written as

v′2(x, t) =
∂
∂x1

T∫
−T

∫
G⊥(x, t

∣∣∣y, τ)ωc

(
τ−

y1

Λy2
, y2

)
dydτ, (5)

where x = {x1, x2} and y =
{
y1, y2

}
are two-dimensional Cartesian coordinates, T represents a large

time interval and G⊥ denotes the two-dimensional Green’s function that is determined by the equation ∂2

∂x2
1

+
∂2

∂x2
2

G⊥(x, t
∣∣∣y, τ) = δ(t− τ)δ(y− x) (6)
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together with appropriate boundary conditions. The vorticity ω′3, which is equal to the convected
quantity ωc(τ− y1/U(y2), y2), can now be specified as a boundary condition since Equation (5) will
satisfy Equation (4) for any choice of this quantity.

The inner integral in Equation (5) is assumed to be carried out over an unbounded or semi-bounded
region of space, with the Green’s function G⊥ required to satisfy appropriate transverse boundary

conditions in the latter case and taken to be the free space Green’s function (4π)−1 ln
∣∣∣x− y

∣∣∣2δ(t− τ) in
the former case. The transverse velocity perturbation v′2(x, t) will then be given by [19]

v′2(x, t) =

∞∫
−∞

G⊥
(
x2

∣∣∣y2
)
ωc(t− x1/Λy2)dy2 (7)

with
G⊥

(
x2

∣∣∣y2
)
≡

i
2
(sgnω)(sgny2)e−|ω||x2−y2 |/Λ|y2 | (8)

when the convected vorticity ωc(τ− y1/U(y2), y2) is taken to be the generic time-harmonic function

ωc

(
t−

y1

U(y2)
, y2

)
= eiω[t−y1/U(y2)]Ω̃c(y2 : ω) (9)

Figure 1, which is a plot of some typical values of v′2 calculated from Equations (7)–(9) with
Ω̃c(y2 : ω) taken to be

Ω̃c(y2 : ω) = e−[a(y2−y0)]
2
, (10)

shows that this quantity differs from the corresponding Kovasznay result on a uniform mean flow in
that it now decays as x1 → ±∞ .
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Figure 1. Transverse velocity fluctuations produced by the convected vorticity given by Equations (9)
and (10) for the indicated values of the parameters. (a) Real part; (b) imaginary part. Reproduced with
permission from [20].

This behavior will also occur in surface interaction problems, which might arise when a flat plate
with a leading edge at y1 = 0 is placed in the flow (see Figure 2). These considerations show that it is
not possible to impose upstream boundary conditions by specifying v′2 at the upstream infinity for
this type of problem. However, it follows from Equation (4) that the Laplacian

(
∂2/∂y2

1 + ∂2/∂y2
2

)
v′2

is equal to the streamwise derivative of the convected quantity ωc(τ− y1/U(y2), y2) and, therefore,
does not decay. This means that the former quantity can be specified far upstream (infinitely far in
an asymptotic sense) on the interaction length scale, which can still be small (infinitely small in an
asymptotic sense) compared to the scale on which the turbulence evolves.
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Figure 2. Leading edge scattering. Reproduced with permission from [20].

The key result is that the arbitrary function ωc(τ− y1/U(y2), y2) can be determined by specifying
an actual physical variable in a region where the flow is unaffected by the solid surface. The present
paper shows that the situation is analogous but much more interesting for more complicated transversely
sheared flows.

1.3. Scope of the Paper

A large number of papers [7,8,21,22] have used locally homogeneous RDT, which is a kind of
local high-frequency approximation first introduced by Moffatt [23], to study the turbulent motion on



Fluids 2020, 5, 62 5 of 25

planar shear flows. The assumption of local homogeneity eliminates the requirement for upstream
boundary conditions, but the present paper is only concerned with non-homogenous RDT, which
usually provides a much more realistic description of the flow. There are also a large number of papers
on this subject that have appeared in the literature, but the focus of the present paper is on the much
narrower topic of non-homogenous RDT on transversely sheared mean flows. Its primary purpose is
to bring together and describe in an integrated fashion a general methodology that has been developed
in a number of different papers [5,6,20,21] to deal with this phenomenon. Some significant new results
are also presented.

The basic equations are rewritten in terms of a gauge function in Section 3 and a formal solution to
the complete inhomogeneous RDT problem is given in Section 4. Section 5 discusses the role of causality
and instability waves and shows that (as in the Kovasznay decomposition) the resulting formulas
for the unsteady pressure and velocity fluctuations (which decouple from the entropy fluctuations)
involve two convected quantities. However, unlike the Kovasznay result, they are not directly related
to the physical flow variables. However, it is shown that they can be linked to these variables by using
two very general conservation laws (derived in Appendix A and discussed in Section 7) that relate
the convected quantities to the physical variables and a gradient-wise particle displacement (defined
in Section 5). Appendix B shows that the latter quantity vanishes at upstream infinity and, therefore
(as shown in Section 8), that conservation laws can be used to obtain a set of upstream boundary
conditions that relate the convected quantities to the physical variables.

Spatially growing instability waves- which are usually associated with coherent structures in
turbulent flows-may also appear in the solutions. However, their amplitudes cannot be determined
by imposing upstream boundary conditions since they decay exponentially fast at upstream infinity.
They can, however, be determined as part of the solution when causality is imposed on the flow, which
appears to be particularly appropriate in the present context since Creighton [24,25] has shown that
the imposition of causality is equivalent to imposing a Kutta condition at a trailing edge.

Section 6 shows that the entropy fluctuations can be determined from the particle displacement
once the solution for the pressure and velocity fluctuations is known. The result brings in a third
arbitrary convected function, which is equal to the entropy fluctuations at upstream infinity and can,
therefore, be specified as a third upstream boundary condition.

Section 9 shows how these results can be used to relate turbulent pressure spectrum (which is of
principal interest in acoustic and structural vibration problems) to the upstream turbulent velocity
spectrum (usually specified as an upstream boundary condition in turbulent surface interaction
problems) and an appropriate model for this spectrum is introduced. Some applications of the theory
that have appeared in the literature are described in Section 11 and some brief conclusions are given in
Section 12.

2. The Basic Equations

We consider the flow of an inviscid and non-heat conducting fluid which is assumed to be an
ideal gas with squared sound speed γp/ρ, and entropy cv ln(p/ργ) where p and ρ denote the pressure
and density, respectively, and γ denotes the specific heat ratio cp/cv where cp, cv are the specific heats
at constant pressure and volume, respectively.

The pressure p′ = p− p0 and mass flux

u = {u1, u2, u3} ≡ ρ
{
v′1, v′2, v′3

}
(11)

perturbations (where v′ = {v′1, v′2, v′3} is the actual velocity perturbation) on a transversely sheared
mean flow whose velocity U

(
yT

)
is in a single direction, whose pressure p0 is equal to a constant, and

whose mean sound speed squared c2
(
yT

)
depends only on the transverse coordinate yT, decouple from

the entropy fluctuations and are governed by the linearized momentum and continuity equations
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D0ui
Dτ

+ δ1iu j
∂U
∂y j

+
∂
∂yi

p′ = 0, i = 1, 2, 3 (12)

and

ui
D0p′

Dτ
+

∂
∂y j

c2u j = 0 (13)

where yT ≡
{
y2, y3

}
, y ≡

{
y1, y2, y3

}
=

{
y1, yT

}
and

D0

Dτ
≡
∂
∂τ

+ U
(
yT

) ∂
∂y1

(14)

denote the convective derivative based on the source point (while D0/Dt ≡ ∂/∂t+U(xT)∂/∂x1 denotes
the convective derivative based on the observation point).

The entropy fluctuation s′ depends on the momentum fluctuations and can be determined from
the energy equation (Equation (11) of [26])

D0s′

Dτ
=

cp

ρ2
0

ui
∂ρ0

∂yi
(15)

once ui is known.

3. The Gauge Function Representation

The momentum Equation (12) will be identically satisfied for any arbitrary function φ and any
purely convected function ϑ

(
τ− (y1/U), yT

)
when the pressure fluctuation p′ and the momentum

fluctuation.ui are related to ϑ and φ by [27]

p′ = −
D3

0φ

Dτ3 , (16)

and
ui =

D0

Dτ
λi − δ1i

∂U
∂y j

λ j + εi jk
1
c2
∂U
∂y j

∂
∂yk

ϑ
(
τ−

y1

U
, yT

)
, for i = 1, 2, 3, (17)

where φ plays the role of a gauge function,

λ j ≡
∂
∂y j

D0φ

Dτ
+ 2

∂U
∂y j

∂φ

∂y1
(18)

is a kind “pseudo-particle displacement”, δi j denotes the Kronecker delta and εi jk denotes the
Levi–Cevita permutation tensor.

Since the Gauge function φ is undetermined at this stage of the analysis it can be adjusted to ensure
that the continuity Equation (13) is also satisfied by substituting Equations (16)–(18) into Equation (13)
to obtain

D0

Dτ
Laφ = 0, (19)

where La denotes the linear operator

La ≡
D3

0

Dτ3 −
∂
∂yi

c2
(
∂
∂yi

D0

Dτ
+ 2

∂U
∂yi

∂
∂y1

)
(20)

As in the Orr analysis discussed in Section 1.2, this result can be integrated to show that the gauge
function φ is determined by

Laφ = −ω̃c

(
τ−

y1

U
, yT

)
(21)

where ω̃c
(
τ− y1/U, yT

)
denotes a second arbitrary convected quantity.
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4. Green’s Function Solution of Gauge Function Equation

Eliminating the mass flux perturbation u between Equations (12) and (13) shows that the pressure
fluctuation p′ satisfies the well-known Rayleigh’s equation [28]

L p′ = 0, (22)

where

L ≡
Do

Dτ

(
∂
∂yi

c2 ∂
∂yi
−

D2
o

Dτ2

)
− 2

∂U
∂y j

∂
∂y1

c2 ∂
∂y j

(23)

denotes the usual Rayleigh operator, which turns out to be adjoint to the operator La defined by
Equation (20) since

vLu− uLav =
∂
∂yi

c2
(
u
∂
∂yi

D0v
Dτ

+ 2u
∂U
∂yi

∂v
∂y1
−
∂u
∂yi

D0v
Dτ

)

+
D0

Dτ

v
∂
∂yi

c2 ∂u
∂yi

+
D0u
Dτ

D0v
Dτ
− u

D2
0v

Dτ2 − v
D2

0u

Dτ2

− 2
∂
∂y1

(
c2 ∂U
∂y j

v
∂u
∂y j

)
(24)

for any functions u, v [29].
Since, to our knowledge, all applications of non-homogeneous RDT have been to steady-state

turbulent flows the focus here will be on the time-stationary solutions of Equation (21), we, therefore,
suppose that φ is time stationary [30] and that initial conditions imposed in the distant past do not
affect the solution at the finite time t.

Let g(y, τ
∣∣∣x, t) denote the Green’s function for the Rayleigh operator L that satisfies

L g(y, τ
∣∣∣x, t) = δ(y− x)δ(τ− t), (25)

and behaves like an incoming wave as
∣∣∣y∣∣∣→∞ . As usual we let the first two arguments of g(y, τ

∣∣∣x, t)
represent the dependent variables and let the second two represent the source variables. Since g(y, τ

∣∣∣x, t)
denotes value of the solution to Equation (25) at (y, τ) due to a point sink at (x, t), it should be related
to its adjoint ga(x, t

∣∣∣y, τ) by the reciprocity relation [29,31]

g(y, τ
∣∣∣x, t) = ga(x, t

∣∣∣y, τ) (26)

Then since ga(x, t
∣∣∣y, τ) satisfies Equation (21) with the source function −ω̃c

(
τ− y1/U, yT

)
replaced

by δ(y− x)δ(τ− t), and, therefore, corresponds to a direct Green’s function in the present context, it
reasonable to require that it satisfy the causality condition ga(x, t

∣∣∣y, τ) = 0, for all t<τ, which implies
that the Green’s function, g(y, τ

∣∣∣x, t), will vanish for all finite y as τ→∞ , since it vanishes for all τ > t
by definition.

We can require that the solution φ(x, t) of the gauge function defined by Equation (21) along with
its derivatives (and, therefore, the pressure fluctuations) vanish (for all finite times) as x1 goes to plus
or minus infinity when the source function ω̃c is reasonably compact—even for globally unstable base
flows since the signal generated at (y, τ) cannot reach these locations when t = T is finite. This means
that gauge function φ(y, τ) goes to zero as y1 → ±∞ for all finite τ. We also assume that the initial
conditions are such that φ(y, τ) and its derivatives vanish for all finite y as τ→ −∞ .

Setting u equal to g(y, τ
∣∣∣x, t) in Equation (24), letting v denote a solution to Equation (21) and

using the divergence theorem shows that Equation (21) possess the formal steady-state solution [27]

φ(x, t) = −

T∫
−T

∫
V

g(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ
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+

T∫
−T

∫
S

n̂ jc2

g(y, τ
∣∣∣x, t)λ j −

∂g(y, τ
∣∣∣x, t)

∂y j

D0φ

Dτ

 dS(y) dτ (27)

where T is a large but finite time, the volume V is assumed to be bounded by cylindrical surface(s) S
that can be of finite, semi-infinite or infinite length in the streamwise direction, n̂ = {n̂i} denotes the
unit outward-drawn normal to S and λ j is defined by Equation (18). Since g(y, τ

∣∣∣x, t) = 0 for τ > t we
can replace the upper limit T by the time t.

Equation (27) expresses the solution to Equation (21) in terms of the volume source distribution
ω̃c

(
τ− y1/U

(
yT

)
, yT

)
and the gauge function φ distribution over one or more cylindrical surfaces S.

The formulation is unconventional since the direct Green’s function g now plays the role of an adjoint
Green’s function in the solution of Equation (27) for the Gauge function φ. The surface integral will
not appear in Equation (27) and the Green’s function g will be completely determined by Equation (25)
together with the causality requirements given above when the integration volume V is all of space
and will be incompletely determined by these requirements when it is not.

5. Integral Solution for the Physical Variables

5.1. The Pressure Fluctuation

Substituting Equation (27) into Equation (16) shows that the pressure fluctuation p′ is given by

p′(x, t) =

T∫
−T

∫
V

G(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ

−

T∫
−T

∫
S

n̂ jc2

G(y, τ
∣∣∣x, t)λ j −

∂G(y, τ
∣∣∣x, t)

∂y j

D0φ

Dτ

 dS(y) dτ (28)

where

G(y, τ
∣∣∣x, t) ≡

D3
0g(y, τ

∣∣∣x, t)

Dt3 (29)

satisfies the reduced Rayleigh Green’s function equation [27]

L G(y, τ
∣∣∣x, t) =

D3
0

Dt3 δ(y− x)δ(τ− t) (30)

Equation (28) can be rewritten as

p′(x, t) =

T∫
−T

∫
V

G(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ

−

T∫
−T

∫
S

[
G(y, τ

∣∣∣x, t)
(
n̂ jc2λ j

)
+ Γ(y, τ

∣∣∣x, t)p′(y, τ)
]

dS(y) dτ (31)

by introducing the variable Γ(y, τ
∣∣∣x, t) defined to within some arbitrary convected quantities by

D2
0Γ(y, τ

∣∣∣x, t)

Dτ2 ≡ n̂ jc2 ∂G(y, τ
∣∣∣x, t)

∂y j
, y ∈ S (32)

and integrating by parts. Goldstein et al. [27] used this result to extend Equation (28) to flows with
discontinuous velocity profiles downstream of the solid surfaces. They showed that the transverse
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component of the effective particle displacement c2n̂iλi and the pressure perturbation p′ will be
continuous across the discontinuities when G(y, τ

∣∣∣x, t) and Γ(y, τ
∣∣∣x, t) are required to satisfy the

jump condition
∆[G] = ∆[Γ] = 0, for yT ∈ S0 (33)

where ∆[·] denotes the jump in the indicated quantity across the surface/surfaces of discontinuity S0

which will correspond to infinitely thin wakes or vortex sheets downstream of the solid surfaces when,
as will usually be the case, they coincide with level surfaces of the mean flow.

5.2. Role of Instability Waves

It is well-known that inflectional base flows can support spatially growing instability waves,
which are often used to represent the large-scale coherent structures in turbulent flows. Since all these
instabilities (other than the singular neutral instability) decay exponentially fast at upstream infinity
their amplitudes cannot be determined from by specifying upstream boundary conditions. However,
as shown by Briggs [32] and Bers [33], they are uniquely determined as part of the solution when
causality is imposed on the flow-which appears to be particularly appropriate in the present context
since Creighton [24,25] has shown that the imposition of causality is equivalent to imposing a Kutta
condition at the trailing edges.

5.3. The Pseudo-Particle Displacement

As is in the previous case the surface integrals drop out of Equation (31) and the Green’s function
G is then completely determined by Equation (30) together with the causality requirements given above
when the doubly infinite surfaces S are all at infinity (i.e., when V represents all of space) but they
can still be eliminated when they are not at infinity by requiring that G satisfy appropriate boundary
conditions on these surfaces. The second term in square brackets drops out of the surface integral when

Γ(y, τ
∣∣∣x, t) = 0 for y ∈ S (34)

The remaining term will vanish when

n̂iλic2 = 0, for y ∈ S (35)

and the pressure perturbation p′ will then be given by

p′(x, t) =

T∫
−T

∫
V

G(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ (36)

This means that the pressure fluctuation p′ corresponding to a solution whose surface behavior is
consistent with Equation (35) will be determined by Equation (36) when G satisfies Equations (33) and
(34). It follows from Equation (17) that consistency with Equation (35) requires that the ϑ-independent
component of the density-weighted velocity perturbation

ũi(x, t) ≡
D0

Dτ
λi − δ1i

∂U
∂y j

λ j (37)

vanish on S and, therefore, that the corresponding density-weighted normal surface velocity n̂iui is
given by

c2 n̂iui = εi jkn̂i
∂U
∂y j

∂
∂yk

ϑ
(
τ−

y1

U
, yT

)
= εi j1 n̂i

∂U
∂y j

∂
∂y1

ϑ
(
τ−

y1

U
, yT

)
for y ∈ S (38)
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Since the surfaces S must be aligned with the mean flow. In fact they will usually coincide with
the level U = constant surfaces: in which case Equation (35) will be equivalent to requiring that the
gradient-wise component

λ⊥(y, τ) ≡ (∂U/∂yi)λi =
∂U
∂y j

(
∂
∂y j

D0φ

Dτ
+ 2

∂U
∂y j

∂φ

∂y1

)
(39)

of the pseudo-particle displacement λi vanish on S and Equation (38) will then imply that the
(density-weighted) normal surface velocity n̂iui vanishes on S, since the normal vector n̂ is then equal
to ∇U/|∇U|. Equation (38) shows that this will occur even when S does not coincide with a level U =

constant surface if
ϑ
(
τ−

y1

U
, yT

)
= 0 for y ∈ S (40)

Equations (18) and (27) show that the complete pseudo-particle displacement is given by

λi = −

T∫
−T

∫
V

G̃i(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ

−

T∫
−T

∫
S

[
G̃i(y, τ

∣∣∣x, t)
(
n̂ jc2λ j

)
+ Γ̃i(y, τ

∣∣∣x, t)p′(y, τ)
]

dS(y) dτ, for i = 1, 2, 3 (41)

with G̃i(y, τ
∣∣∣x, t) determined by

G̃i(y, τ
∣∣∣x, t) ≡

∂
∂x j

D0g
Dt

+ 2
∂U
∂x j

∂g
∂x1

, for i = 1, 2, 3 (42)

and is, therefore, related to the Green’s function derivative ∂G(y, τ
∣∣∣x, t)/∂xi of G(y, τ

∣∣∣x, t) by

D2
0

Dt2 G̃i(y, τ
∣∣∣x, t) =

∂
∂xi

G(y, τ
∣∣∣x, t), for i = 1, 2, 3 (43)

which means that Γ̃i(y, τ
∣∣∣x, t) is related to the transverse gradient of G̃i(y, τ

∣∣∣x, t) by

D2
0Γ̃i(y, τ

∣∣∣x, t)

Dτ2 ≡ n̂ jc2 ∂G̃i(y, τ
∣∣∣x, t)

∂y j
(44)

5.4. The Density-Weighted Gradient-Wise Velocity Perturbation

It now follows from Equation (17) that the density-weighted gradient-wise velocity perturbation

u⊥ ≡
1
|∇U|

∂U
∂yi

ui (45)

is related to the transverse particle displacement defined in Equation (39) by

u⊥ =
1
|∇U|

D0λ⊥
Dτ

, (46)

which is (like p′) also independent of the second independent convected quantity ϑ
(
τ− y1/U, yT

)
and

is explicitly given by

u⊥ =

T∫
−T

∫
V

G⊥(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ
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−

T∫
−T

∫
S

[
G⊥(y, τ

∣∣∣x, t)
(
n̂ jc2λ j

)
+ Γ⊥(y, τ

∣∣∣x, t)p′(y, τ)
]

dS(y) dτ (47)

where G⊥(y, τ
∣∣∣x, t) is defined by

G⊥(y, τ
∣∣∣x, t) ≡ −

∇U
|∇U|

·
D0

Dt

[
∇

D0

Dt
+ 2(∇U)

∂
∂x1

]
g(y, τ

∣∣∣x, t). (48)

with
∇ ≡ {∂/∂xi}. (49)

and is, therefore, related to the gradient of G(y, τ
∣∣∣x, t) by

D0

Dt
G⊥(y, τ

∣∣∣x, t) = −
∇U
|∇U|

·∇G(y, τ
∣∣∣x, t) (50)

The pseudo-particle displacement and gradient-wise velocity perturbation will be given by

λi = −

T∫
−T

∫
V

G̃i(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ (51)

and

u⊥ =

T∫
−T

∫
V

G⊥(y, τ
∣∣∣x, t)ω̃c

τ− y1

U
(
yT

) , yT

 dydτ (52)

respectively, when boundary and jump conditions analogous to those given by Equations (33)–(35)
are imposed. Equation (52) is clearly a generalization of the Orr result given by Equation (7). Similar
equations can, of course, be obtained for the other components of u.

Equation (27) is only formal in the sense that the integrals do not actually converge but the
corresponding integrals for the physical variables given by Equations (31), (47), etc., do exist and
these results will provide a proper solution to the original equations. However, as will be discussed
in Appendix B, the integral in Equation (51) for the pseudo-particle particle displacement must be
interpreted in terms of a principle value-like integral in order to remain finite, which may have some
implications for the entropy fluctuations discussed below.

5.5. The Hydrodynamic Component of the Motion

These results can be used to calculate the sound radiation produced by turbulence -solid
surfaceinteracions and many attempts have been made to follow Kovasznay [9] and isolate the acoustic
component of the motion in applications of this type. However, the unsteady motion on a transversely
sheared mean flow cannot be decomposed into distinct acoustic and hydrodynamic components. It is,
on the other hand, possible to identify a hydrodynamic component of the motion by requiring that
it does not produce any acoustic radiation at subsonic speeds. The remaining non-hydrodynamic
component will then account for all the acoustic radiation. This suggests that the Rayleigh equation
Green’s function g(y, τ

∣∣∣x, t) that appears in the gauge function solution of Equation (27) be divided
into two components, say

g(y, τ
∣∣∣x, t) = g(0)(y, τ

∣∣∣x, t) + g(s)(y, τ
∣∣∣x, t). (53)

where g(0)(y, τ
∣∣∣x, t) is a particular solution of Equation (25), which is either defined on all space or

satisfies appropriate homogeneous boundary conditions on an extension of the bounding surface S that
goes from minus infinity to plus infinity in the direction of the mean flow direction. This breakdown
implies the decompositions
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G(y, τ
∣∣∣x, t) = G(0)(y, τ

∣∣∣x, t) + G(s)(y, τ
∣∣∣x, t) (54)

and
G̃i(y, τ

∣∣∣x, t) = G̃(0)
i (y, τ

∣∣∣x, t) + G̃(s)
i (y, τ

∣∣∣x, t) (55)

of the Green’s function defined by Equation (29) and the Green’s function derivative defined by
Equation (43).

The decomposition displayed in Equation (54) then implies the pressure fluctuation decomposition

p′(x, t) = p′(0)(x, t) + p′(s)(x, t) (56)

where p′(0)(x, t) (obtained by replacing G(y, τ
∣∣∣x, t) with G(0)(y, τ

∣∣∣x, t) in Equation (28) and/or
Equation (31), will not radiate any sound at subsonic speeds and can, therefore, be identified as the
hydrodynamic component of the motion. The remaining component p′(s)(x, t) (given by Equations (28)
and (31) with G(y, τ

∣∣∣x, t) replaced by G(s)(y, τ
∣∣∣x, t) which is, in turn, determined by Rayleigh’s equation

(Equation (28)) along with suitable boundary/jump conditions) will then account for all of the acoustic
components of the motion.

The decomposition of Equation (55) implies the decomposition

λi(x, t) = λ
(0)
i (x, t) + λ

(s)
i (x, t) (57)

for the pseudo-particle displacement λi(x, t) where λ(0)i (x, t), which is given by Equation (41) with

G̃i(y, τ
∣∣∣x, t) replaced by G̃(0)

i (y, τ
∣∣∣x, t).

Equations (47) and (52), which determine the physical variables p′ and u⊥, reduce the RDT
problem to a boundary value problem for the Rayleigh’s equation Green’s function. The solutions
p′(x, t) and u⊥(x, t) will then be independent of the convected quantity ϑ

(
τ− y1/U, yT

)
(as well as the

convected quantity s∞
(
τ− y1/U, yT

)
defined below), which means that the resulting acoustic field will

only depend on the single convected quantity ω̃c
(
τ− y1/U

(
yT

)
, yT

)
.

6. The Entropy Fluctuations

Since

εi jk
1
c2
∂U
∂y j

∂
∂yk

ϑ
(
τ−

y1

U
, yT

)
=

(
δi j

D0

Dτ
− δi1

∂U
∂y j

)
λ
(c)
j (58)

where

λ
(c)
j ≡

y1

Uc2 ε jkl
∂U
∂yk

∂
∂yl

ϑ
(
τ−

y1

U
, yT

)
, (59)

Equations (15) and (18) show that

D0s′

Dτ
=

cp

ρ2
0

D0

Dτ
∂ρ0

∂yi

(
λi + λ

(c)
i

)
(60)

which can be integrated to obtain

s′ =
cp

ρ2
0

∂ρ0

∂yi

(
λ i + λ

(c)
i

)
+ s∞

(
τ−

y1

U
, yT

)
(61)

where s∞
(
τ− y1/U, yT

)
denotes a third arbitrary convected quantity. It, therefore, follows from

Equation (59) that s′ →∞ as y1 → −∞ if ε jkl
(
∂ρ0/∂y j

)
(∂U/∂yk)(∂ϑ/∂yl), 0 which makes the

imposition of upstream boundary conditions can be somewhat problematic. However, when the level
surfaces of mean density and velocity coincide, Equation (61) simplifies to
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s′ =
γ

ρ2
0

∂ρ0

∂U
λ⊥ + s∞

(
τ−

y1

U
, yT

)
(62)

with λ⊥ given by Equation (39) which means that s′ can remain finite in this case.

7. Conservation Laws

Like the Kovasznay decomposition discussed in Section 1.1 the present result involves two arbitrary
convected quantities which we denoted by ω̃c

(
τ− y1/U, yT

)
and ϑ

(
τ− y1/U, yT

)
. Equations (A2),

(A6), (A8), (A13) and (39) show that these quantities are related to the physical variables and the
gradient-wise particle displacement defined in Equation (39) by the conservation laws

∂
∂y1

(
ω̃c − p′ −

∂Ni
∂yi

λ⊥

)
= −εi jk

∂
∂yi

(
ω̃ jNk

)
(63)

Ni

(
ω̃i + εi j1

∂λ⊥
∂y j

)
= 0 (64)

where λ⊥ is defined by Equation (39),

Ni ≡
c2

|∇U|2
∂U
∂yi

, (65)

denotes a scaled velocity gradient and

ω̃i ≡ εi jk
∂ũk
∂y j

(66)

denotes the density-weighted vorticity based on the ϑ− independent density-weighted velocity
fluctuation ũi (defined by Equation (37)).

Equation (63) relates the arbitrary convected quantities ω̃c
(
τ− y1/U

(
yT

)
, yT

)
and

ϑ
(
τ− y1/U

(
yT

)
, yT

)
to the pressure p′, the gradient-wise particle displacement given by Equation(39)

and the cross-gradient (density-weighted) vorticity components εi jkω jNk, where ω j is defied by

Equation (A2). Equation (64) relates the arbitrary convected quantity ϑ
(
τ− y1/U

(
yT

)
, yT

)
to the

gradient-wise vorticity component ω jN j and the gradient-wise particle displacement given by
Equation (39) while Equation (62) relates the arbitrary convected quantity s∞

(
τ− y1/U, yT

)
to the

entropy fluctuation s′ and the gradient-wise particle displacement given by Equation (39) in the
important case where the level surfaces of mean pressure and velocity coincide.

8. Upstream Boundary Conditions

The conservation law Equations (63) and (64) cannot (by themselves) be used to relate the unknown
convected quantities ω̃c and ϑ to the physical variables because they involve the cross-gradient particle
displacement η⊥ that is not actually a physical quantity, but we shall now show that η⊥ → 0 (actually
the hydrodynamic component of η⊥) at upstream infinity and, therefore, that these equations can be
used to obtain upstream boundary conditions that relate these quantities to those variables.

As in the classical Kovasznay decomposition discussed in Section 1.1, we suppose that it is the
hydrodynamic component of the motion that should be related to physically measured variables
and not the remaining scattered component. Appendix B shows that transverse components of the
hydrodynamic portion of the pseudo-particle displacement behave like

λ
(0)
i (x, t)→

1
x1

Li(t− x1/U(xT), xT), for i = 2, 3 as x1 → −∞ (67)

when causality is imposed on these flows. The purely convected quantity Li(t− x1/U(x2), xT) is the
Fourier transform of the function Li(xT,ω) introduced in Appendix B.
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Inserting Equation (67) into Equation (37) shows that the hydrodynamic component ũ(0)
i (x, t) of

the ϑ-independent component density-weighted velocity ui(x, t) behaves like

ũ(0)
i (x, t)→

1
x2

1

Ũi(t− x1/U(xT), xT), for i = 2, 3 as x1 → −∞ (68)

where ũ(0)
i is given by Equation (37) and Ũi(t− x1/U(x2), xT) has the obvious meaning.

Inserting Equation (68) into Equation (17) and using the result in the momentum Equation (12)
shows that

∂p′(0)(x, t)
∂x1

→ 0 as x1 → −∞, (69)

It, therefore, follows from Equations (67) and (68) that the conservation law given by
Equation (63) becomes

∂ω̃c

∂y1
→ NkΓ̃

(0)
k , as y1 → −∞ (70)

where

Γ̃
(0)
k (y, τ) ≡ ∇2ũ(0)

k −
∂
∂yk
∇·̃u(0) (71)

∂
∂y j

c2u j =
∂
∂y j

c2ũ j (72)

the continuity Equation (13) shows that

Γ̃
(0)
k (y, τ) = ∇2ũ(0)

k +
∂
∂yk

c−2

D0p′(0)

Dτ
+ ũ(0)

j
∂c2

∂y j

 (73)

It, therefore, follows Equations (68) and (69) that

Γ̃
(0)
k (y, τ)→ ∇2

⊥ũ(0)
k for k = 2, 3 as y1 → −∞ (74)

where

∇
2
⊥ ≡

∂2

∂y2
2

+
∂2

∂y2
3

(75)

Equations (45), (46), (68), (70) and (74) then imply that

∂ω̃c

∂y1
=

c2

|∇U|2
∇

2
⊥

(
∂U
∂yk

u(0)
k

)
+O

(
1
y1

)
=

c2

|∇U|2
∇

2
⊥

 1
y2

1

∂U
∂yk

Uk
(
τ− y1/U, yT

)+O
(

1
y1

)

→
c2

U4
∂U
∂yk

∂2

∂τ2 Uk
(
τ− y1/U, yT

)
, as y1 → −∞, (76)

which (upon neglecting unobserved tones due to the neutral instability wave) expresses ω̃c in terms of
the transverse component of the hydrodynamic portion u(0) of the physical velocity u at upstream
infinity and, therefore, provides a suitable upstream boundary condition for determining the unknown
convected quantity ω̃c. Equation (76) can also be written as

∂ω̃c

∂y1
→

c2

U4
dU
du

∂2

∂τ2 |∇u|U⊥
(
τ− y1/U(u), yT

)
, as y1 → −∞, (77)

where

U⊥ ≡
∂u
∂yk

Uk
|∇u|

(78)
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when there exists a function that forms an orthogonal coordinate system with the level surfaces
u
(
yT

)
= constant of the mean velocity U = U(u).

9. Relation between the Pressure and Source Spectra

While these results can be used to that relates ω̃c to actual physical quantities, the interest in
turbulent flows is on statistical and not instantaneous quantities. For example, the focus in aeroacoustics
and structural vibration problems is usually on computing the pressure spectrum

Iω(x) ≡
1

2π

∞∫
−∞

eiωτ̃〈p′(x, t)p′(x, t + τ̃)
〉
d̃τ (79)

where the 〈·〉 bracket denotes the time average

〈
p′(x,τ)p′(x, τ+ τ̃)

〉
≡ lim

T→∞

1
2T

T∫
−T

p′(x,τ)p′(x, τ+ τ̃)dτ (80)

Appendix C shows that this only depends on the turbulent fluctuations through source spectrum

S
(
yT

∣∣∣̃yT

)
≡

1
2π

∞∫
−∞

eiωτ̃
〈
ω̃c

(
t, yT

)
ω̃c

(
t + τ̃, ỹT

)〉
d̃τ (81)

which can be expressed in terms of the spectrum

S ≡ 1
2π

∞∫
−∞

exp iω
(̃
τ−

[
ỹ1/U

(̃
yT

)
− y1/U

(
yT

)])〈
U⊥

(
τ− y1/U

(
yT

)
, yT

)
×

U⊥
(
τ− ỹ1/U(ỹ2) + τ̃, ỹT

)〉
d̃τ

(82)

of the transverse velocity amplitude in Equation (78) by Equation (A33) which ultimately has to
be modeled in order to relate it to actual experimental measurements. An appropriate model for
this quantity is given by Equation (A34) which leads to the model of Equation (A35) for the source
spectrum given by Equation (81) that actually appears in the formula for the pressure spectrum given
by Equation (79).

10. Calculating the Green’s Function

It is, of course, necessary to determine the Green’s function before numerical computations can be
carried out. This will usually involve some numerical calculations, which can be very delicate when
the mean flow includes shear layers that can sustain spatially growing instability waves. Baker and
Peake [34] showed that the Wiener–Hopf technique [35] can be used to minimize these difficulties and
developed efficient numerical algorithms for implementing this procedure.

However, experiments [36–40] show that the sound generated by solid surface interactions is
often of low frequency in at least some applications of technological interest and the low-frequency
Green’s function, which can often be found analytically, can then be used in the calculations. Goldstein
et al. [20,41,42] used the low-frequency Green’s function to calculate acoustic radiation resulting from a
jet interacting with a trailing edge. They eliminated the base flow velocity discontinuity by considering
the case where the mean surface velocity was equal to zero. The Fourier transform of the resulting
Green’s function then turned out to be the same as the Fourier transform of zero-mean-flow Green’s
function in the low-frequency limit. However, their result still depended on the mean flow because the
streamwise wave number of the Fourier transformed Green’s function is set equal to ω/U

(
yT

)
in the

final formula.
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11. Application of the Theory

The general theory is applicable to a wide range of surface geometries and boundary conditions,
such as lined surfaces which would be of interest in trailing edge noise reduction studies.

The acoustic radiation resulting from the interaction of a round jet with the trailing edge of a flat
plate was measured by Olsen and Boldman [43] who compared their results with the RDT solution
given in [5,21]. Their results showed that the shape of the radiation pattern and its change with jet
velocity was accurately predicted by the theory which was not the case for alternative theories [12],
that did not account for mean velocity gradients (e.g., [12]).

An earlier version of the theory given in [5] was used by Ayton and Peake [44] to calculate the
high-frequency acoustic radiation resulting from the interaction of a periodic upstream disturbance
with an airfoil embedded in a transversely sheared mean flow. Their results also showed that the
radiated sound field was significantly affected by the mean shear. A more highly developed version of
the theory given in [27] was used by Baker and Peake [45] to analyze the effect of boundary layer shear
on trailing edge noise.

The authors of [20,46,47] used this latter version of the analysis to calculated he noise produced by
the interaction of a large aspect ratio rectangular jet with the trailing edge of a flat plate (see Figure 3).
They obtained an analytical formula relating the acoustic spectrum to the turbulence correlation
function within the jet and represented this quantity by Equation (A35). The authors of [20] used
experimental data to determine the parameters in this formula and compared the predicted sound field
with experimental data taken over a broader range of polar angles and three different Mach numbers
at Glenn research center [36–40]. As shown in Figure 4, the computed spectra turned out to be in good
agreement with the experimental data. The predicted sound pressure levels would change by as much
as 10 Db at the highest Mach number considered if the mean shear and the resulting proper treatment
of the convection velocity were not accounted for.

The low-frequency Green’s theory was used to predict the sound field produced by the interaction
of circular jet with a trailing edge in [42] (see Figure 5). Their formulas turn out to be quite general and
are expected to apply to many different flow configurations, such as the multiple jet configuration
shown in Figure 6. They carried out computations over a range of azimuthal angles and three different
Mach numbers and again obtained good agreement with experiment. Some typical comparisons are
presented in Figure 7.
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12. Concluding Remarks

This paper was written to bring together and present in a consistent fashion a general theory for
the unsteady motion on a transversely sheared mean flow that has been developed over the years in a
number of papers published in the Journal of Fluid Mechanics. The relevant equations are reformulated
in terms of a gauge function in order to obtain expressions of the unsteady velocity and pressure
fluctuations (which decouple from the entropy fluctuations) that involve two arbitrarily convected
quantities. A pair of very general conservation laws are then used to derive upstream boundary
conditions that relate two of these quantities to experimentally measurable flow variables.

Inflectional base flows are able to support spatially growing instability waves, which are often
associated with the coherent structures in turbulent flows. Their amplitudes cannot be determined by
imposing upstream boundary conditions, but can be uniquely determined as part of the solution when
causality is imposed on the flow-which appears to be particularly appropriate in the present context
since Creighton [24,25] has shown that the imposition of causality is equivalent to imposing a Kutta
condition at a trailing edge.

The entropy fluctuations can be determined after the fact once the velocity and pressure fluctuations
are known by specifying a third arbitrary quantity. The results, which can be used to analyze the
unsteady motion resulting from the interaction of turbulent shear flows with solid surfaces, are
applicable to a wide range of flow–surface interaction problems.
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Appendix A

Equations (18), (20) and (21) show that the convected quantity ω̃c is related to the pressure
perturbation p′ and the pseudo-particle displacement λi by

ω̃c = p′ +
∂
∂yi

c2λi (A1)
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while Equations (17) and (18) show that the density-weighted vorticity ωi is related to λi by

ωi ≡ εi jk
∂uk
∂y j

=
D0

Dτ
εi jk

∂λk
∂y j

+ εi jk
∂U
∂y j

∂λk
∂y1
− εi j1

∂η⊥
∂y j

+ εknmεi jk
∂
∂y j

1
c2
∂U
∂yn

∂ϑ
∂ym

(A2)

where η⊥ is given by Equation (39). However, since Equation (18) and the identities

εi jk
∂2U
∂y j∂yk

= εi jk
∂2φ

∂y j∂yk
= 0 (A3)

show that

εi jk
∂λk
∂y j

= 2εi jk
∂U
∂yk

∂2φ

∂y1∂y j
(A4)

this can be written as

ωi = −εi j1
∂η⊥
∂y j

+ εi jk
∂U
∂y j

∂
∂y1

(
λk − 2

D0

Dτ
∂φ

∂yk

)
+ω

(c)
i (A5)

where ω(c)
i is defined in terms of u(c)

i by

ω
(c)
i ≡ εi jk

∂u(c)
k

∂y j
(A6)

Equation (18) and the identity

εi jk
∂U
∂y j

∂U
∂yk

= 0 (A7)

can now be used to show that Equation (A5) can be written as

ωi = −εi j1
∂η⊥
∂y j
− εi jk

∂U
∂y j

∂λk
∂y1

+ω
(c)
i (A8)

It, therefore, follows from Equation (39) that the cross product εi jkω j∂U/∂yk can be written as

εi jkω j
∂U
∂yk

= −εi jkε1 jn
∂η⊥
∂yn

∂U
∂yk
− εi jkε jmn

∂U
∂ym

∂λn

∂y1

∂U
∂yk

+ εi jkω
(c)
j
∂U
∂yk

= −
(
δi

1δ
k
n − δ

i
nδ

k
1

)∂η⊥
∂yn

∂U
∂yk

+
(
δi

mδ
k
n − δ

i
nδ

k
m

) ∂U
∂ym

∂λn

∂y1

∂U
∂yk

+ εi jkω
(c)
j
∂U
∂yk

= −δi
1
∂η⊥
∂yk

∂U
∂yk

+
∂U
∂yi

∂η⊥
∂y1
−
∂U
∂yk

∂U
∂yk

∂λi
∂y1

+ εi jkω
(c)
j
∂U
∂yk

(A9)

which can be solved for ∂λi/∂y1 to obtain

∂λi
∂y1

=

[
∂U
∂yi

∂η⊥
∂y1
− δ1i

∂η⊥
∂yk

∂U
∂yk
− εi jk

(
ω j −ω

(c)
j

)
∂U
∂yk

]
/|∇U|2 (A10)

Inserting this into Equation (A1) shows that

∂ω̃c

∂y1
=

∂
∂y1

p′ +
∂
∂yi

{
c2

|∇U|2

[
∂U
∂yi

∂η⊥
∂y1
− δ1i

∂η⊥
∂yk

∂U
∂yk
− εi jk

(
ω j −ω

(c)
j

)
∂U
∂yk

]}
(A11)
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and, therefore, that

∂ω̃c

∂y1
=

∂
∂y1

p′+
[
∂
∂yi

(
∂U
∂yi

c2

|∇U|2

)]
∂η⊥
∂y1
− εi jk

∂
∂yi

(
ω j

c2

|∇U|2

)
∂U
∂yk

+ εi jk
∂
∂yi

(
ω
(c)
j

c2

|∇U|2

)
∂U
∂yk

(A12)

or
∂ω̃c
∂y1

= ∂
∂y1

[
p′ + η⊥ ∂

∂yi

(
∂U
∂yi

c2

|∇U|2

)]
− εi jk

∂
∂yi

[
c2

|∇U|2

(
ω j −ω

(c)
j

)
∂U
∂yk

]
(A13)

where the identity of Equation (A7) has again been used.

Appendix B

We suppose for definiteness that all solid surfaces are impermeable and that the Green’s function is
chosen so that the unsteady flow is governed by Equations (36) and (52). Taking the Fourier transform
of the former equation, using the convolution theorem and noting that G(x, t

∣∣∣y, τ), which is identically
zero for all t<τ, satisfies the inhomogeneous Rayleigh Equation (30) and, therefore, depends on τ and t
only in the combination t− τ shows that

p′(x : ω) = (2π)2
∫
AT

eiωx1/U(yT)G
(
yT

∣∣∣∣x : ω,ω/U
(
yT

))
Ω

(0)(
yT,ω

)
dyT (A14)

where AT denotes the cross section of the volume V, α(x : ω) = lim
T→∞

α(x : ω; T) for α = p′, Ω

p′(x : ω, T) ≡
1

2π

T∫
−T

eiω tp′(x, t)dt, Ω
(0)(

yT : ω, T
)
≡

1
2π

T∫
−T

eiωξω̃c
(
ξ, yT

)
dz (A15)

and
G
(
y
⊥
| x ; k,ω

)
≡

1

(2π)2

x
ei[k(y1−x1)+ω(t−τ)]G(y, τ|x, t )dτdy1 (A16)

satisfies the reduced Rayleigh equation

L G = i
δ
(
x⊥ − y

⊥

)
(2π)2 (A17)

where

L ≡
∂
∂y j

c2

(kU −ω)2
∂
∂y j

+ 1−
k2c2

(kU −ω)2 j = 2, 3 (A18)

is the reduced Rayleigh operator and G̃i is determined by(
U(xT)

∂
∂x1
− iω

)2

G̃i
(
yT

∣∣∣x : ω, k1
)
≡

∂
∂xi

G
(
yT

∣∣∣x : ω, k1
)
, i = 2, 3 (A19)

Equation (A14) can be interpreted as a generalization of the classical Ffowcs Williams and Hall [49]
equation (i.e., Equation (6) of that reference) which has often been used to study the sound produced by
the turbulence trailing edge interaction. However, the present result accounts for mean flow interaction
effects, which become important at the high Mach numbers of interest in aeronautical applications.
There is, however, an even more significant difference between these formulations because, unlike the
present result, the Ffowcs Williams and Hall equation does not predict the source convection velocity.
It also does not account for the spatially growing instability waves discussed in Section 5.2. which are
believed to represent coherent structures on the turbulent flow. Finally, it also does not account for the
trailing edge vortex shedding which can have an important effect on the radiated sound.
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The decompositions in Equations (54)–(57) imply the decomposition

χ = χ(0) + χ(s) (A20)

where the symbol χ is used to denote the Fourier transformed pressure fluctuation p′(x : ω, T), the
Fourier transformed pseudo-particle displacement λi(x : ω, T), the reduced Rayleigh equation Green’s

functions G
(
yT

∣∣∣x : ω, k1
)

and

Gi
(
yT

∣∣∣xT : ω, k1
)
≡

1
i(k1U(xT) −ω)

∂
∂xi

G
(
yT

∣∣∣xT : ω, k1
)
, i = 2, 3 (A21)

with the G
(0)(

yT

∣∣∣x : ω, k1
)

component of G
(
yT

∣∣∣x : ω, k1
)

either defined on all space or required to satisfy

n̂ j[
ω− k1U

(
yT

)]2
∂
∂y j

G
(0)(

yT

∣∣∣x : ω, k1
)
= 0, for yT ∈ CT (A22)

(where CT denotes the bounding curve/curves that generate the doubly infinite surface/surfaces that
extend S from y1 = −∞ to y1 = +∞).

The Green’s functions G
(0)(

yT

∣∣∣x : ω, k1
)

and G
(0)

i

(
yT

∣∣∣x : ω, k1
)

are streamwise homogeneous and,
therefore, depend on y1 and x1 only in the combination x1 − y1-which means that we can write

G
(0)(

yT

∣∣∣x : ω, k1
)
= G

(0)(
yT

∣∣∣xT : ω, k1
)
. (A23)

and it then follows from Equations (36), (51), (43) and (50) that

p(0)(x : ω) = (2π)2
∫

A T

eiωx1/U(yT)G
(0)(

yT

∣∣∣∣x : ω,ω/U
(
yT

))
Ω

(0)(
yT,ω

)
dyT (A24)

λ
(0)
i (x,ω) = −

(2π)2

iω

∫
AT

eiωx1/U(yT)
U
(
yT

)
G
(0)

i

(
yT

∣∣∣∣xT : ω,ω/U
(
yT

))
U(xT) −U

(
yT

) Ω
(0)(

yT : ω
)

dyT, (A25)

Goldstein [2,19] and Goldstein et al. [17] show that G
(0)(

yT

∣∣∣∣xT : ω,ω/U
(
yT

))
and G

(0)

i

(
yT

∣∣∣∣xT : ω,ω/U
(
yT

))
remain finite and continuous at yT = xT but

G
(0)

i

(
yT

∣∣∣∣xT : ω,ω/U
(
yT

))
/
[
U(xT) −U

(
yT

)]
becomes unbounded at yT = xT, since

G
(0)

i

(
yT

∣∣∣∣x : ω,ω/U
(
yT

))
will usually not vanish there. The integral in Equation (A25) can be

made finite by imposing causality [20]. This can be accomplished by using the Briggs [33]–Bers [34]
procedure which is equivalent to letting ω have a small positive imaginary part, say ε, and deforming
the appropriate integration contour so that the solution remains continuous as ε→ 0 . The singularity
in Equation (A25) is the same as that in Equation (4.13) of [20] (the corresponding the formula for
∂λ

(0)
i (x,ω)/∂x1), so that the procedure used in Appendix C of that reference (which applies to any

transversely sheared mean flow) can also be applied to Equation (A25) to show that

λ
(0)
i (x,ω)→

eiωx1/U(xT)

x1
Li(xT,ω), for i = 2, 3 as x1 → −∞ (A26)

when causality is imposed: which, in turn, implies that the upstream behavior of the hydrodynamic
component λ(0)i (x, t) of the particle displacement λ i(x, t) is given by Equation (67).
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Appendix C

It is appropriate to require that the source function ω̃c
(
τ, yT

)
be a stationary random function of

τ [30], since, as noted above, steady-state turbulent flows are usually time-stationary [50] and it then
follows from Equation (36) that the pressure fluctuation p′(t, x) should also be a function of this type.
The pressure spectrum, can then be expressed in terms of the first Fourier transform of Equation (A15)
by [30]

Iω(x) = (2π) lim
T→∞

{
p(x : ω, T)[p(x : ω, T)]∗/2T

}
(A27)

Inserting the solution of Equation (A14) this result shows that

Iω(x) = (2π)2
∫
AT

∫
A T

eiωx1[1/U(yT)−1/U(̃yT)]G
(
yT

∣∣∣∣x : ω,ω/U
(
yT

))
×

G
∗(̃

yT

∣∣∣∣x : ω,ω/U
(̃
yT

))
S
(
yT

∣∣∣̃yT

)
dyTdỹT (A28)

and, therefore, that the pressure spectrum is related to the turbulent fluctuations through source
spectrum defined by Equation (81) which can be expressed in terms of the Fourier transform

Ω
(0)(

yT : ω, T
)

by

S
(
yT

∣∣∣̃yT

)
= (2π) lim

T→∞

{(
yT : ω, T

)[
Ω

(0) (̃
yT : ω, T

)]∗
/2T

}
(A29)

where Ω
(0)(

yT : ω, T
)

is given by Equation (A15) However, Equations (A15) and (77) imply that

Ω
(0)(

yT : ω, T
)

is related to the upstream gradient-wise velocity coefficient U⊥
(
ξ, yT

)
in the arbitrary

orthogonal curvilinear coordinate system {u, v}
(
yT

)
by

iω
U

Ω
(0)(

yT : ω, T
)
→ −ω2 c2

U4 |
∇u|

dU
du

U⊥
(
yT;ω, T

)
(A30)

where

U⊥
(
yT;ω, T

)
≡

1
2π

T∫
−T

eiωξU⊥
(
ξ, yT

)
dξ (A31)

The time average 〈
U⊥

(
τ− y1/U

(
yT

)
, yT

)
U⊥

(
τ− ỹ1/U

(̃
yT

)
+ τ̃, ỹT

)〉
=

〈
U⊥

(
τ, yT

)
U⊥

(
τ+ τ̃−

[
ỹ1/U

(̃
yT

)
− y1/U

(
yT

)]
, ỹT

)〉
(A32)

of U⊥
(
τ− y1/U

(
yT

)
, yT

)
will not only exist but will also be independent of τ when U⊥ is a stationary

function of τ and therefore of τ− y1/U
(
yT

)
[30].

The transverse velocity amplitude spectrum given by Equation (82) can then be written as

S = (2π) lim
T→∞

U⊥
(
yT;ω, T

)[
U⊥

(̃
yT;ω, T

)]∗
2T

(A33)

and Equations (A30) and (A33), therefore, show that the source spectrum S
(
yT

∣∣∣̃yT

)
of the convected

quantity ω̃c, is related to the normal velocity-like fluctuation U⊥
(
τ− y1/U(u), yT

)
by

S
(
yT

∣∣∣̃yT

)
= ω2 c2(yT)c2(ỹT)

U3(u)U3(ũ)
dU(u)

du
dU(ũ)

dũ |∇u|
∣∣∣∣∇̃ũ

∣∣∣∣ ∞∫
−∞

exp
{
iω

(̃
τ−

[
ỹ1/U

(̃
yT

)
− y1/U

(
yT

)])}
×

〈
U⊥

(
τ− y1/U(u), yT

)
U⊥

(
τ− ỹ1/U(ũ) + τ̃, ỹT

)〉
d̃τ,

(A34)
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when there is function v
(
yT

)
that forms an orthogonal coordinate system with the level surfaces

u
(
yT

)
= constant of the mean velocity U = U(u).

However, it is necessary specify the cross correlation
〈
U⊥

(
τ− y1/U(u), yT

)
×

U⊥
(
τ− ỹ1/U(ũ) + τ̃, ỹT

)〉
of the upstream normal velocity derivative fluctuation before the

source spectrum and, therefore, pressure spectrum can be determined. We are not aware of any
experimental measurements of this quantity, but [32] used information about the gradient-wise
velocity correlation to show that〈

U⊥
(
τ− y1/U(u), yT

)
U⊥

(
τ− ỹ1/U(ũ) + τ̃, ỹT

)〉
= A

(
yT, ỹT

)
l42ρ

(
yT

)
U
(
yT

)
ρ
(̃
yT

)
U
(̃
yT

)
×

exp−
√
[ f (η2/l2, η3/l3)]

2 +
{̃
τ− [ỹ1/U(ũ) − y1/U(u)]

}2/τ2
0

(A35)

where A
(
yT, ỹT

)
, f (η2/l2, η3/l3) are unspecified functions of the indicated arguments, τ0, l2, l3 are

constants and η2 ≡ u− ũ, η3 ≡ v− ṽ, is expected to provide a good representation of this quantity. Since
ρc2 is constant in transversely sheared flows, Equation (27) of [51] can be used to show that the actual
source spectrum defined by Equation (81) is given by [52]

S(u, ũ : v, ṽ) = l42
(
ρ∞c2

∞

)2
A
(
u, v

∣∣∣ũ, ṽ
)[

dU/du
U2(u)

dU/dũ
U2(ũ) ω

2
|∇u|

∣∣∣∣∇̃ũ
∣∣∣∣]×

1
2π

∞∫
−∞

eiω(̃τ−[ỹ1/U(ũ)−y1/U(u)])exp−
√
[ f (η2/l2, η3/l3)]

2 +
{̃
τ− [ỹ1/U(ũ) − y1/U(u)]

}2/τ2
0d̃τ

= l42A(u, v)
(
ρ∞c2

∞

)2
[

dU/du
U2(u)

dU/dũ
U2(ũ) |∇u|

∣∣∣∣∇̃ũ
∣∣∣∣ω2

]
τ0 f

π
√

1+ω̃2
K1

(
f
√

1 + ω̃2
) (A36)

where
ω̃ ≡ ωτ0, (A37)

and K1 denotes the modified Bessel function of the second kind.
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