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Abstract: This study investigates an idealized formulation of the two-dimensional impact of a
breaking wave on a vertical impermeable wall. An overturning-like wave is assumed, which is
close to the concept of a plunging breaker. It is assumed that during the collision an air pocket is
entrapped between the wave and the wall. The air pocket width is assumed to be negligible and the
compression effects are omitted. The problem is considered in the two-dimensional space (2D) using
linear potential theory along with the small-time approximation. We use a perturbation method to
cope with the linearized free-surface kinematic and dynamic boundary conditions. We impose the
complete mixed boundary value problem (bvp) and we solve for the leading order of the velocity
potential. The problem derived involves dual trigonometrical series and is treated analytically.
The main assumption made is that, within the air pocket, the pressure is zero. Results are presented
for the velocity potential on the wall, the velocity, and the free-surface elevation.

Keywords: hydrodynamic slamming; breaking wave impact; plunging breakers; mixed boundary
value problems (bvp); dual trigonometrical series; perturbation method

1. Introduction

Undoubtedly, one of the most hazardous cases of hydrodynamic loading on ships, offshore and
coastal structures, as well as on the novel wind and wave energy conversion systems originates from
slamming phenomena [1–4]. The dominant characteristics of these phenomena are the typically large
velocities and accelerations of the water particles hitting the structure violently and the impulsive
hydrodynamic pressures exerted on it. Careless design of structures exposed to this kind of loading
may lead to devastating effects. These phenomena may be categorized in water entry problems, wave
impact problems and green water loading.

Wave impact problems lead unavoidably to mixed boundary value problems (bvp). This means
that different type of conditions should hold in different portions of the boundary. The impacted
region is governed by a Neumann condition and the free-moving free surface by a Dirichlet condition.
The most common encountered problems associated with the hydrodynamic slamming are the water
entry problems [5–8]. A typical example in naval engineering is the bow slamming of a ship navigating
in a rough sea. The mathematical formulation of relevant problems involves a single free surface which
is penetrated suddenly by a solid.

A more complicated configuration is that of a steep wave colliding with a structure. Breaking
waves may be idealized leading to what we call “steep wave”, by assuming a totally flat free surface
and a vertical wave front. This rectangular formation, which extends longitudinally to semi-infinite,
collides with the structure with a specific velocity, exerting high impulsive loads depending on
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the instantaneous contact line between the solid and the water. This category of problems is more
complicated than the water entry problems as it involves two free surfaces. There are few analytical
solutions to relevant formulations. The impact on a vertical plate was investigated by approximating
the cross section of the plate as a degenerate ellipse, making use of the special Mathieu functions [9].
This study was further expanded by introducing an open rectangular section on the plate, which
allowed the water to escape the plate during impact [10]. The bvp needed a special treatment as it
involved triple trigonometrical series [11]. Of great significance in the ocean is the hydrodynamic
loading exerted on cylinders. Clearly, cylinders constitute the most important structural components of
floating structures as they are used either as pontoons or as vertical axisymmetric pillars supporting the
deck. Research on such an important subject has been conducted recently and results were presented
for the hydrodynamic loading and the pressure impulse exerted on the cylinder by determining the
actual contact line between the cylinder and the wave front at every time instant [12].

Wave breaking in the open ocean is of major concern for offshore platforms and for floating wind
turbines [13,14] as it could lead to critical failures of crucial structural elements. There are several
studies focusing on the hydrodynamic pressures exerted on a wall by a breaking wave. Breaking
criteria and categorization of breaker types depend of the physical parameters of the problem related to
the shape of the structure [15]. However, sometimes, the limiting state of one type to another is rather
unclear. The vast majority of the reported results rely on numerical simulations [16–21]. The intensity
of this phenomenon is strongly affected by the relative distance between the breaking point and
the wall. This distance is of paramount importance, as it affects directly the shape of the breaker,
the amount of the entrapped/entrained air and the water depth in front of the wall, just before the
impact. The roughness of the wall affects the maximum pressures. Different boundary conditions hold
on the impacted region of the wall, depending in its characteristics, impermeable, porous or perforated
etc. [22]. The presence of the wall strongly affects the dynamics of the phenomenon, as the wave trough
just in front of it, suddenly moves upwards with typically large velocities [23]. The location of the
structure relative to the breaking point also strongly influences the peak pressure and the analogous
rise time [24].

Fundamental results on relevant subjects have been provided by experimental studies as well.
Large-scale regular wave tests have shown that greater pressures were exerted on a vertical wall than
on a slopping, while the impulse owing to the impact can reach up to 30% of the total impulse on the
wall [25]. Wave breaking is rather a localized phenomenon as for example during the flip-through
impact, the trough moving upwards with large velocities, and the crest of the breaking wave focus
towards a point on the wall [26]. It has been shown that the first contact point is, more or less, in the
vicinity of the still water level and the pulsation of the air pocket due to the compression leads to an
oscillating behavior of the pressure record versus time [27]. Apart from a single cylinder and a vertical
wall, more complicated structures were studied as well, e.g., a vertical wall with a horizontal cantilever
slab just above it [28]. Due to the first impact of the breaking wave on the wall, the jet formed escaped
upwards with great accelerations straight impacting the slab above the wall.

The significance of the air entrapment has been thoroughly investigated, as it affects directly
the dynamics of the impact. Even though the large air pockets which may be entrapped during the
overturning of the wave tend to reduce the maximum impact pressure on the wall, an effect known as
“cushioning”, the time needed for the air to compress and afterwards expand, elongates the duration
of the impact leading to a possible increase of the total impulse on the wall [29]. A sophisticated
modelling of the air pocket has been suggested by substituting a 2D air-pocket by a 3D square pillar
with specific width, length and height. The compression of the air-pocket can be simulated via a spring
of stiffness k [30].

An interesting result is that, during a sequence of identical breaking waves, the pressure profile was
found to vary significantly, in contrast to the total impulse, leading to the idea of “kinetic mass”, a mass
of water of certain geometry replacing the actual wave [31]. For calculating the pressure–impulse
distribution, we need to know the breaker location and the shape of the wave close to the wall.
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For distances larger than the half the wave height, it can be shown that the wave parameters are not so
important [32]. The steeper the wave, the more localized the impact region, as proven by the velocity
profile [33]. Studies have been conducted to compare the results for impacts occurring in shallow
waters and deep waters which shew that despite the fact that the walls or the breakwaters locate close
to the coast, and the offshore structures are in deep water it was concluded that when the features of
the wave kinematic and the impact zone are comparable in the shallow and deep water, so are the
impact loads, regardless the water depth [34].

In contrast, few studies have dealt with this problem analytically, basically due to the mathematical
difficulties arising for the solution of a mixed bvp. In Reference [35], a breaking wave hitting briefly and
violently the wall was considered, including two different impacted regions, with several impacting
velocities and zero pressure in the air pocket. From the mathematical point of view, the solution method
assumed a cosine-dependent Neumann condition on the wall and a Dirichlet condition in the air-pocket.
The pressure impulse model was extended in [36] by considering that, during impact, the entrapped
air firstly decelerates the water and thereafter causes the water to move backwards, a phenomenon
called “bounce-back”. It should be noted that the impulse exerted on the wall was attributed to the
loss of the horizontal momentum of the wave because of the impact. Finally, a noticeable feature that
should be mentioned is that the pressure impulse on the wall is not zero in the bed [37].

This study is structured as follows: Section 2 formulates the complete bvp. Section 3 describes the
perturbation method used in this study, which allows us to expand the total velocity potential in a
series including a leading order and higher order terms. Section 4 presents the mathematical analysis
used to solve the bvp for the leading order of the potential. Section 5 deals with the hydrodynamic
pressure calculation on the wall and also discusses the way in which the singularity of the free surface
in the intersection with the wall was tackled in this research. In Section 6, we cite some results in terms
of the first order velocity potential, the velocity distribution on the wall, the hydrodynamic pressures
and the free surface elevation. Finally, the conclusions are drawn in Section 7.

2. The Mixed-Type Hydrodynamic Impact bvp

The hydrodynamic impact problem under consideration is investigated with the aid of the
schematic representation of Figure 1. The impacted wall is hit by a breaking wave, which is greatly
idealized in the following manner: (i) The upper part of the wave collides with the impermeable
wall with steady velocity V. (ii) During impact, a cavity is formed that extends between −h ≤ z ≤ −a,
according to the notations and the Cartesian coordinate system of the problem shown in Figure 1.
The width of the cavity is considered negligible and is assumed that is contained by air. Air compression
effects are omitted. The flow is assumed to be incompressible, inviscid, and irrotational. The elevation
of the free surface (free-surface disturbance) is denoted by H ≡ H(x, t) and is determined relative to
z = 0.
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Figure 1. A plunging breaking wave approaches and hits violently the wall creating an air cavity of
infinitesimal width δ(z)→ 0 . The wave propagates from right to left. The height of the liquid from the
bottom, up to the undisturbed free surface before the impact is h.
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Within the linearized realm of the potential theory, the investigated hydrodynamic impact is
governed by the following bvp:

∇
2φ = 0, x ≥ 0, −h ≤ z ≤ 0 (1)

∂φ

∂x
= V, z ∈ I1, −a < z ≤ 0, x = 0 (2)

∂φ

∂t
= 0, z ∈ I2, −h ≤ z < −a, x = 0 (3)

∂φ

∂z
= 0, z = −h, x > 0 (4)

∂H
∂t

=
∂φ

∂z
, z = H, x > 0 (5)

∂φ

∂t
= 0, z = H, x > 0 (6)

φ→ 0, x→∞, −h ≤ z ≤ 0 (7)

Clearly, the velocity potential is denoted by φ and the problem is set into the two-dimensional (2D)
space. Equation (1) is the Laplace equation that should hold in the entire liquid field, Equation (2) is
the Neumann condition on the impacted part of the wall, while Equation (3) is the dynamic boundary
condition on the front of the liquid in the cavity. No kinematic condition is considered in the liquid
front of the cavity and accordingly no disturbance is taken into consideration. Note that Equation
(3) is directly imposed on the wall, due to the negligible width of the cavity. Further, Equation (4) is
the bottom condition, Equations (5) and (6) are respectively the linearized kinematic and dynamic
boundary conditions on the free surface at z = H and finally, Equation (7) is the far-field condition,
which implies that any disturbance caused by the collision with the wall should vanish at infinity.

3. Perturbation Analysis

The problem is considered at the very early stages of the impact. Using the small-time
approximation, we are allowed to expand the original governing set of Equations (1)–(7) into a
sequence of perturbation systems. Clearly, the perturbation parameter is the time variable t, which is
assumed indefinitely small. The perturbation series for the velocity potential and the wave elevation
are taken in the form

φ = tφ1 + t3φ3 + · · · , (8)

H = t2η2 + t4η4 + · · · . (9)

Conditions (5) and (6) hold on the unknown boundary (interface between the liquid and the air)
z = H. To cope with this issue and to convert the conditions on the fixed boundary of the undisturbed
free surface, the relevant equations are expanded using a Taylor series around z = 0.

∂H
∂t

=
∂φ

∂z
+ H

∂2φ

∂z2 + · · · , z = 0, x > 0, (10)

∂φ

∂t
+
∂H
∂t
∂φ

∂z
+ H

∂2φ

∂z∂t
+ · · · = 0, z = 0, x > 0. (11)

Using Equations (8) and (9), Equations (10) and (11) are transformed into

2tη2 + 4t3η4 + · · · = t
∂φ1

∂z
+ t3

(
∂φ3

∂z
+ η2

∂2φ1

∂z2

)
+ · · · , z = 0, x > 0, (12)
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φ1 + t2
(
3φ3 + 2η2

∂φ1

∂z
+ η2

∂φ1

∂z

)
+ · · · = 0 , z = 0, x > 0. (13)

Clearly, Equations (12) and (13) correspond to Equations (5) and (6). Higher order terms are
accordingly omitted. For employing the perturbation analysis, we assume that V = vt. Hence, the bvp
is composed by Equations (1)–(4), (7), (12) and (13) and equating like powers of t, we obtain the
perturbation systems at O(t) and O

(
t3
)
, in terms of the leading- and the higher-order potentials φ1 and

φ3, respectively. Clearly, the derivation of φ3 through the associated system dictates the solution of the
leading order problem.

3.1. The Leading Order Problem

∇
2φ1 = 0, x ≥ 0, −h ≤ z ≤ 0, (14)

∂φ1

∂x
= v, z ∈ I1, −a < z ≤ 0, x = 0, (15)

φ1 = 0, z ∈ I2, −h ≤ z < −a, x = 0, (16)

∂φ1

∂z
= 0, z = −h, x > 0, (17)

φ1 = 0, z = 0, x > 0, (18)

φ1 → 0, x→∞, −h ≤ z ≤ 0, (19)

The elevation η2 is obtained from Equation (12) after equating powers of t as

η2 =
1
2
∂φ1

∂z
. (20)

3.2. The Higher Order Problem

∇
2φ3 = 0, x ≥ 0, −h ≤ z ≤ 0 (21)

∂φ3

∂x
= 0, z ∈ I1, −a < z ≤ 0, x = 0 (22)

φ3 = 0, z ∈ I2, −h ≤ z < −a, x = 0 (23)

∂φ3

∂z
= 0, z = −h, x > 0 (24)

φ3 = −η2
∂φ1

∂z
, z = 0, x > 0 (25)

φ3 → 0, x→∞, −h ≤ z ≤ 0 (26)
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The elevation η4 is obtained from Equation (12) after equating powers of t3 as

η4 =
1
4

(
∂φ3

∂z
+ η2

∂2φ1

∂z2

)
(27)

Clearly, higher order problems are omitted. The evaluation of φ3 dictates the solution of the
leading order bvp for φ1. The elevations η2 and η4 are detached from the bvps and they can be obtained
explicitly from the potentials. The solution of the higher order mixed bvp in terms of φ3 and η4 is left
for a future endeavor.

4. Solution for the Leading Order Mixed bvp

The leading order of the velocity potential is obtained from the solution of Equations (14)–(19).
Using separable solutions for the Laplace equation, and taking into account Equations (17)–(19), it
follows that

φ1 =
∞∑

n=1

An sin(λnz)e−λnx, λn =
(
n−

1
2

)
π
h

. (28)

Expansion (28) satisfies Equations (14) and (17)–(19). The remaining Equations (15) and (16)
determine a bvp of mixed type, which using Equation (28) yields

∞∑
n=1

λnAn sin(λnz) = −v, −a < z ≤ 0, (29)

∞∑
n=1

An sin(λnz) = 0, −h ≤ z < −a. (30)

Both series of Equations (29) and (30) are divergent at z = −a. This dual trigonometrical
series [38,39], reveals a singularity for the velocity, explicitly at z = −a. Letting z = −h
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√cos 𝜒 − cos 𝜏
∫ �̃�(𝑢)𝑑𝑢

𝜒

0

𝜏

0

−
√2𝛾1

𝜋

𝑑

𝑑𝜏
∫

(1 − cos 𝜒 2⁄ )

√cos 𝜒 − cos 𝜏
𝑑𝜒.

𝜏

0

 (35) 

The constant 𝛾1 yields from 

𝛾1 {1 +
√2

𝜋
∫

(1 − cos 𝜒 2⁄ )

√cos 𝜒 − cos 𝑐
𝑑𝜒

𝑐

0

} =
1

𝜋
∫

𝑑𝜒

√cos 𝜒 − cos 𝑐
∫ �̃�(𝑢)𝑑𝑢

𝜒

0

𝑐

0
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(n− 1/2)pAn sin[(n− 1/2)
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zero for higher modes. This implies a fast convergence for the solution sought. For the test cases 

examined herein, the computations employed nearly 200 modes, which secured a convergence of 

four significant digits for the velocity potential. 
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significantly the computations. Without loss of generality, we may assume that ℎ = 1. All the elliptic 

integrals employed in this research are calculated using MATLAB’s [41] built-in function “integral”, 

which allows the efficient approximation of improper integrals. The differentiations and accordingly 

the sought expansion coefficients 𝐴𝑛, 𝑛 = 1,2,3, … are treated numerically as well. Figure 2 shows a 

relative oscillating behavior for the expansion coefficients for 𝑛 ≤ 60 and a progressive decrease to 

zero for higher modes. This implies a fast convergence for the solution sought. For the test cases 

examined herein, the computations employed nearly 200 modes, which secured a convergence of 

four significant digits for the velocity potential. 
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∞∑
n=1

An sin[(n− 1/2)
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) herein is a constant. The solution to this problem is taken
directly from Sneddon (p. 158), which reads

A1 =
1
√

2

c∫
0

h1(τ)[1− P1(cos τ)]dτ, (33)

An =
1
√

2

c∫
0

h1(τ)[Pn−2(cos τ) − Pn(cos τ)]dτ, n = 2, 3, . . . , (34)

where Pn denotes the nth degree Legendre Polynomial and

h1(τ) =
1
π

d
dτ

τ∫
0

dχ
√

cosχ− cos τ

χ∫
0

F̃(u)du−

√
2γ1

π
d

dτ

τ∫
0

(1− cosχ/2)
√

cosχ− cos τ
dχ. (35)
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The constant γ1 yields from

γ1

1 +

√
2
π

c∫
0

(1− cosχ/2)
√

cosχ− cos c
dχ

 =
1
π

c∫
0

dχ
√

cosχ− cos c

χ∫
0

F̃(u)du. (36)

Substituting the constant value for F̃(u) = vh/π into the above formulas, does not simplify
significantly the computations. Without loss of generality, we may assume that h = 1. All the elliptic
integrals employed in this research are calculated using MATLAB’s [41] built-in function “integral”,
which allows the efficient approximation of improper integrals. The differentiations and accordingly
the sought expansion coefficients An, n = 1, 2, 3, . . . are treated numerically as well. Figure 2 shows a
relative oscillating behavior for the expansion coefficients for n ≤ 60 and a progressive decrease to zero
for higher modes. This implies a fast convergence for the solution sought. For the test cases examined
herein, the computations employed nearly 200 modes, which secured a convergence of four significant
digits for the velocity potential.Fluids 2020, 5, x FOR PEER REVIEW 7 of 14 
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Figure 2. The expansion coefficients An, n ≥ 1, for a = 0.6, v = 300 and t = 0.01 s.

5. Hydrodynamic Pressure Distribution and Free-Surface Elevation η2

The pressure distribution in the liquid field is obtained from the linear term of the
Bernoulli’s equation

p(x, z) = −ρ
∂φ(x, z)
∂t

= −ρ
∂
∂t
[tφ1(x, z)] = −ρφ1(x, z). (37)

The pressure exerted exactly on the wall, can be simply calculated by substituting x = 0 in
Equation (37). It is important to mention that due to the uncoupling of the potential from time using
the perturbation series expansion, the pressure is literally calculated for a specific wave shape that hits
the wall at a specific time instant.

The free-surface elevation is obtained from Equation (20), using again h = 1, as

η2 =
π
2

∞∑
n=1

(
n−

1
2

)
Ane−(n−1/2)πx. (38)

Letting next an = tAn, Equation (38) is cast into the time dependent form

tη2 =
π
2

∞∑
n=1

(
n−

1
2

)
ane−(n−1/2)πx. (39)



Fluids 2020, 5, 58 8 of 14

It should be mentioned that Equation (39) is divergent explicitly on the wall at x = 0. That has
been verified numerically given that the expansion coefficients are also obtained numerically to cope
with the mixed bvp involved. For a solid impermeable wall, the corresponding series that provides the
free-surface elevation yields a closed-form analytical solution [42], which also grows indefinitely at
x = 0. From the physical point of view, the mathematical singularity could be attributed to the water
jet that is formed at the instant of impact. King and Needham [42] investigated the problem of the
sudden acceleration of an impermeable wall (in 2D) that bounds a volume of liquid, initially at rest
and they showed that the liquid run-up on the wall is obtained from

η2 =
4σ
π

∞∑
n=0

e−(n+1/2)πx

2n + 1
=

2σ
π

ln
[
coth

(
πx
4

)]
, (40)

where σ is a parameter that expresses the ratio between the wall acceleration to the gravitational
acceleration. Clearly, the series in Equation (40) yields a unique solution which is singular as x→ 0 ,
namely explicitly on the wall. To cope with the singular asymptotic behavior at x→ 0 , King and
Needham [42] assumed two regions: (i) an outer region (x > 0), where the expansion for the free-surface
elevation (relied on the small-time approximation) is valid and (ii) an inner region (x = 0), where
the magnitude of the previously neglected terms of the Euler momentum equations they used are of
the same magnitude as those retained. In the latter case they applied a different kind of expansion.
In detail, the assumed expansion reads

ηinner = −t2 ln tη1 − t2η̃2 (41)

where η1 and η̃2 denote respectively the first and second order free-surface elevations in the inner
region, while t is the time.

The assumptions taken by King and Needham [42] could be used in the present formulation,
provided that the sums of Equations (38) and (40) exhibit the same behavior for x = 0. The variations
of the concerned sums relative to the mode number are shown in Figure 3. Both sums grow indefinitely
with the mode number and eventually become infinite. Although evident differences are observed,
it can be easily deduced that they nearly coincide, and they become indistinguishable for large
truncation of the sums. The wavy trend of the mixed bvp sum of Equation (38), is attributed to the
values of the expansion coefficients An. Accordingly, the mixed bvp methodology discussed in the
present is enhanced with King and Needham’s [42] asymptotic analysis formulas explicitly for x = 0.
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In accord with the aforementioned discussion, the free-surface elevation can be approximated by

tη2 =
π
2

∞∑
n=0

1
2n + 1

e−(n+1/2)πx =
π
4

ln
[
coth

(
πx
4

)]
. (42)

Following the asymptotic expansion suggested by King and Needham [42], one gets for the
inner region

tη̃2(x) =
π
4

ln(− ln t) − ln
( 4
π

)
+ ln

(
π
4

)
− 1−

Γ′
(

3
2

)
Γ
(

3
2

) + x

, (43)

Expression (43) has no singularity neither for x→ 0 or t→ 0 . In order to derive the complete
expression for the free-surface elevation in the inner region, one finds

tη1 =
π
2

. (44)

6. Results

The leading order velocity potential derived in Section 4, exhibits several interesting characteristics.
Figure 4 shows that the wave impact velocity affects directly the potential distribution. In detail,
the greater the velocity, the wider the curve is.
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Figure 4. First order velocity potentials on the wall, φ1(0, z), for several wave impact velocities and
fixed air cavity position −1 ≤ zcavity ≤ −0.6 at t = 0.01s.

Further, Figure 5 shows that the velocity potential far from the free surface z = 0, is not identical
even in the same impacted region and is strongly influenced by the air cavity position. In both Figures 4
and 5, one can easily observe the semi-elliptical shape of the potential in the impacted region. Beyond it,
in the air pocket cavity, is equal to zero, satisfying explicitly the Dirichlet dynamic boundary condition
on the wall.
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Figure 5. First order velocity potentials on the wall, φ1(0, z), for several air cavity positions and fixed
wave impact velocity v = 300 at t = 0.01s.

Figure 6 shows the velocity profiles connected with the test cases included in Figure 4. In the
impacted region the velocity is constant, while in the air pocket region a rapid decrease close to zero is
observed. Furthermore, an evident discontinuity occurs at z = −0.6, i.e., at the point where the formed
cavity ends up, revealing a clear singularity for the velocity. It should be made clear that the observed
singularity does not mean that the liquid penetrates the wall. In contrast, the singularity is evidence of
jet formation.
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Figure 6. Wave impact velocity on the wall, v(0, z) for fixed air cavity position −1 ≤ zcavity ≤ −0.6 and
t = 0.01s.

Figures 7 and 8 depict the profiles of the hydrodynamic pressure distributions in a liquid field
of 1 m × 1 m. The hydrodynamic pressure exhibits, as expected, the same pattern with the velocity
potential. This assumption is validated by the 3D graph of Figure 7, where the vertical semi-elliptical
configuration and the zero pressure in the air pocket are evident. Moreover, one can easily observe the
exponential decrease of the pressure with the distance from the wall.
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Figure 7. Hydrodynamic pressure distributions in the liquid field for v = 300 and fixed air cavity
position −1 ≤ zcavity ≤ −0.6 at t = 0.01s.

The contours of the hydrodynamic pressure (that correspond to Figure 7) are shown in Figure 8.
The isobaric lines testify that the highest pressures occur in the wave impact zone.
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Figure 8. Contours of the hydrodynamic pressure in the liquid domain for fixed air cavity position
−1 ≤ zcavity ≤ −0.6, fixed wave impact velocity v = 300 and t = 0.01s.

Figure 9 shows that the portion of the water, which collides with the wall, in the region of the free
surface, is characterized by a greater run-up on the wall, as time evolves. Finally, Figure 10 depicts
the free-surface elevation for three different test cases. The wave run-up increases as the velocity is
increased, a result which is totally reasonable. Nevertheless, an interesting result deduced from both
figures is that for distance from the wall greater than 1 m, the free surface is calm and coincides with
the undisturbed level.



Fluids 2020, 5, 58 12 of 14

Fluids 2020, 5, x FOR PEER REVIEW 11 of 14 

 
Figure 8. Contours of the hydrodynamic pressure in the liquid domain for fixed air cavity position −1 ≤ ≤ −0.6, fixed wave impact velocity = 300 and = 0.01 . 

Figure 9 shows that the portion of the water, which collides with the wall, in the region of the 
free surface, is characterized by a greater run-up on the wall, as time evolves. Finally, Figure 10 
depicts the free-surface elevation for three different test cases. The wave run-up increases as the 
velocity is increased, a result which is totally reasonable. Nevertheless, an interesting result deduced 
from both figures is that for distance from the wall greater than 1 m, the free surface is calm and 
coincides with the undisturbed level. 

 
Figure 9. Free-surface elevations on the wall for different time instants, normalized wave impact 
velocity = 300 and fixed air cavity position −1 ≤ ≤ −0.5. 

Figure 9. Free-surface elevations on the wall for different time instants, normalized wave impact
velocity v = 300 and fixed air cavity position −1 ≤ zcavity ≤ −0.5.

Fluids 2020, 5, x FOR PEER REVIEW 12 of 14 

 
Figure 10. Free-surface elevations on the wall for different normalized wave impact velocities, at =0.01  and fixed air cavity position −1 ≤ ≤ −0.5. 

7. Conclusions 

The present study treated the 2D problem of a plunging-like breaking wave impacting an 
impermeable wall. Linear potential theory was used along with the small-time approximation in 
order to eliminate the time-dependence from the solution. A perturbation method was used to satisfy 
the kinematic and the dynamic boundary conditions of the free surface on a fixed boundary, i.e., the 
still water level. The governing bvp of mixed type is solved analytically for the leading order of the 
velocity potential. The Neumann boundary condition on the impacted region and the Dirichlet 
condition beyond that must be satisfied, leading to a dual trigonometric series problem. The solution 
provided is based on the assumptions that the pressure in the cavity is zero and the compression 
effects are neglected. The singularity occurred in the intersection point of the free surface and the 
wall was tackled by adjusting the theory presented in the seminal paper of King and Needham [42]. 

Numerical results are cited in terms of the velocity potential, velocity profiles, hydrodynamic 
pressure distributions for several impacting velocities and air cavity positions. Figures for the free-
surface elevations are also provided showing the deformation over time and over the wave impact 
velocities. The main outcome of this research is that the peak pressure is situated in the middle of the 
impacted region of the wall. Further, the presence of the air pocket significantly affects the pressure 
distribution on the wall, even in the same impacted region, especially for increasing depth, and for 
the same hitting velocity. An interesting result is that for relative long distances from the impacted 
region, no deformation of the free-surface occurs. 

It is the intention of the authors to extend this study by (i) considering a time varying intersection 
point a on the wall and (ii) solving the higher-order perturbation problem that is formulated via 
Equations (21)–(27). Clearly, the reasonable outcomes of the study should be validated against 
experimental measurements. 

Author Contributions: The problem and the solution methodology were conceived by I.K.C. The formal analysis 
and the investigation were accomplished by T.D.T. The code was developed by T.D.T. The results were validated 
by both authors. The manuscript was written by T.D.T and the work was supervised by I.K.C. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research was partially funded by the Research Committee of the National Technical University 
of Athens. 

Conflicts of Interest: The authors declare no conflict of interest. 
  

Figure 10. Free-surface elevations on the wall for different normalized wave impact velocities, at
t = 0.01s and fixed air cavity position −1 ≤ zcavity ≤ −0.5.

7. Conclusions

The present study treated the 2D problem of a plunging-like breaking wave impacting an
impermeable wall. Linear potential theory was used along with the small-time approximation in order
to eliminate the time-dependence from the solution. A perturbation method was used to satisfy the
kinematic and the dynamic boundary conditions of the free surface on a fixed boundary, i.e., the still
water level. The governing bvp of mixed type is solved analytically for the leading order of the velocity
potential. The Neumann boundary condition on the impacted region and the Dirichlet condition
beyond that must be satisfied, leading to a dual trigonometric series problem. The solution provided
is based on the assumptions that the pressure in the cavity is zero and the compression effects are
neglected. The singularity occurred in the intersection point of the free surface and the wall was
tackled by adjusting the theory presented in the seminal paper of King and Needham [42].

Numerical results are cited in terms of the velocity potential, velocity profiles, hydrodynamic
pressure distributions for several impacting velocities and air cavity positions. Figures for the
free-surface elevations are also provided showing the deformation over time and over the wave impact
velocities. The main outcome of this research is that the peak pressure is situated in the middle of the
impacted region of the wall. Further, the presence of the air pocket significantly affects the pressure
distribution on the wall, even in the same impacted region, especially for increasing depth, and for the
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same hitting velocity. An interesting result is that for relative long distances from the impacted region,
no deformation of the free-surface occurs.

It is the intention of the authors to extend this study by (i) considering a time varying intersection
point a on the wall and (ii) solving the higher-order perturbation problem that is formulated via
Equations (21)–(27). Clearly, the reasonable outcomes of the study should be validated against
experimental measurements.

Author Contributions: The problem and the solution methodology were conceived by I.K.C. The formal analysis
and the investigation were accomplished by T.D.T. The code was developed by T.D.T. The results were validated
by both authors. The manuscript was written by T.D.T and the work was supervised by I.K.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Research Committee of the National Technical University
of Athens.

Conflicts of Interest: The authors declare no conflict of interest.
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