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Abstract: In order to ensure stable power exhaust and to protect the walls of fusion reactors, liquid
metals that are fed to the wall surface through a capillary porous system (CPS) are considered as
alternative plasma-facing components (PFCs). However, operational issues like drop ejection and
plasma contamination may arise. In this study, the unsteady flow of a liquid metal inside a single pore
of the CPS in the presence of Lorentz forces is investigated. A numerical solution is performed via
the finite element methodology coupled with elliptic mesh generation. A critical magnetic number
is found (Bondm = 4.5) below which the flow after a few oscillations reaches a steady state with
mild rotational patterns. Above this threshold, the interface exhibits saturated oscillations. As
the Lorentz force is further increased, Bondm > 5.8, a Rayleigh–Taylor instability develops as the
interface is accelerated under the influence of the increased magnetic pressure and a finite time
singularity is captured. It is conjectured that eventually, drop ejection will take place that will disrupt
cohesion of the interface and contaminate the surrounding medium. Finally, the dynamic response of
different operating fluids is investigated, e.g., gallium, and the stabilizing effect of increased electrical
conductivity and surface tension is demonstrated.

Keywords: MHD; liquid metals; capillary porous system; drop ejection; Rayleigh instability; finite
element method; elliptic mesh; magnetic bond number; fusion reactors

1. Introduction

It is widely known that the global oil and gas resources are diminishing, and in order to avoid
an energy crisis in the future, alternative sources of energy must be explored and implemented.
Thermonuclear fusion is perhaps the most promising one since it offers a profuse energy supply
without seriously affecting the environment [1,2]. It is based on the fusion reaction between deuterium
and tritium that produces a helium nucleus and a neutron, releasing a high amount of energy. This
reaction does not occur spontaneously, but instead a temperature of 150 million degrees Celsius is
needed inside the reactor. In these conditions, the gases are ionized and in a plasma state. Moreover, a
magnetic field is usually needed to control the confinement of the plasma in the reactor. For these
reasons, the design of a fusion reactor is a challenging task and several issues must be addressed before
this idea becomes widely applicable. The Eurofusion Plant Physics and Technology Work Program
aims at putting in operation a demonstration fusion power reactor (DEMO) by 2050.

One of the critical issues regarding the reactor design has to do with the wall as it experiences very
high heat loads. The Eurofusion ITER Physics Program investigates solutions to manage the plasma’s
heat exhaust, especially for the divertor, which is the area of the reactor wall that receives the highest
heat and particle fluxes. Divertor walls made of tungsten can withstand heat loads up to 20 MW/m2;
otherwise, operational problems, such as erosion, thermal fatigue, and plasma contamination, may
occur. However, estimates based on available divertor performance data suggest that the heat load
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could be as large as 50 to 100 MW/m2 and even higher for the DEMO reactor [3]. In order to avoid the
above operational problems, liquid metals are considered as alternative plasma-facing components
(PFCs) [3–5]. The most common metal used for this purpose is lithium (Li) as it showed a beneficial
impact on plasma operation. Furthermore, due to its low melting point, a vapor cloud is formed
between the plasma and the wall, which acts like a shield and protects the PFC [6]. Besides Li, tin (Sn),
gallium (Ga), and aluminum (Al) have also been considered [7]. There is convincing evidence in the
literature that the most efficient way to transfer the liquid metal to the wall reactor and thus protect
its surface is through a capillary porous system (CPS) [3,8,9]. When the coverage of the wall reactor
by the liquid metal film is significantly reduced due to evaporation, the CPS can replenish the liquid
metal coating through capillary pressure without the need to apply additional external pressure. Such
a system has the advantage that it is self-regulating because it reacts to liquid metal depletion on the
interface. It has been suggested that with the proper use of such a system, heat loads of hundreds of
MW/m2 can be handled [10].

A serious issue that may arise when a liquid metal is used as a PFC pertains to the possibility
of drop ejection and thus contamination of the plasma taking place. In the literature, there are many
experimental studies involving liquid PFCs, especially liquid lithium, that try to identify and improve
the operational stability limits for temperature and induced thermal loads. Additionally, an effort is
made to examine the possible contamination of the liquid film with impurities from the plasma, since
this may reduce the effectiveness of the film as a coolant and cause severe operational problems as well.
For example, Whyte et al. [11] performed several experiments on the DIII-D tokamak and reported
unstable behavior of liquid lithium in the form of droplet ejection. The same behavior was observed
by Zuo et al. [12], who monitored lithium droplets with radii 0.5 to 5 mm in experiments in the HT-7
tokamak. On the other hand, experiments performed by Evtkhin et al. [13] in the T11-M device and
by Apicella et al. [14] in the Frascati Tokamak Upgrade (FTU) device did not capture ejection, but
instead, the liquid film showed stability for the operational parameters used. A similar behavior was
reported by Jaworski et al. [15] for the liquid lithium tokamak divertor in the National Spherical Torus
Experiment (NSTX). Nevertheless, in the same study, they argued that in such flow arrangements,
there is a strong possibility for drop ejection due to Kelvin–Helmholtz or Rayleigh–Taylor instabilities.
For the latter case, they conjectured that there is a critical pore size below which the liquid metal film
becomes unstable.

Contrary to experimental studies, the CPS has not been the subject of extensive modelling activity
partly due to the complex flow arrangement of the limiter containing the liquid metal. Available
studies focus on the importance of the capillary forces to supply a mass flow rate of lithium through the
CPS system via a balance between the pressure drop and resistance to flow [10,16]. Other studies have
considered the macroscopic scale and analyzed the thermoelectric magnetohydrodynamic (TEMHD)
forces caused by temperature gradients in the liquid–container system [17] or focused on analytical
solutions for simplified flow and calculated the surface velocity due to thermocapillary effects in
conjunction with magnetohydrodynamic drag [18].

In this work, in order to provide an in-depth understanding of the involved phenomena, we
focused inside a single pore of the CPS and we numerically investigated the dynamic behavior of the
liquid metal. An emphasis was placed on understanding the interplay between the different forces
that act towards pushing the liquid metal out of the pore or resist its motion and in determining the
conditions and the limits for stable power exhaust. We followed the approach of Benos et al. [19,20],
who studied the static arrangement of the liquid metal, both when it is limited inside a single pore
using a fixed contact point approach and while it rests on the CPS top surface. More specifically,
in the latter study, the effects of the reservoir overpressure, electric stresses, and Lorentz force (jxB)
effects were investigated on the static film arrangement. In particular, by taking into consideration
the interaction potential [21] between the solid substrate and the liquid metal in order to obtain a
quantitative measure of the wetting properties of the latter, it was seen that, depending on the material
and process properties, the static arrangement conforms with the fixed contact point or the fixed
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contact angle assumption [20]. In our case, we employed the above obtained solution as an initial
condition for the static configuration of the liquid metal inside the pore and assumed a fixed contact
point arrangement, with the liquid metal remaining constantly in contact with the pore mouth. This is
viewed as a starting point for the analysis of the dynamic behavior of the porous structure in response
to an external electric current entering the CPS during operation of the reactor in the presence of a
strong external magnetic field. The main goal of the study was to identify conditions for the loss of
stability and drop ejection to take place in parts or the whole of the liquid–metal interface, as the
intensity of the electric current increases.

2. Materials and Methods

2.1. Problem Formulation

The unsteady flow arrangement of a liquid metal inside a single pore of the CPS in the presence
of a magnetic field was investigated in order to dynamically study the behavior of the liquid in the
presence of Lorentz and capillary forces. The pore was considered as a thin rigid cylinder that has a
radius, Rp, which is much smaller compared to its height, h. Initially, an external constant magnetic
field was applied on the interface, directed towards the azimuthal direction B = Boeθ, while the liquid
rests at static equilibrium. In Figure 1, a schematic representation of the flow under consideration
is provided.
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In order to obtain the governing equations, we only allowed for axisymmetric variations of the
flow arrangement. Furthermore, the liquid metal of a density, ρ, and viscosity, µ, was considered as
incompressible and thus the flow is governed by the continuity equation and momentum balance via
the Navier–Stokes equations:

∇ · u′ = 0, (1)

∂u′

∂t
+ (u′ · ∇)u′ = −

1
ρ
∇p′ + g′ +

1
ρ

F′L +
µ

ρ
∇·τ

=

′, τ
=

′ =
∇u′ +∇u′T

2
, (2)
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where τ
=
′ is the deviatoric stress tensor in the fluid and F′L is the Lorentz force:

F′L = JxB = (∇xH′)xBo = −
∂H′

∂z′
Boez −

Bo

r′
∂(r′H′)
∂r′

er = −∇(H′Bo) −
BoH′

r′
er. (3)

In the above, J = Jrer + Jzez denotes the electric current in the pore region while H′ = H′eθ =(
B′i /µm

)
eθ is associated with the magnetic induction and also serves as the stream function of the

electric current via Ampere’s law; µm denotes the magnetic permeability of the liquid metal. The
quantity H′Bo represents the magnetic pressure, whereas BoH′

r′ corresponds to the rotational part of
the Lorentz force. By introducing a transformed pressure that includes the gravity and the magnetic
pressure, the Navier–Stokes equations become:

∂u′
∂t + (u′ · ∇)u′ = − 1

ρ∇p′′ + µ
ρ∇ · τ=

′
−

B0H′
ρr′ er

(4)

p′′ = p′ + H′B0 + ρgz′. (5)

In the above, primed quantities have dimensions, τ′ denotes the deviatoric stress tensor that is
associated with viscous stresses, and p” is the dimensional transformed pressure. The radius of the
pore, Rp, is taken as the characteristic length scale of the problem, whereas the quantity σ/Rp is used as
the pressure scale, with σ denoting the surface tension. By requiring that pressure forces be of the same

order of magnitude as convection forces, the characteristic velocity, u, is set to
(
σ/ρRp

)1/2
. Finally,

the stream function of the electric current is non-dimensionalized with the quantity Jr,inRp, with Jr,in
being a measure of the intensity of the electric current that enters the pore at its interface with the
surrounding medium. This represents the electric current that may be generated in the bulk of the
plasma reactor, as a result of an instability, that will disrupt normal operation of the divertor region,
possibly leading to loss of cohesion of the liquid metal film that protects it, followed by drop ejection.
In this context, the dimensionless governing equations of the flow are:

∇ · u = 0, (6)

∂u
∂t

+ (u · ∇)u = −∇
∧
p +

1
Re
∇ · τ

=
− Bondm

H
r

er, (7)

where
∧
p is the dimensionless transformed pressure, Re =

(
ρRpσ

)1/2
/µ is the Reynolds number that

compares the surface with the viscous forces, and Bondm =
(
Jr,inR2

pBo
)
/σ is the magnetic Bond number,

which compares the magnetic with the surface forces.
By introducing the transformed pressure, the force balance equation on the plasma–liquid metal

interface reads in a dimensionless form:

n ·
(
∧
p − BondmH − Bondzint − pout

)
I
=
−

1
Re τ=
· n + 2Hcn = 0

(8)

p̂ = p + BondmH + Bondzint, (9)

where n denotes the unit normal vector pointing outwards from the liquid metal, I
=

is the unit tensor,

zint is the z-coordinate of the interface, Hc is the mean curvature of the interface, and Bond =
(
ρgR2

p

)
/σ

is the gravitational Bond number that compares the gravity with the surface forces. Clearly, this is a
first attempt towards simulating plasma wall interaction, where only the plasma pressure and electric
current from the bulk of the reactor are taken into consideration.
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On the interface, the mass balance assumes the dimensionless form:

ul,n = us,n = n ·
(
∂rint

∂t
er +

∂zint

∂t
ez

)
, n =

−zint,ξer + rint,ξez√
z2

int,ξ + r2
int,ξ

, (10)

with ul and us,n denoting the normal velocity of the liquid at the interface and of the interface,
respectively, n the unit normal vector at the interface pointing outwards with respect to the liquid
metal, and rs = rint(ξ)er + zint(ξ)ez is the Lagrangian representation of the interface. Furthermore,
we adopted a fixed contact point approach [19,20] for the shape of the interface as it approaches the
pore–substrate interface at the top, and the boundary conditions corresponding to the liquid metal
velocity and the location of the interface at the pore wall are:

ur(r = 1, z(r = 1); t) = uz(r = 1, z(r = 1); t) = 0 , zint(r = 1; t) = h/Rp. (11)

At the pore entrance located at its interface with the reservoir, we assumed fully developed flow
conditions, with τzz and τrz denoting the normal and tangential components of the viscous stress vector
and pres is the fixed reservoir pressure:

τzz(z = 0) = τrz(z = 0) = 0, p̂(z = 0, r; t) = pres + BondmH(z = 0; t). (12)

The pressure has a prescribed value at the pore entrance level, z = 0, that was set to zero without
any loss of generality, leaving pout as the sole parameter that controls the surrounding/reservoir
overpressure. Nevertheless, the transformed pressure is not zero at the pore entrance as it is affected
by the magnitude of the magnetic pressure. Finally, symmetry conditions are imposed at the pore axis:

ur(r = 0, z) =
∂uz

∂r
(r = 0, z) =

∂zint

∂r
(r = 0, z) = 0. (13)

Upon enforcing continuity of the electric charge by combining Ampere‘s law with Ohm‘s law, the
following dimensionless equation is obtained for the stream function, H:

∇
2H −

H
r2 = −c

1
r

ur, c = Boλ
Jr,in

(
σ
ρRp

)1/2
, (14)

where λ is the electrical conductivity of the liquid metal [20]. It should be stressed that in the above
relation, the magnetic Reynolds, Rem ≡ λµmRpu , was treated as a small number, signifying the fact
that the magnetic induction is much smaller than the external magnetic field [22]. Parameter c is a
measure of the relative importance of the induced electric current due to the electric conductivity of
the liquid metal and the external electric current. The electric current anywhere inside the pore is
calculated via its stream function:

J = ∇xH⇒ Jr = −
∂H
∂z

, Jz =
1
r
∂(rH)
∂r

. (15)

If we assume a known dimensionless distribution of the electric current components, Jr,in, Jz,in, on
the interface with the plasma, the following boundary conditions apply at the pore entrance and exit
where it meets the reservoir and substrate, respectively:

z ≡ zint : Jr,in = −
∂H
∂z

∣∣∣∣∣
int

, Jz,in = 1
r
∂(rH)
∂r

∣∣∣∣
int

, (16)

z = 0 : H =
rJtot

2
, (17)

r = 0 : H = 0 , r = 1 : Jr = 0⇒ H =
rJtot

2
, (18)
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Jtot = 2

1∫
0

(−Jr,in
∂zint

∂ξ
+ Jz,in

∂rint

∂ξ
)rdξ, (19)

where Jtot denotes the dimensionless total electric current entering the pore at its interface with the
surrounding medium, calculated via its known radial and axial distribution at the pore interface
coupled with the conservation of the electric current. This value is also used to fix the transformed
pressure at the interface with the reservoir. The rest of the boundary conditions in Equations (17) and
(18) reflect the assumption of electrically insulated pore walls, symmetry of the electric current at the
axis of symmetry r = 0, and fully developed electric current distribution at the pore entrance. Finally, it
should be pointed out that the azimuthal component of the magnetic field employed in the present
study does not satisfy the condition of irrotationality, and consequently, care should be taken to avoid
the introduction of spurious electric currents via application of Ampere’s law. However, this issue is
circumvented, for the low magnetic Reynolds number situation examined in the present study, by the
introduction of the stream function, H [23,24] that allows for the component of the Lorentz force that
tends to push liquid metal out of the pore region to be captured, depending on the relative direction of
the magnetic field and electric current, in a consistent manner.

2.2. Numerical

2.2.1. Numerical Method

The numerical solution is performed via the Galerkin finite element methodology with Lagrangian
basis functions. More specifically, bi-quadratic basis functions are used for the velocity and the stream
function of the electric current, whereas bi-linear functions are employed for the pressure of the liquid.
At the interface the one-dimensional quadratic Lagrangian functions are introduced for the interfacial
shape. The fully implicit Euler time integration scheme is introduced in order to make optimal use of
its numerical dissipation properties against the growth of short-wave instabilities. In this context, the
discretized forms of continuity, Navier–Stokes equations, and continuity of electric current assume
the form: y

Ni∇ · udV = 0, (20)

t
Mi

∂u
∂t · ekdV +

t
Mi(u · ∇)u · ekdV +

t
Mi∇

∧
p · ekdV − 1

Re

t
Mi∇ · τ

=
· ekdV

+Bondm
t

Mi
H
r er · ekdV = 0

(21)

y
Mi∇

2HdV −
y

Mi

(H
r2 − c

1
r

ur

)
dV = 0, (22)

where Mi, Ni are the bi-quadratic and bi-linear Lagrangian functions, respectively; dV = rdrdzdθ is the
differential volume of integration and vector ek refers to one of the unit vectors er, ez corresponding to
the components of the differential momentum balance.

Upon integrating, by parts, Equation (21), the r and z components of the weak formulation of the
momentum equation are derived:

s

A

[
Mi

(
∂u
∂t + (u · ∇)u

)
· ek −

∧
p∇ · (Miek) +

1
Re τ=

: ∇(Miek)
]
rdrdz+

Bondm
s

A
Mi

H
r er · ekrdrdz +

∮
Γ

Min · (
∧
p I
=
· ek −

1
Re τ=
· ek)rdS = 0

(23)

The azimuthal angle, θ, was integrated out of the above equations due to axisymmetry, essentially
generating a two-dimensional geometry to be discretized with a line integral at its interface with the
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surrounding medium and reservoir. In particular, the r and z components of the momentum equation
assume the weak form:

s

A
Mi

(
∂ur
∂t + ur

∂ur
∂r + uz

∂ur
∂z

)
rdrdz−

s

A

(
∂Mi
∂r r + Mi

)
∧
pdrdz + Bondm

s

A
MiHdrdz+

1
Re

s

A

(
2∂Mi
∂r

∂ur
∂r + ∂Mi

∂z
∂ur
∂z + ∂Mi

∂z
∂uz
∂r + 2Mi

ur
r2

)
rdrdz +

∮
Γ

Min · (
∧
p I
=
· er −

1
Re τ=
· er)rdS = 0

(24)

s

A
Mi

(
∂uz
∂t + ur

∂uz
∂r + uz

∂uz
∂z

)
rdrdz−

s

A

∂Mi
∂z
∧
prdrdz+

1
Re

s

A

(
∂Mi
∂r

∂ur
∂z + ∂Mi

∂r
∂uz
∂r + 2∂Mi

∂z
∂uz
∂z

)
rdrdz +

∮
Γ

Min · (
∧
p I
=
· ez −

1
Re τ=
· ez)rdS = 0

(25)

In the same manner, integration by parts is applied on the terms that contain second-order
partial derivatives in Equation (22), expressing the continuity of the electric charge. The interfacial
force balance equation (Equation (8)) is imposed as a natural condition for the momentum equation.
The mass balance at the interface (Equation (10)) is discretized with the one-dimensional quadratic
Lagrangian functions and is solved separately along with the elliptic mesh equations to determine the
shape of the interface and to adjust the mesh to the interfacial changes.

As an overall numerical procedure at each time step, the numerical solution is performed in
two stages. In the first stage, a Newton–Raphson method is applied in order to solve simultaneously
for the velocity and the pressure fields along with the electric stream function, and the total electric
current, Jtot, entering the pore at the interface with plasma. In this stage, the shape of the interface is
considered to be known from the previous time step. In the second stage, a separate Newton–Raphson
iterative procedure follows the above time integration process for the construction of the updated grid.
Since the grid needs to adjust to the deformation of the interface, especially when large deformations
are observed, the elliptic mesh generation method is employed. In the latter stage, the shape of the
interface is determined via the implementation of the interfacial mass balance equation (Equation (10))
as a boundary condition on the elliptic mesh generation procedure.

As far as the computational cost is concerned, the inversion of the Jacobian matrix is the most
time-consuming part of the numerical solution. In order to minimize this cost, we chose to solve the
linearized set of equations iteratively with the GMRES (generalized minimum residual) and with
preconditioning performed via incomplete lower upper (ILU) factorization [25] rather than a direct
method. The implementation of ILU and GMRES was performed using the SPARSKIT software [26].
Additionally, we avoided construction and incomplete LU factorization of the Jacobian matrix for
every time step in order to reduce the computational time even further. The number of time steps
over which the Jacobian matrix can remain unaltered without compromising the efficiency of the
algorithm varies between 1 and 5000 time steps and it is essentially determined by the intensity of
interfacial deformations.

2.2.2. Grid Construction

In problems related with moving interfaces, it is a common practice to convert the complex
physical domain in a simple rectangular computational one via an appropriate transformation on the
coordinates. In our case, as it is illustrated in Figure 2, the physical coordinates (r, z, t) are transformed
to the computational coordinates (η, ξ, t), with 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1, and J = rηzξ − zηrξ denoting
the Jacobian of the mapping (Figure 2). The mapping between the two domains is implemented by
using the elliptic mesh generation technique since its superiority over other techniques when severe
interfacial distortions are expected has been demonstrated in many studies [27–30].
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The elliptic mesh generation technique was developed and implemented by Christodoulou and
Scriven [27] and Tsiveriotis and Brown [28] and is based on solving a set of partial differential equations
for the coordinates of each mesh point. The actual form of the elliptic equations in combination with
the imposition of the appropriate boundary conditions can produce high quality meshes in terms of
the smoothness, orthogonality, and density of the grid. In this study, we employed the quasi-elliptic
transformation and the boundary conditions that Dimakopoulos and Tsamopoulos [29] proposed
since the implementation of the latter technique has been reported [29,30] to generate meshes that can
successfully follow large interfacial distortions:

∇ ·

ε1

√√
r2
ξ
+ z2

ξ

r2
η + z2

η

+ 1− ε1

∇ξ = 0, (26)

∇ · ∇η = 0. (27)

The first equation (Equation (26)) produces the η-curves of the computational domain, and the

introduction of the term

√
r2
ξ
+z2

ξ

r2
η+z2

η
allows them to intersect the interface almost orthogonally. In the

same equation, ε1 is an empirical parameter that controls the extent of mesh smoothness versus its
orthogonality and it ranges between 0 and 1. Its value is defined by trial and error, and in our case was
set equal to 0.1, a value proposed in [30]. The ξ-curves, which are nearly parallel to the interface and
are prescribed so that they follow its deformation, are generated by Equation (27).

Apart from the elliptic transformation, the appropriate boundary conditions must be introduced.
In any boundary where the one of the coordinates is known, its distribution of values is imposed as an
essential boundary condition:

η = 0 : z = 0, ξ = 0 : r = 0 , ξ = 1 : r = 1 . (28)

When it is unknown, the integral terms that the divergence theorem produces in the discretized
form of the grid equations are omitted, in order to weakly impose orthogonality of the grid lines in
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these boundaries. When we further need to control the node distribution in a boundary, the penalty
method is applied. In this fashion, the discretized elliptic equations become:

x
ε1

√√
r2
ξ
+ z2

ξ

r2
η + z2

η

+ 1− ε1

∇ξ·∇Mi Jdηdξ+ L1

∫
∂Mi
∂ξ

√
w1r2

ξ
+ w2z2

ξ
dξ = 0, (29)

x
∇η·∇Mi Jdηdξ+ L2

∫
∂Mi
∂η

rηdη = 0, (30)

where L1, L2 are the penalty parameters of order O(103
− 105) and w1, w2 weights that are normally

chosen with trial and error. The two weights must satisfy the equality w1 + w2 = 2 while when
w1 = w2 = 1, the boundary nodes are equally distributed. At the interfacial nodes, Equation (30) is
omitted and the kinematic condition (Equation (10)) is used instead:

η = 1 :
∫

Bi(zint,ξrint,ξ − rint,ξzint,ξ − zint,ξur + rint,ξuz)dξ = 0, (31)

with Bi representing the one-dimensional quadratic Lagrangian functions.
Finally, in an effort to reduce the computational cost and at the same time increase the accuracy of

the results, a stretching factor is introduced in the η-coordinate of the computational domain. This
allows us to accumulate the elements near the interface where a denser grid is mostly needed:

η(i) =
( i− 1

M

)n f
, i = 1, 2M + 1 , (32)

with M denoting the number of elements used in the η-direction and ηf is the stretching factor that is
set below 1 when an accumulation of the coordinate lines towards the interface is needed.

Since the physical domain is mapped into the computational one, in order to obtain the final
form of the governing equations presented in Section 2.2.1, they must be expressed in terms of the
new coordinate system (η, ξ, t). In this context, Equations (24) and (25) that corresponds to the r and z
components of the momentum equation read as:

s

A
Mi

(
∂ur
∂t J + (zξrt − rξzt)

∂ur
∂η + (rηzt − zηrt)

∂ur
∂ξ

)
rdηdξ+

s

A
Mi

(
urzη

∂ur
∂ξ − urzξ

∂ur
∂η − uzrη

∂ur
∂ξ + uzrξ

∂ur
∂η

)
rdηdξ−

s

A

(
zη
∂Mi
∂ξ r− zξ

∂Mi
∂η r + Mi J

)
∧
pdηdξ+ Bondm

s

A
MiHJdηdξ+

2
Re

s

A

(
zη
∂Mi
∂ξ − zξ

∂Mi
∂η

)(
zη
∂ur
∂ξ − zξ

∂ur
∂η

)
r
J dηdξ+

1
Re

s

A

(
−rη

∂Mi
∂ξ + rξ

∂Mi
∂η

)(
−rη

∂ur
∂ξ + rξ

∂ur
∂η + zη

∂uz
∂ξ − zξ

∂uz
∂η

)
r
J dηdξ+

2
Re

s

A
Mi

ur
r Jdηdξ+

∮
Γ

Min · (
∧
p I
=
· er −

1
Re τ=
· er)rdS = 0

(33)
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s

A
Mi

(
∂uz
∂t J + (zξrt − rξzt)

∂uz
∂η + (rηzt − zηrt)

∂uz
∂ξ

)
rdηdξ+

s

A
Mi

(
urzη

∂uz
∂ξ − urzξ

∂uz
∂η − uzrη

∂uz
∂ξ + uzrξ

∂uz
∂η

)
rdηdξ−

s

A

(
−rη

∂Mi
∂ξ + rξ

∂Mi
∂η

)
∧
prdηdξ+

1
Re

s

A

(
zη
∂Mi
∂ξ − zξ

∂Mi
∂η

)(
−rη

∂ur
∂ξ + rξ

∂ur
∂η + zη

∂uz
∂ξ − zξ

∂uz
∂η

)
r
J dηdξ+

2
Re

s

A

(
−rη

∂Mi
∂ξ + rξ

∂Mi
∂η

)(
−rη

∂uz
∂ξ + rξ

∂uz
∂η

)
r
J dηdξ+∮

Γ
Min · (

∧
p I
=
· ez −

1
Re τ=
· ez)rdS = 0

(34)

Since the interfacial force balance equation (Equation (8)) is imposed as a natural condition for the
momentum equation, the line integrals at the interface are calculated as follows, where the surface
divergence is employed in order to reduce the order of differentiation in the capillary term:

∮
Γ

Min · (
∧
p I
=
· er −

1
Re τ=
· er)rdS = −

1∫
0

Mi(BondmH + Bondzint + pout)zξrdξ

+
1∫

0

∂Mi
∂ξ

rrξ√
r2
ξ
+z2

ξ

dξ+
1∫

0
Mi

√
r2
ξ
+ z2

ξ
dξ

(35)

∮
Γ

Min · (
∧
p I
=
· ez −

1
Re τ=
· ez)rdS =

1∫
0

Mi(BondmH + Bondzint + pout)rξrdξ+

1∫
0

∂Mi
∂ξ

rzξ√
r2
ξ
+z2

ξ

dξ
(36)

In the same manner, the final form of all other governing equations is derived.

2.2.3. Benchmark Simulations and Code Validation

In order to validate the numerical method and the developed code, we performed several
benchmark tests. As a first test, we considered a single pore with a height of 1 mm and radius of 30 µm
filled with liquid lithium (ρ = 512 kg/m3, σ = 0.4 N/m, µ = 4× 10−4 Pa·s, λ = 4× 106(Ω ·m)−1) in
a static configuration, with no pressure drop imposed between the reservoir and the plasma phase
above the interface [20]. The pore is subject to an external magnetic field of intensity, B0 = 4T, that is
applied along the azimuthal direction. At time t = 0, an electric current with constant radial and axial
components, Jr,in = 108A/m2, Jz,in = 0 (Bondm = 0.9), enters the pore through its interface, resulting in
a Lorentz force that pushes the liquid out of the pore and causing an upward motion. In this manner, we
simulated an electric current, e.g., eddy current, that enters the porous structure due to a sudden event
in the bulk of the surrounding plasma. The gravitational Bond number is equal to Bond = 1.13 × 10−5,
whereas the Reynolds number is Re = 195.95. Figure 3 depicts the temporal evolution of the angle, θ,

at which the interface meets the pore edge, sinθ = −zint,ξ/
√

z2
int,ξ + r2

int,ξ at r = 1, and it is obvious
that after the liquid is pushed out, a competing force due to the capillarity acts in the opposite direction,
pushing the liquid back into the pore in an effort to restore the original configuration. This interplay
between the two forces results in a periodic motion, as shown in Figure 3a, with a decaying amplitude
until the fluid settles to a static steady flow arrangement corresponding to the imposed disturbance, as
shown in Figure 3b. It should be stressed that the presence of the rotational part of the Lorentz force
does not allow for the fully static arrangement to be recovered. However, for small enough values
of Bondm, the rotational part of the fluid motion is vanishingly small, and consequently, the liquid
metal inside the pore is nearly at rest while the shape of the interface is almost indistinguishable of the
one obtained by a static calculation of the interaction between the liquid metal and the Lorentz force
ignoring the rotational part. Thus, the shape of the interface essentially reflects the effect of magnetic
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pressure on the static arrangement, assuming a fixed contact point at the pore edge in the manner
predicted in [20].
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Figure 3. (a) Temporal evolution of the angle, θ, at which the interface meets the pore mouth;
(b) Comparison between the final interfacial shape of the dynamic simulation and the static solution
for Bondm = 0.9.

Next, using the flow arrangement obtained in the above simulation as an initial condition, we
further increased the electric current up to Jr,in = 2 × 108A/m2, which corresponds to Bondm = 1.8.
The dynamic response of the interface evolves in a similar fashion as in Figure 3, exhibiting the same
response pattern, as illustrated in Figure 4. After few oscillations, the interface very quickly settles to a
flow arrangement that is also nearly static, corresponding to the increased level of magnetic pressure,
also in agreement with the results in [20].
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The results presented in this section were obtained with a grid 80 × 80 and a stretching factor of
0.7 but mesh refinement was also performed. The dimensionless time step for all the cases presented
in this paper was set to 2 × 10−4. The use of a small time step is forced by the fact that the shape
of the interface is not determined simultaneously with the other variables of the problem, but it is
calculated along with the solution of the elliptic mesh equations. This type of splitting when solving
for the unknown variables demands very small time steps in order to facilitate convergence of the
NR procedure and convergence of the temporal refinement to a certain solution. This is in marked
difference with the treatment in [30], where time steps on the order of 10−2 were used. In the latter
study, the interface is viscoelastic and its shape, which is determined together with the other unknowns,
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is used as an essential condition in the elliptic mesh generation methodology. Alternatively, one can
solve the governing equations along with the mesh equations, but this is not a preferable choice since
it increases the computational cost significantly. Finally, it is important to mention that time steps even
smaller than 2 × 10−4 were used in various tests to ensure accuracy, and numerical convergence was
verified in all cases.

3. Results

In this section, the main results of the study are presented. Thus, we proceeded to investigate the
manner in which the dynamic response of the liquid metal is affected as the magnetic Bond number,
Bondm, is increased. It is of great interest to determine whether a critical Bondm exists, above which the
flow does not reach a steady solution, but instead the dynamics lead to saturated pulsations or even
destroy the coherence of the interface, possibly leading to drop ejection and plasma contamination
via a finite time singularity. First, the effect of increasing intensity of the external electric current was
examined, increasing Bondm, thus simulating the impact of abnormal operating conditions on the
functionality of the porous structure. A study on the effect of the properties of the liquid metal that fills
the pore region on the dynamic response of the interface was also performed, by increasing parameter
c that mainly reflects an increase in the electric conductivity, as well as by examining the dynamic
response of a different liquid metal filling the pore region, i.e., liquid gallium (Ga).

3.1. Effect of Increasing Bondm

Maintaining the same conditions as those described in Section 2.2.3 that presents the benchmark
tests, we proceeded to investigate the dynamic response as the incoming electric current was further
increased, i.e., increasing Bondm. A flat distribution of Jr(r) = Jr,in was employed here as well for the
purpose of comparison with previous results. The simulations indicate that there is a critical value
for the Bondm (Bondm,cr1 ≈ 4.5, Jr,in,,cr1 ≈ 5 × 108 A/m2) below which the flow very quickly reaches a
steady state, as shown in Figure 5. The final steady interfacial shape does not differ significantly from
the corresponding static solution, but it is clear that as Bondm increases, the difference between the
two solutions tends to increase (Figure 6). This is due to the fact that the rotational part of the Lorentz
force, which is expressed by the term Bondm

H
r er in Equation (7), is gradually intensified at steady state

with increasing Bondm, as manifested by the rotational steady patterns formed in the area below the
interface, exhibited by the streamlines shown in panels a,b of Figure 7. By inspecting the distribution
of the electric stream function, H, at the steady state (Figure 7c,d), it is evident that the non-zero values
are limited in the area below the interface where the steady patterns are observed and, moreover, it is
understandable that even though the absolute value of H does not increase significantly in this range
of Bondm, the rotational part of the Lorentz force is gradually intensified.
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Figure 7. (a,b) Steady rotational flow patterns for Bondm 2.7 and 3.6, respectively; (c,d) distribution of
the electric stream function, H, at the final steady state for Bondm 2.7 and 3.6, respectively.

If the threshold of 4.5 for Bondm is exceeded, the interplay between the Lorentz and the capillary
forces does not lead to a steady solution, but instead the interface starts exhibiting a fast modulation
of the original periodic motion that is characterized by a second smaller time scale compared to the
initial one. In this case, the two time scales coexist as it is shown in Figure 8, with the amplitude of
the faster oscillations increasing in time at a very slow pace, especially as Bondm increases. It seems
that for the proper set of parameters, the interface will eventually saturate to a steady pulsation
state that is determined by the interplay of the above two time scales. However, it is quite difficult
to determine this parameter window, for which such a steady pulsation will be possible, solely by
performing dynamic oscillations and is left for a future study in which simulations combined with
linear stability analysis will provide a reliable prediction of the relevant eigenfrequencies and the
corresponding parameter range. If we keep increasing the electric current, a second critical threshold
is obtained (Bondm,cr2 ≈ 5.85, Jr,in,cr2 ≈ 6.5 × 108 A/m2), above which the interfacial oscillations become
so intense that they eventually lead to pinching of the interface at a finite time from the imposition of
the disturbance. As a result, as illustrated in Figures 9 and 10, before the emergence of the second time
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scale, a singularity develops on the interface that prohibits further continuation of the simulations.
Pertaining to the results presented in Figures 8–10, a denser grid of 160 × 120 elements was used while
the stretching factor of the elliptic mesh generation scheme was set to 0.7.
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It is the effect of the irrotational part of the Lorentz forces expressed through the magnetic pressure
(BondmH) in the interfacial force balance (Equation (8)) that is now intensified and leads to the above
instabilities. Since this part of the force is responsible for the acceleration of the interface, it leads to the
onset of a Rayleigh Taylor instability and eventually to interface pinching and drop ejection through a
finite time singularity. This is, to some extent, similar to the two-dimensional pillar interfacial formation
that is observed when vertically stacked fluid bilayers are subjected to vertical vibrations, as studied
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in [31]. Zoueshtiagha et al. [31] examined both experimentally and numerically the Faraday instability
between two miscible liquids of different densities and they concluded that above a certain acceleration
threshold, interfacial instabilities occur that lead to the mixing of the two fluids. As they stated in their
study, the findings are independent of the nature of the acceleration force since the forcing can arise
from several means, i.e., by the gravitational field, acoustic means, or even via electrostatic fields [31].
In the latter case, it is the Maxwell stress due to the electric field that accelerates the interface.

Fluids 2020, 5, x FOR PEER REVIEW 15 of 23 

 
(c) 

Figure 9. Temporal evolution of the angle, θ, at which the interface meets the pore mouth for Bondm 
equal to (a) 5.85, (b) 6.3, and (c) 7.2. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. “Drop formation” for Bondm equal to (a) 5.85, (b) 6.3, and (c) 7.2. 

It is the effect of the irrotational part of the Lorentz forces expressed through the magnetic 
pressure (BondmH) in the interfacial force balance (Equation (8)) that is now intensified and leads to 
the above instabilities. Since this part of the force is responsible for the acceleration of the interface, it 
leads to the onset of a Rayleigh Taylor instability and eventually to interface pinching and drop 
ejection through a finite time singularity. This is, to some extent, similar to the two-dimensional 
pillar interfacial formation that is observed when vertically stacked fluid bilayers are subjected to 
vertical vibrations, as studied in [31]. Zoueshtiagha et al. [31] examined both experimentally and 
numerically the Faraday instability between two miscible liquids of different densities and they 
concluded that above a certain acceleration threshold, interfacial instabilities occur that lead to the 
mixing of the two fluids. As they stated in their study, the findings are independent of the nature of 
the acceleration force since the forcing can arise from several means, i.e., by the gravitational field, 
acoustic means, or even via electrostatic fields [31]. In the latter case, it is the Maxwell stress due to 
the electric field that accelerates the interface. 

Reznik et al. [32] studied the shape evolution of droplets that are attached to a conducting 
surface and subjected to strong electric fields. They found that a subcritical region exists for the 
imposed electrical field where the destabilizing electric Maxwell stresses stretch the drop, but as 
they are eventually balanced by the surface tension, the drop concludes to a steady shape. 
Nevertheless, for stronger electric fields, the acceleration due to the electric Maxwell stresses 
overcomes the stabilizing effect of the surface tension and jetting formation initiated from the 

Figure 10. “Drop formation” for Bondm equal to (a) 5.85, (b) 6.3, and (c) 7.2.

Reznik et al. [32] studied the shape evolution of droplets that are attached to a conducting surface
and subjected to strong electric fields. They found that a subcritical region exists for the imposed
electrical field where the destabilizing electric Maxwell stresses stretch the drop, but as they are
eventually balanced by the surface tension, the drop concludes to a steady shape. Nevertheless, for
stronger electric fields, the acceleration due to the electric Maxwell stresses overcomes the stabilizing
effect of the surface tension and jetting formation initiated from the droplet tip, or even removal of
the entire droplet from the plate, are reported in the supercritical regime depending on the initial
configuration. A similar pinching situation was captured in a different context by Tsiglifis and
Pelekasis [33] in their study of the dynamic response of an initially elongated bubble that is also subject
to an initial internal overpressure and weak viscous effects, where different types of pinching patterns
were captured depending on the degree of the initial bubble elongation and internal overpressure.

In a similar fashion, in our case, it is the Maxwell stress that arises due to the interaction between
the magnetic field and the external electric current that produces the magnetic pressure. In particular,
in the flow arrangement studied here, neck formation instead of a conical tip is captured due to the
increased inertia of the system. As is known from linear stability [34], Rayleigh Taylor instability
occurs whenever fluids of different density are subjected to acceleration in a direction that is opposite
from that of the density gradient, i.e., the net acceleration is directed from the heavier to the lighter
fluid. In the flow arrangement we considered, the net acceleration is expressed by the quantity
g” = −BondmH−Bondz ≈ −BondmH since the gravitational Bond number is of the order of 10−5. As it
is obvious from Figure 7c,d, and Figure 11, the stream function of the electric current, H, gets negative
values below the interface, which leads to a positive g” pointing upwards to the lighter fluid, thus
generating a Rayleigh Taylor-type instability. In such a case, and when the fluids are not confined,
all wavenumbers are unstable when the effect of the surface tension is not taken into account. When
surface tension is included in the analysis [35], it stabilizes short waves with wavenumbers greater
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than a critical value, kc, which depends on the magnitude of acceleration. As the net acceleration
increases, kc also increases and thus the stabilizing effect of the surface tension is restricted to smaller
wavelengths. In our case, instability appears when acceleration increases sufficiently to reduce the
critical unstable wavelength below the pore radius. If we increase the Bondm beyond the above critical
threshold, the same behavior is captured but slightly sooner in time, as illustrated in Figures 9 and 10
and in the Supplementary Video S1 that shows the interfacial evolution for the case of Bondm = 7.2.
Nevertheless, in all cases, the dimensional time scale for drop ejection remains on the order of 0.5 ms.
In this context, Figure 11 provides the evolution of the stream function, H, towards the onset of the
finite time singularity for the case of Bondm = 6.3 presented in Figures 9b and 10b. In this case, neck
formation is observed close to the region of the interface, where the stream function, H, nearly vanishes
and a negative curvature region develops. Eventually, as the distance from the axis of symmetry
decreases, the radius of curvature also decreases in that region and pinching is expected to take place.
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Figure 11. (a) Temporal evolution of the stream function, H, for Bondm =6.3: (a) t = 0.068 ms,
(b) t = 0.0715 ms, and (c) t = 0.0732 ms.

At this point, it is necessary to examine the quality of the mesh mainly in cases like those presented
in Figure 10, where the interfacial distortions are severe. Figures 12 and 13 illustrate the temporal
evolution of the mesh as the finite time singularity is approached for the case of Bondm = 6.3, with
the latter providing a closer zoom in the region of neck formation. Since a grid of 160 × 120 elements
is used, it is impossible to illustrate the mesh in the entire pore region, and consequently, we focus
near the region where neck formation takes place. Furthermore, in the interest of clarity, the interior
nodes of the quadratic elements used for the grid generation are omitted and only the outer lines are
shown. It is thus clear that up to a certain point (t = 0.0732 ms), the mesh maintains sufficient quality
even though the elements start exhibiting distortion. At the final stages of ‘drop’ formation and in the
region around the neck, regions of overlapping elements, Figure 13c, appear that prevent us reaching
safe conclusions regarding the speed of neck formation, the local radius of curvature, and the actual
size of the ‘drop’. Nevertheless, the mesh refinement that was performed combined with the quality
of the mesh up to just a short period of time before the end of simulation corroborates the onset of a
finite time singularity that is conjectured to lead to drop formation. In order to study the final stages of
the developed singularity and to reliably capture drop formation, a highly accurate mesh generation
technique must be employed [33].
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3.2. Effect of Electric Conductivity

Next, we examined the effect of increasing the electric conductivity, λ, of the liquid metal on the
dynamic response of the liquid–plasma interface, especially in terms of stable operation. In order to
isolate its effect, we considered the physical properties of liquid lithium (Li) presented in Section 2.2.3
and we only increased the electric conductivity of the liquid metal, setting it to λ = 20× 106(Ω ·m)−1.
As illustrated from Figure 14, the increased electric conductivity results in the stabilization of the
interface, whereby the amplitude of oscillations is mitigated and drop formation is avoided, contrary
to the case of the electric conductivity of Li, also shown in Figure 14. In order to assess the stabilizing
role of the electric conductivity, we carefully examined the governing equations. Clearly, the influence
of the electric conductivity is practically incorporated in the parameter c that arises in Equation (14). It
measures the relative strength of the induced electric current, as a result of the interaction between
the magnetic field and the moving liquid metal, and the electric current that enters the pore from the
surrounding medium. An increase in this parameter results in a stronger induced electric current inside
the pore as is clear from Equations (14) and (15). As a consequence, the primary Lorentz force that tends
to destabilize the interface by pushing the liquid outside the pore, generated due to the interaction
between the external electric current and the magnetic field, is counteracted by the Hartmann braking
effect due to the induced electric current and the flow exhibits a more stable behavior.
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3.3. The Case of Liquid Gallium (Ga)

Although the results presented in the previous subsection demonstrate the stabilizing role of the
electric conductivity and are a good starting point in exploring the effect of the liquid metal properties
on the dynamic response of the interface, it is of greater importance to explore more realistic cases.
In this context, we fixed the pore size and strength of the external magnetic field as in the above
simulations and examined the dynamic response of liquid gallium (Ga) (ρ = 6095kg/m3, σ = 0.69N/m,
µ = 9.5 × 10−4Pa·s, λ = 3.8 × 106(Ω·m)−1) that is also considered as an alternative plasma-facing
component for the reactor walls [7]. We assumed that at time t = 0, an electric current with constant
radial and axial components (Jr,in = 6.5× 108A/m2, Jz,in = 0) enters the pore through its interface. This
value corresponds to the case of Bondm = 5.85 presented in Figure 9a for the liquid Li and has been
identified as the critical current, above which the interface exhibits a finite time singularity that is
conjectured to lead to drop formation. The results of the simulation as well as the comparison between
the two liquid metals are shown in Figure 15a and it is evident that Ga tends to stabilize the oscillations
of the pore–plasma interface in comparison with Li. In fact, if we further increased the electric current
to the value of Jr,in = 8× 108A/m2 used in the simulations shown in Figure 9c for the case with liquid
Li, it is clear that Ga stabilizes the oscillations of the pore free surface, owing to its larger surface
tension, which now performs a mild pulsation under the competing effects of capillarity and Lorentz
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forces. No indication of a finite time singularity was identified by the simulations for either one of the
electric current intensities that were employed.
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At this point, and in an attempt to explain the stabilizing effect of Ga, we resort to comparing the
dimensionless numbers that determine the dynamic response of the two liquids in the present flow
arrangement. The two liquid metals that were investigated have almost equal electric conductivities,
but due to the greater density of Ga, parameter c is much greater for Li (c = 0.125) compared to
Ga (c = 0.045). Based on the findings of Section 3.2, one would expect Li to exhibit a more stable
behavior compared to Ga, and this would be the case had the surface tension been of the same order
of magnitude for the two metals. On the contrary, Ga is characterized by a greater surface tension
compared to Li, which results in a smaller Bondm for a given electric current. More precisely, for the
case of Jr,in = 6.5 × 108 A/m2, Bondm was calculated as equal to 3.4 and 5.85 for Ga and Li, respectively,
whereas for an electric current of 8 × 108 A/m2, the corresponding values are 4.1 and 7.2, respectively.
Clearly, in both cases examined, the magnetic number Bondm for Ga is kept under the critical threshold
of 5.85, above which drop formation is possible. In fact, we need to increase the induced electric current
up to the value of 11.3 × 108 A/m2 in order to reach this particular threshold. These findings clearly
illustrate the stabilizing effect of surface tension, since it is the main resistance to the destabilizing
Maxwell stresses, and at the same time highlight the importance of careful examination of every
parameter of the problem before an optimal selection is reached.

4. Conclusions

Assuming a fixed contact point arrangement of the liquid metal at the pore exit where it joins the
surrounding medium and the solid substrate, simulations performed in the context of axisymmetry
have shown that a critical threshold exists for the magnetic number (Bondm,cr1 = 4.5), below which
the interface, after few decaying oscillations as a result of the interaction between the capillary and
the Lorentz forces, concludes quite fast (t ~ 1 ms) to a steady state with mild rotational patterns.
These patterns, caused by the rotational part of the Lorentz forces, are slightly intensified as Bondm

is increased and lead to a small deviation from the static interfacial shape studied in [20]. When the
critical threshold of 4.5 is exceeded in Bondm, the spectrum of interfacial oscillations is enriched by
a smaller time scale and the dynamic response tends to settle to a saturated pulsation. Eventually,
a second critical threshold is recorded (Bondm,cr2 = 5.8), above which a Rayleigh–Taylor instability
appears as the interface is strongly accelerated under the influence of the irrotational part of the
Lorentz forces corresponding to the magnetic Maxwell stress and expressed through the magnetic
pressure (Bondm·H) in the normal force balance. The instability exhibits a finite time singularity that
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is conjectured to lead to drop ejection. As discussed in the results section, this kind of behavior was
reported in other studies as well, with the acceleration force induced either by gravity, electrostatic
field forces, or even acoustic means [31,33]. In particular, drop ejection via a Rayleigh Taylor instability
in a liquid metal divertor has also been conjectured by Jaworski et al. [15]. More specifically, in the
latter study, following the analysis by Chandrasekhar [35], it was conjectured that for a given liquid
metal and a given magnetic field, Rayleigh Taylor instability develops above a critical threshold for the
external electric current. Furthermore, it was discussed that the acceleration produced depends on the
pore size, and consequently, a smaller pore radius has a stabilizing effect on drop ejection. This is in
agreement with our results since in all simulations presented in Section 3.1, the liquid properties, the
magnetic field, and the pore size were kept constant and the increase in Bondm was caused solely by
increasing the external electric current, which eventually led to an increase in the net acceleration.

In an ensuing study, it will be of interest to ascertain the dominant balance leading to the singularity.
In particular, the balance between capillarity and inertia, locally where neck formation is captured, and
the resulting time and space scaling will corroborate this mechanism that has also been captured in
previous studies, where a finite time singularity is captured in association with interfacial acceleration
and capillarity [33]. Furthermore, stability analysis needs to be performed in order to verify whether
the mechanism identified in the present axisymmetric flow arrangement as being responsible for the
emerging instability is indeed associated with the magnetic pressure component of the Maxwell stress
and to determine precisely the critical threshold for instability. Furthermore, it is crucial to extend the
present study by incorporating the thermal analysis as well as explore how the above identified critical
thresholds for stability are affected by the presence of an external heat load applied on the interface
from the surrounding plasma. In this fashion, the thermal effects and their role in the dynamics of the
flow arrangement can be clarified.

Finally, in an attempt to study the effect of the properties of the liquid metal that fills the pore
region on the dynamic response of the interface, we performed simulations with increased electric
conductivity, which is reflected in the increase of parameter c, and we verified its stabilizing effect.
An increase in the latter parameter results in a larger induced electric current inside the pore, which
generates a braking effect that counteracts the destabilizing Lorentz force. Moreover, we examined
the dynamic behavior of liquid Ga under great electric currents, with the simulations indicating its
superiority over Li for stable operation that is attributed to its greater surface tension.

It should be stressed that the above simulations were performed to examine the unsteady flow of
a liquid metal inside a single pore of a capillary porous system. The latter is envisioned as a means
to protect the divertor wall of a fusion reactor from the high fluxes of heat and particles released by
plasma activity in the bulk of the reactor. Clearly, the interaction between the CPS and the surrounding
plasma is more complex in reality, but this simplified approach, which has also been previously used
in [19,20] and possibly leads to an overestimation of the system‘s permeability [19], is necessary in
order to obtain an in-depth understanding of the involved phenomena and the manner in which they
affect the dynamic behavior of the liquid–metal interface. It is therefore important to perform a more
extensive parametric analysis that examines the effect of other parameters as well, like the pore size,
the intensity of the magnetic field, and the structure of the porous medium. Moreover, it is crucial
to relax the fixed contact point approach, and to test its validity by studying the coating process of
the liquid metal on the CPS surface. In the same context, the magnetic field was imposed only on the
azimuthal direction, thus allowing us to focus on an axisymmetric flow arrangement inside the pore.
In reality, the magnetic field has other components that may also lead to more intricate phenomena
like swirling [22,36]. However, this demands the development of a 3D rotationally symmetric or a full
3D modelling of the problem. The above effects are crucial in order to obtain a more complete picture
of the CPS dynamic response and are left for future research.
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