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Abstract: This study explored two-dimensional (2D) numerical hydrodynamic model simulations
of Lake Victoria. Several methods were developed in Matlab to build the lake topography. Old
depth soundings taken in smaller parts of the lake were combined with more recent extensive data
to produce a smooth topographical model. The lake free surface numerical model in the COMSOL
Multiphysics (CM) software was implemented using bathymetry and vertically integrated 2D shallow
water equations. Validated by measurements of mean lake water level, the model predicted very
low mean flow speeds and was thus close to being linear and time invariant, allowing long-time
simulations with low-pass filtered inflow data. An outflow boundary condition allowed an accurate
simulation to achieve the lake’s steady state level. The numerical accuracy of the linear measurement
of lake water level was excellent.

Keywords: methods of lake bathymetry; shallow water equations; lake hydrodynamics; numerical
accuracy; steady-state analysis; water-level validation

1. Introduction

Lake Victoria (LV) in East-Africa is the second largest fresh water body in the world and the largest
in Africa, with a shoreline shared by three countries: Uganda, Kenya, and Tanzania. It is a shallow
water body with an average depth of 40 meters and a maximum depth of 80 meters, and a horizontal
extent of 355 km [1,2]. The largest fresh water body in East-Africa is now severely affected by water
quality degradation. The most important components of water quality degradation are: Pollution,
river discharge, sedimentation, nutrient loading, and eutrophication. The lake is also greatly affected
by many other factors due to its shallowness.

The shallow water body system is environmentally sensitive and its flow management areas
are complex [3]. Climate change, or at least the fact that extremes are increasingly appearing, has
changed the vulnerability of the flow of shallow water bodies. There is a need to understand the
hydrodynamic processes of lake systems that are directly affected by chemical, biological and ecological
systems as well as the physical processes of the lake system and their driving forces, which are crucial
for the management of these systems [4]. Previous Lake Victoria model analyses [5–8], including
thermodynamic and hydrodynamic characteristics, were based on the Princeton Ocean Model 3D
simulations. They considered an elliptic lake with surface wind stress to investigate the vertical lake
temperature profiles. Nyamweya et al. [9] used the Regional Oceanographic Model System (ROMS)
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to investigate Lake Victoria’s physical processes (temperature and currents) that have an effect on
dial, seasonal, and annual variations in stratification, vertical mixing and inshore-offshore exchanges.
They developed the model in ROMS to better understand annual and seasonal water circulation in
Lake Victoria based on real bathymetry, wind stress, surface heat fluxes, solar radiation, and river
inflow/outflow forcing. National Oceanic and Atmospheric Administration (NOAA) also built a model
for Lake Victoria using meteorological data, with a strategic plan to build an integrated physical and
ecological model focusing on eutrophication by 2022 [10]. Analysis of Lake Victoria’s water level,
pollution, eutrophication, and sediment flow have been partly covered by Hecky and Kendall [11,12].
However, there has not as yet been any research to consider lake hydrodynamics using details from
Lake Victoria’s bathymetry survey.

The Lake Victoria Environment Management Project (LVEMP) reports [12] for the Lake Victoria
Basin Commission (LVBC) present a regional water quality synthesis for Lake Victoria, which
recommends undertaking a detailed bathymetric survey for Lake Victoria to support model
development, calibrations, validation, and investigation of lake residence time. The existing
hydrographic chart is out-dated and cannot be used for inshore areas where significant local changes
have occurred, due to sedimentation and the river delta extension. The current paper partly follows
this recommendation.

In November 2014, the present bathymetry model was presented in [13], which is available on the
COMSOL website [13]. The study included different systematic methods for the development of a
detailed bathymetry model for a lake hydrodynamic. The Hamilton group created a high-resolution
bathymetric Geographic Information System (GIS) raster map, which was made available in
October 2016 [14] and further improved in 2018. The data points came from Admiral maps and field
data, and were modified for shoreline, consistency etc. [15].

An efficient approach to support and complement the understanding of physical processes in
reservoirs is useful for numerical and hydrodynamic modeling [16,17]. One approach in the application
of a numerical model for shallow water bodies is the vertically integrated method. Parker and
Lenhard [18] used the vertically integrated method for a water and hydrodynamic model to reduce
dimensionality and diminished nonlinearity. Strack and Ausk [19] demonstrated that the gradient
of the comprehensive discharge potential gives the vertically integrated discharge value throughout
the aquifer.

This study included different methods for lake bathymetry development in Matlab. The governing
equations were the vertically integrated Saint–Venant shallow water equations (SWEs), which cover
the areas of the bottom topography as well as the free surface of the whole lake. The model needed flow
sources and fluxes on lake surface areas and lake flow boundaries and used river discharges–inflows
as well as the only outflow, the Nile, along the lake shoreline. The model also needed precipitation as
well as evaporation on the lake surface, extrapolated from stations on the lakeshore.

This study posed the following scientific questions:

i. How are the systematic methods developed for lake bathymetry relevant for lake numerical
and hydrodynamic modeling?

ii. How are lake bathymetry and flow models developed in CM?

To address these questions, the study was designed to:

• Identify specific challenges in building lake bathymetry and exemplify how to overcome them;
• illustrate the improvement of systematic methods for lake bathymetry using Matlab, and analyze

2D surface flow through the numerical model approach in CM;
• assess the reliability of the vertically integrated model by checking its prediction of mean

water level;
• explore the relationship between lake outflow conditions and water levels to achieve a steady-state

level and numerical accuracy of linear measurement of the lake’s water level;
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• discuss the significance of systematic methods for lake bathymetry and the numerical
hydrodynamic insights gained from model development.

2. Study Area and Methodological Approach

2.1. Study Area: Lake Victoria

Lake Victoria is the largest tropical lake in the world. It is located between the Eastern and Western
Branches of the East African Rift System and lies within an elevated plateau in the western part of
Africa’s Great Rift Valley. It occupies a shallow depression (75 m deep) on the Equatorial Plateau
(ALT. 1135 m) between two arms of the Great Rift Valley, and has an irregular shoreline, several small
islands, and numerous streams (Figure 1b). Its total catchment area is 251,000 km2, of which 68,800 km2

is the actual lake surface [20]. Its shoreline is shared by Kenya (6%), Uganda (45%), and Tanzania
(49%) [21,22], and the tributary areas are composed of many sub-basins in riparian states of Kenya
(21.5%), Uganda (15.9%), Tanzania (44.0%), Rwanda (11.4%), and Burundi (7.2%) [23]. Lake Victoria
stretches 412 km from north to south, between latitudes 0◦31′N and 3◦12′S, and 355 km from west
to east between longitudes 31◦37′W and 34◦53′E (Figure 1b). It has a volume of 2,760 km3 [1] and is
much shallower than other large African lakes (Malawi and Tanganyika) (Figure 1a).

Figure 1. (a) Shallowness of Lake Victoria compared with lake Malawi and Tanganyika, and
(b) Lake Victoria catchment area topography has taken from source [5] (Copyright @ 2004 Royal
Meteorological Society).

2.2. Methodological Approach

Numerical modeling is the best tool available when experimental techniques are time-consuming,
difficult, or actually impossible. A numerical lake topographical model can provide better
information/processing scenarios for hydrological processes. Lake hydrodynamic processes are
highly varied due to the lake geometry and surrounding topography, hydrological and geochemical
loading, as well as meteorological exposures [24]. Numerical hydrodynamic lake models have
recently been used to address environmental problems as well as hydro-meteorological properties and
geographical geometric characteristics [25]. The numerical model is solved by the SWEs and considers
the Coriolis effect for lake bottom topography [26,27]. In Lake Victoria, Coriolis effects play less of a
role because the lake is situated on the equator.

Two-dimensional depth-averaged models for fresh water bodies are used to simulate irregular
geometry, steady and unsteady flows, finite difference and finite volume, and finite element methods
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are used to solve shallow water models [28]. Finite element spatial discretization is attractive for
flexibility of triangulation for the representation of irregular boundaries and local mesh refinement [29].

In this study, CM® was chosen as a platform, since it allows dissimilar physics to be dealt with
numerically within the same modeling framework. This is in constrast with the common approach,
which treats problems from different disciplines with numerical models specifically developed for their
respective discipline. Matlab® is a multi-paradigm numerical computing environment and proprietary
programming language. Matlab libraries for Kriging [30] and triangulation are used to make a smooth
lake topographical model.

CM is useful for its:

• Documented equation-based modeling for all relevant physics. For example this supports
validation against other simulation platforms, such that the effects of different numerical techniques
can be distinguished;

• easy inclusion of equation-based dispersion, biological and chemical processes supported by the
Multiphysics features;

• educational effect of a well-developed link between Multiphysics and Matlab with its eclectic
numerical libraries;

• so-called COMSOL Server, where a COMSOL Multiphysics application can be run in major
platforms such as Windows, Linux, etc. COMSOL Server is a multiuser service that can be
run continuously on the host computer, and COMSOL can be run on multiple computers to
support simultaneous users and more concurrent applications than could be supported by a
single computer. The COMSOL Server service significantly facilitates cooperation between users
distributed over different locations, as is the case in the present study where the participating
researchers and collaborators are located in Sweden, Uganda, Tanzania and Kenya.

Numerical Simulation in Other Softwares

The numerical modeling was to mainly be realized by means of COMSOL Multiphysics, and
comparative studies possibly carried out with some other state-of-the art software such as Delft3D,
MikeSHE, ELCOM, GeoClaw, etc. Delft3D is a well-known comprehensive state-of-the art model that
is typically used for coastal waters and estuaries. Therefore, before building the model in COMSOL, a
few preliminary tests were carried out using Delf3D in order to become acquainted with this particular
software as well as with data input and output.

3. Materials and Methods

The first task was to define the lake’s geometry, i.e., the shoreline and bathymetry. The bathymetry
was built from several sources, requiring stitching and smoothing operations. The sources and sinks
of water, i.e., inflows and outflows, and, where relevant, the solute, evaporation, and precipitation
were defined from existing measurements or assessments. A numerical model needs verification
or validation before model predictions are considered credible. If widely used general software is
employed, verification is a minor issue. However, validation is a major issue for hydrodynamic models,
since the required data on water velocity or accurate water levels must be available. The only validation
of the present model was a comparison of mean water levels. This validation is only a test of the
conservation properties of the numerical model, albeit one that illustrates that the choice of boundary
conditions is important.

3.1. Lake Bathymetry

Lake surface elevation is probably the most fundamentally important property, and lake
bathymetry is relevant for a wide range of research topic and societal needs. Knowing the exact water
depth or morphology of the lake bottom topography is vital, however, its underwater equivalent
remains uncertain in lakes, rivers, and oceans in many parts of the world [31]. This work covers the
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obtaining and merging of raw data as well as filtering and interpolation into a digital elevation model
(DEM) to be imported into the simulation software.

Bathymetry B(x, y) is a map of the elevation of the “bed” or “floor” of a waterbody. It is assumed
that the model has bottom topography fixed in time. The free-surface vertical position from a reference
datum, often referred to as wave height, is:

z = ζ(x, y, t) (1)

Water depth is:
h(x, y, t) = B(x, y) + ζ(x, y, t) (2)

where, z is the vertical coordinate, ζ is the celerity, and h the water depth, as presented in Figure 2. The
required data also include the localization of the tributary inflows and the outflow on the shoreline.
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3.2. Lake Bathymetry Methods

3.2.1. Digital Elevation Model (DEM) for Lake Bathymetry

An accurate representation of lake topography is essential for lake hydrodynamics. An elevation
model contains specific elevation values at specific locations [32]. Conventionally, the values are
collected from maps and field surveys. For computer simulations the representation of the topography
is called a DEM. Commonly, the model is represented by a rectangular grid, also called an elevation
matrix structure, by a triangulated irregular network (TIN) or by contours [33]. NASA (STRM: Shuttle
Radar Topography Mission) and U.S. Geological Survey (USGS) are open sources providing geological
images, including satellite data, which make data available in different DEM formats. When the work
started (2014) [13], no such open source was available for Lake Victoria bathymetry. The model has
data from old depth soundings taken in different regions and old depth contours, which were merged
with modern echo-sounding data, as presented in [13].

In the autumn of 2017, the HARVARD Dataverse (Hamilton group) made a lake depth map
accessible online [14]. The group produced 100 m2 GIS-raster maps from SRTM data sources to generate
a high-resolution digital elevation model (DEM) of Lake Victoria using raster interferometry. Hamilton
group has created a bathymetry model resolution for Lake Victoria. They used old data points (before
20th Century data manually digitized via a process of fitting admiralty maps to the lake shoreline)
combined with GPS-enabled (2010) hydrographic survey systems. The raster model was created by the
process of simple Kriging. This was unable to capture the deepest portions of Lake Victoria. Continued
improvements will follow once more data is captured for Lake Victoria [14].

3.2.2. Coordinates

Let θ be the latitude, 0 at the equator and +90 on the North Pole. ϕ is the longitude, 0 at Greenwich
(UK) and increasing east (+). The lake extent is small enough to be considered a plane normal to
gravitational acceleration, x west–east, and y south–north. Thus, as in Equation (3):

(x, y) ≈ R(cosθ0(ϕ−ϕ0),θ− θ0) (3)

where, R is the earth’s radius, 6371 km, and ϕ0,θ0 = 0 is a central point in the lake.

3.2.3. Depth Data from Several Sources

The available depth data come from two sources:

• An existing Admiral bathymetry map merged with iso-depth curves [34] (Figure 4a);
• modern digitized sets of points obtained from the National Fisheries Resources Research Institute

(NaFIRRI), Jinja, Uganda [35] (Figure 4b).
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Satellite spectral remote sensing and echo sounders were used. The satellite data covered the lake
surface and extended 15 km east–west and south–north of the lake (Figure 4b).

The bottom slopes are the driving forces for the hydrodynamic model that consequently requires
(∂B/∂x, ∂B/∂y) at the integration points of the finite element mesh. This is a scattered data interpolation
task, from giving depth data points to finite element integration points. It is accomplished by first
creating a Nx ×Ny rectangular grid of B(x, y), dense enough to allow differentiation by differences.
Several methods have been used for the unstructured interpolation problem. Since derivatives are
needed, the task is challenging.

Two methods were applied in an attempt to create the table B(Xi, Y j): A Kriging method, as
implemented in the MATLAB DACE toolbox (Section 3.2.4), and a Delaunay triangulation of the points
followed by interpolation and spatial filtering by an isotropic Gaussian kernel (Section 3.2.5).

The old data with a well-defined shoreline B(x, y) = 0 also had to be combined with the much
more voluminous modern data. There were obvious discrepancies in the locations. The fusion of the
data is described in Section 3.2.6 below.

3.2.4. Interpolation by Kriging and DACE

Kriging is a geostatistical interpolation technique that is widely used in the design and analysis
of computer experiments for response surface models, meta models, and surrogate models. DACE
(design and analysis of computer experiments) is a MATLAB toolbox for implementation of a Kriging
approximation [30]. The DACE toolbox uses two important functions: Dacefit and predictor. The
lake bathymetry development used the DACE toolbox with Delaunay under dacefit functions that
created a Kriging interpolation function to determine depth from all the available set of points. This
combination process either made interpolation very unsmooth or too smooth to evaluate the Nx ×Ny

dense rentangular grid. The main reasons for this are that the initial set of points are anisotropic, the
distance between points on cueves is relatively short, and the distance between curves is rather long.

Gridded data in Matlab means the order of data in a grid. A grid is not only a set of points
within a certain geometry property; it relies on an ordered relationship between points in the grid, and
this structure is very useful for grid-based interpolation. Matlab provides different functions such as
Cartesian axis-aligned or array space-aligned for built-in 2D (Figure 4a) and 3D (Figure 5) grid-based
interpolation. At this point, is should be noted that db

dx , db
dy was needed to import 2D gridded data

in CM.
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Kriging considers the data as samples of a stochastic field for which the best linear unbiased
estimator is to be obtained. It relies on the variogram R(x, y), which describes how the covariance of
the data at two points depends on the relative location of the points. In the estimate, at point (x, y), the
influence of data points (xi, yi) decays like the variogram. DACE supports variograms of the form
Equation (4),

<(x, y; xi, yi) = <(d), d =

√
((x− xi)/Rx)

2 +
(
(y− yi)/Ry

)2
(4)

where, Rx and Ry represent the correlation lengths. These must be chosen to create the estimator, and
the automatic procedure implemented in DACE is a nonlinear minimization. This approach becomes
more difficult when the data distribution is very different from being essentially isotropic. In the
present case, the points are on a few densely sampled curves so the distances between points on the
curves are much shorter than the distances between the curves. Extensive manual trial-and-error
choices of Rx and Ry were also unable to produce smooth, accurate interpolants for lake topography.

3.2.5. Delaunay Triangulation and Interpolation

The Delaunay triangulation is an essentially uniquely defined, minimum edge length
triangulation [36] of the convex hull of a given point set. The circumcircle of each triangle contains
only the points that are vertices of that triangle. It is widely used for finite element mesh generation
and for scattered data interpolation, and can be computed in O (n log n) time for n points.

The Delaunay structure was used to interpolate a fine Nx ×Ny rectangular grid covering the
convex hull of the set of points. The Matlab function grid data accomplishes these two steps. It
was observed that some triangles in the shore regions had all the vertices on the shoreline and thus
vanishing depth. Near-shore points were then added manually to avoid such configurations. Figure 6
illustrates the Delaunay triangulation of the old iso-curve data plus the added points. Some of the data
points are shadowed in the plot by depth coloring.
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The Delaunay interpolant is only continuous (see Figure 6), however, the model requires slopes,
i.e., a smooth interpolant. Thus, the grid data were subsequently filtered by an isotropic Gaussian filter
with a width chosen as a compromise between the relationship to the data and smoothness.

3.2.6. Merging Iso-Curve Data with NaFIRRI Data

The shore geometry was well defined as a zero depth level curve in the old data points. The
NaFIRRI data points did not explicitly show the shoreline. When the older iso-depth curve data
points (Figure 4a) were added to the set of NaFIRRI points in a 0–10 m depth, there was an obvious
discrepancy in the shoreline (Figure 7a). In order to avoid these problems, the locations of the new data
points were slightly modified by a bilinear free-form deformation [37] transformation, defined by 2 × 2
control points at the corners of a rectangle covering the convex hull of the points. This procedure is a
fitting of one point cloud C1 ordered along a curve—the shoreline—to another, unordered set C2, easily
accomplished by interactive manipulation of the control points. More “objective” algorithms, such as
the iterative closest-point scheme [38], try to minimize the mean square distance between C1 and its
closest neighbors in C2, and often rely on human help to choose candidate close neighbors (Figure 7b).
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4. Governing Equations, Boundary Conditions and Mesh Geometry

4.1. Saint–Venant Shallow Water Equations

Shallow water equations (SWE) are based on the assumption H/L << 1 where H and L are the
characteristic values for vertical (i.e., depth) and horizontal length scales, respectively [39,40]. SWE are
normally used for large-scale surface areas [26] to simulate tidal flow, surface runoff, coastal flows,
dam-break floods, and tsunamis, etc. SWE describes motions in a thin layer of fluid of constant density
in hydrostatic balance, bounded from below by the bottom topography and from above by a free
surface, in response to gravitational and rotational accelerations [41,42] in addition to inflow/outflow
and other sources.

SWE are a system of hyperbolic partial differential equations (PDE). A formulation in terms of the
conserved quantities (mass and momentum) is needed if shocks (hydraulic jumps) might appear [43].
Any stable numerical scheme for solving hyperbolic equations must include dissipation. This can be
included in the scheme (and hidden from the user), such as in upstream or discontinuous Galerkin
schemes, or added as artificial dissipation/diffusion/viscosity terms which are tunable by the user [43].
CM uses the standard Galerkin formulation with artificial dissipation. This makes the equations
parabolic, which implies that one boundary condition per-equation is needed for well-posedness. Such
stabilization is added automatically for CM Computational fluid dynamics (CFD) modules, however,
the SWE must be modelled by equations and the dissipation must be added explicitly. A rather fine
grid is required to keep the artificial dispersion limited; the recipe is to choose the artificial kinematic
viscosity υA as isotropic, proportional to the spectral radius of the flux Jacobian, the element size ∆,
and an O (1) tuning parameter µ, as in Equation (5):

υA = µ ·
(√

g · h +
√

U2 + V2
)
· ∆ (5)

The Coriolis acceleration factor γ follows from the earth’s rotation rate ω = 7.272 × 10−5 s−1

with the geoid normal ωθ = 11.4 ∗ 10−12Y when Y is the distance to the equator in ‘meter’. The
depth-averaged two-dimensional flow equations implemented are:

Ut + U ·Ux + V ·Uy + gζx = div(υA∇U) + C ·U
√

U2 + V2 − γ(y)V + Fx (6)

Vt + U ·Vx + V ·Vy + gζy = div(υA∇V) −C ·V
√

U2 + V2 + γ(y)U + Fy (7)



Fluids 2019, 4, 182 11 of 21

ζt + (h ·U)x + (h ·V)y = div(υA∇ζ) + Q (8)

The simulation model represents the integrated momentum balance in Equations (6) and (7). The
vertically integrated continuity equation becomes the evolution Equation (8) for wave height with the
net source (precipitation–evaporation) in Q. The Coriolis coefficient is γ(y), wind forcing in

(
Fx, Fy

)
,

and the bottom friction is modelled by (C . . .), with boundary conditions representing river inflow and
outflow. Note that the horizontal components of the Coriolis acceleration are small.

The model with water depth h, velocity components (U, V) in the x− and y− direction, and
gravitational acceleration g, can be written as in Equations (5)–(8), for which the parameters are given
in Table 1.

Table 1. Description of SWE parameters.

Parameters Unit Value Expression

Differential equations

x, y m - East–viz. North coordinates
U, V m/s - x-viz. y-mean velocity of water

∆ m - Local element mesh size
ζ m - Free surface elevation

Fx, Fy m/s2 - “Forces” (wind stress, etc.)
g m/s2 9.81 Gravitational acceleration

h = ζ+ B(x, y) m - Water depth
k - 0.0015 Bottom friction coefficient

C = k/h m−1 - Bottom force coefficient
µ - 0.4 Non-dimensional artificial viscosity/diffusion coefficient
Q m3/s - Source of water volume
γ(Y) s−1 10−11

·Y Coriolis parameter, depending on distance to the equator
Y (−300e3 + y) Distance to the equator

Boundaries

Unx + Vny m/s 0 Wall normal velocity
q m3/s - Normal in/outflow

U = q/(h L)nx m/s -
x-component wall normal velocity at flow q over length L

of boundary with normal
(
nx, ny

)
V = q/(h L)ny m/s - d:o, y-component

B(x, y) m - Bathymetry

Initial data

ζ(x, y, 0) m ζ0 + d(x, y) Initial constant water depth with a perturbation d
U = V m/s 0 Initial value for U and V

4.2. Boundary Conditions

4.2.1. Model Boundary Conditions

The numerical model is parabolic requiring three boundary conditions, formulated in terms of the
state variables and their normal derivatives.

4.2.2. Shoreline Conditions

The shoreline is a no-flow-through slip boundary. Viscosity νA is dominated by the gravity wave
velocity and becomes small at the shore where the water depth is small. Since νA is small at the shore,
a no-flux condition was used, which also annihilates the viscous contribution to mass flux. If mean
velocities are large enough, no-slip conditions U = V = 0 should produce eddying wakes downstream
of islands, however, they would be dissipated quickly by artificial dissipation. The volume flux close to
the shore becomes small except at inflows and outflows, so the difference in the numerical large-scale
flow patterns is small between no-slip and no-flux conditions.
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4.2.3. Inflow and Outflow Conditions

Inflow and outflow is volume flux. It can be modelled by a boundary volume flux condition in the
wave height equation, i.e., wall normal velocity and artificial viscosity contribution, or by specification
of velocity (U, V) to give the observed volumetric inflow and outflow. Conversion of flow to flux or
velocity requires an assumption of the flow cross-section area: Width and depth. The larger “width”
of the river mouth was chosen compared to the real river in order to avoid extremely small finite
elements, yet it is still small compared to shoreline geometry scales.

As flux condition

The mass flux condition in the wave height equation gives exact water volume conservation,
however, no direct contribution to the momentum equations.

As velocity condition

The Dirichlet boundary conditions (DBC) are essential conditions that specify the combination of
state variables, U and V. The river inflow data specify total flow, which was assumed to be normal,
with the two velocity components implemented as conditions referred to above. The wall no-flow and
non-zero outflow conditions specify the wall normal flow, either from the data or depending on the
lake water level (see Section 5.5).

4.3. COMSOL Model Setup

Comsol Multiphysics (CM) is a finite element (FE) software package for the numerical solution of
PDE. Nx ×Ny points

(
xi j, yi j, zi j

)
, in a regular grid i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. CM software has

a number of standard processing steps. First, the parameters, variables and functions associated with
the model were specified. Second, the lake geometry, material properties, and equation-based physics
models were entered. The model boundaries can define sources, fluxes, Neumann, Dirichlet and
constraint conditions. Dirichlet conditions specify a combination of values of the state variables, while
constraints can essentially specify any relationship between variables and their derivatives. Source,
flux and Neumann boundary conditions are needed to constrain the boundary contributions arising
from the integration by parts of the conservation form equation terms.

For many of the existing shallow-water simulators the time step is limited by numerical stability
properties. CM supports implicit time-stepping which enables simulation over 51 years, with monthly
averages of inflow, rain. etc., and time series as input. The weak points are the estimates of evaporation
and precipitation. It is argued in Section 5.3 that the model is almost linear and time invariant, so the
result of such a simulation, with average data, is actually close to an averaged time-resolved solution.
Figure 8a shows the generated finite element grid with 67, 000 triangular domain elements and 4000
boundary elements. There are 107, 000 degrees of freedom (U, V, ζ).
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Finally, COMSOL assembles and solves the discretized problem. Non-linear equation solvers
have access to exact derivatives computed by symbolic manipulation. Sequences of steps created
by geometry, mesh, studies, and solver settings, can be recorded to re-compute the problem after
modification and to visualize the results.

5. Results and Discussion

5.1. Lake Victoria Topography in Matlab and COMSOL

The model bathymetry was compiled from several sources and merged as described in Section 3.2.
The final geometry based on the iso-depth curves, including islands, plus the NaFIRRI data is shown in
Figure 9 as a shaded geometry of the topography of the whole lake with depth (see also Figure 4). The
governing equation under PDE solver in CM adopted the SWEs method for the 2D Lake Victoria model.

In the regional flow model analysis, the mass conservation and momentum equations were
integrated with respect to the depth. In the initial stage, flow analysis was defined by initial values
under initial boundary conditions and boundary values defined by river discharges under DBC. Initial
values initially adopted three dependent variables (velocity, U and V; reference water level, zeta)
that could serve as an initial guess of water flow analysis. DBC adopted river discharges, which
prescribe the lake flows for whole lake areas. The simulations shown here used Neumann conditions
to guarantee conservation of water volume. Figure 9 shows that the lake’s bathymetry is steeper in the
east than in the west.
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Figure 9a lake bathymetry steps down from north to south toward the deepest point (80 m,
Tanzania) in the basin. Figure 9b shows that both data and boundary conditions are fixed very well
and water flow goes over the lake without encountering a barrier. The two topographical models were
used to perform water flow analysis of Lake Victoria, with the two main discharges considered being
the Kagera river, which is the main river inflow to Lake Victoria, and the other being the Nile, which is
the only outflow from Lake Victoria.

5.2. Lake Hydrodynamics

The simulation used monthly averages from 51 years of WRMA data [44] on precipitation,
evaporation, inflows, and outflows. The situation in 2000 is presented in Figure 10. The initial data
in 1950 are unknown and were set to still water and vanishing wave height, with flux boundary
conditions applied to the whole boundary. The outflow boundary conditions allow a steady-state
conditions, which is discussed in Section 5.4 below. Note that the shorelines are fixed, and thus do not
change with the water level, so the choice of reference height is arbitrary.
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The streamlines in Figure 10 show a well-ordered flow from Kagera toward the outflow with no
indications of re-circulatory regions. It is indeed close to a flow with vanishing vorticity, ω = Uy −Vx,
as substantiated by the vorticity plot.

This is to be expected, since the flow starts from still water, and the gravity driving force is
irrotational. The artificial viscosity diffuses vorticity created by its sources: The bottom friction and the
weak singularities at the boundary points between inflow and no-flux shore portions. The latter shows
up as small red and blue regions, i.e., positive vorticity on one side of the tributaries, and negative on
the others (Figure 10a). The influence of (artificial) viscosity and bottom friction was analyzed using
Equations (9)–(14), where vorticityω is the curl of the 2D velocity field:

∇×

(
Uex + Vey

)
=

(
Uy −Vx

)
ez = ωez (9)

The curl of the momentum equations produces:

ωt + (U·∇)ω+ (∇·U)ω = −ωC(. . .)|U|+∇(C(. . .)|U|) ×U + νA∇
2ω (10)

ω(t = 0) = 0

for a case with υA constant.
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The flux boundary conditions are:

n·(hU− νA∇ζ) = Q : hn·U− νA∂ζ/∂n = Q (11)

n·(νA∇U) = 0 : nxUx + nyUy = 0 (12)

n·(νA∇V) = 0 : nxVx + nyVy = 0 (13)

For simplicity, rotate the coordinate system so x is normal and y is tangential:

hU − υAζx = Q (14)

Ux = 0

Vx = 0

Q—the net flux is piecewise constant in the model, zero except at tributary mouths. If artificial
viscosity at the shore is neglected, the first equation guarantees that U is also piecewise constant, hence,
Uy = 0 except at the jump points of Q, the tributary corners. It follows that the boundary conditions
make ω = 0 on the whole boundary except at tributary corners.

Thus Equation (11) is a diffusion–convection equation forωwith vanishing initial data and, in the
sense explained above, vanishing boundary values. It follows that only the term ∇(C(. . .)|U|) ×U in
the bottom friction model produces vorticity, and then only the variation of the bottom friction factor C.

5.3. Long-Time Simulations

The simulation over fifty years over has daily measurement as data. The interest here is to show
mean flow patterns as revealed by time-averages, and a month was chosen as a suitable averaging
period. Thus, monthly averages of inflow and outflow, precipitation, and evaporation were used as
data. The timescale of the driving function was then in the order of a month instead of a day. It has
been seen that the mean water level was reproduced faithfully, which is only a circumstantial evidence
of overall accuracy. The mean flow velocities (Figure 11) were very small overall at <1 cm/s, so the
Froude number was extremely small, and the wave height excursions were at most a few centimetres
(cm). Mean water level changes in the order of 1 m were also small compared to the mean depth of the
lake. This means that the model was close to linear and time invariant, which suggests computing the
averaged solution as the solution with average driving functions.

The accuracy of the simulation model can be called into question since the driving data were
low-pass filtered, and the time-steps used were larger than the travel time for a gravitational wave
across the lake. The discretised shallow water model has much faster dynamics, with time-scales ∆/a,
O (100 s), where the gravity wave speed is a =

√
gh. The time-stepping is performed by backward

differentiation formulas that damp solution components corresponding to stable poles even with large
imaginary parts. It follows that using low-pass filtered data and large time steps compared to the fast
internal dynamics will damp the fast modes of the system to produce a solution that is closer to the
low-pass filtered exact solution.
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5.4. Outflow Boundary Allows a Steady-State Condition

Inflow boundary conditions specify the amount of water entering the lake in measured quantities.
A “natural” outflow boundary condition, however, should allow an accurate simulation to achieve a
steady water level, if inflows are constant. Data on both inflows and outflows are available, and can be
applied as boundary conditions. It could be argued that the outflow should react to the lake water
level such that increasing levels increase the outflow. A Jinja power station regulates the lake outflow,
so other signals influence the actual outflow. Two candidates are discussed here for “natural” outflow
conditions: The weir condition (see Section 5.4.1) and a linear outflow condition (see Section 5.4.2)
fitted to historic data. Both give well-posed steady-state solutions.

5.4.1. Weir Boundary Condition (WBC)

The WBC model outflows as if it were flowing over a weir of a given height. This approach is
strictly applicable only when the upstream flow is steady and subcritical and is unsuitable for rapid
variation in proximity of the weir [45,46].

The weir condition expresses that the flow over the weir at the crest is exactly critical (see
Figure 12):

V = (1−Hweir/hh)VCr = (1−Hweir/hh)
√

g(hh−Hweir) (15)

and V = 0 if hh < Hweir. The flow increases non-linearly with water level and WBC sets a definite
steady-state water level, when inflow, evaporation, and precipitation are constant.
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5.4.2. Linear Outflow Conditions

In view of the simplicity of the model (Figure 13), the agreement was excellent. One issue is that
the Nile outflow should react primarily to the local water level rather than the mean water level. This
effect is mitigated by two factors:

• Net precipitation is a dominant source and is assumed to be homogeneous over the whole
lake area;

• the travel time for a gravitational wave across the lake, assuming a mean depth of 60 m, is around
3.5 h. Thus, water level differences would equalize over the lake in a much shorter time than
a month.

The NaFIRRI measured data contain discharge from the tributaries (In), the outflow at Jinja (Out),
precipitation (Precip) and evaporation (Evap). The data admit an estimate of the mean water level h,
as shown in Equation (16):

Area·dh/dt = In + Precip− Evap−Out (16)

where, the lake area is assumed constant in time. In order for the SWE simulation to allow a steady
solution, the outflow should increase with the water level. The non-linear weir outflow condition does
that, however, even simpler models may give a good fit to the observations. The simplest choice for an
outflow condition is a linear relationship to water level, measured from a reference level:

Out(t) = Ch(t) (17)

Thus, to find the initial water level h(0) and the constant C:

Area·dh/dt = In + Precip− Evap−Ch (18)

h(0) = h0

Such that the outflow Ch(t) matches the measured outflow Out(t) as closely as possible. The
optimal values were found by solving the nonlinear least squares problem where t j = j∆t, j = 0, 1, . . .
gives a simple time-implicit discretisation of the ordinary differential equations (ODE):

min
h0,C

∑(
Out j −Ch j

)2
(19)

So that:
h j = h j−1 + ∆t/Area ∗

(
In

(
t j
)
+ Precip

(
t j
)
− Evap

(
t j
)
−Ch j

)
(20)

h(0) = h0

The agreement with measured outflow was excellent (see Figure 13). Short time discrepancies
between the linear approximate model and the measured outflow are seen at 1966, 1969 and 1990
(Figure 13). This shows that regulation at the power station in Jinja was active, acting more on
input than on water level. Overall, the linear model agreed with the “agreed curve” [47] for outflow
regulation from water level, so the good fit was to be expected if the Jinja regulation followed the
agreed curve.
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5.5. Water Level Validation

The simulation of Lake Victoria’s water level was based on fifty one years of data for precipitation
and evaporation over the lake, and river inflow and outflow.

Generally, lake water-level regimes are influenced by climate variation, lake hydrology and land
uses. Lake Victoria’s water level has changed significantly in ways that have puzzled researchers. From
1900 to 1961, the lake’s water level was different from that in the 1961–2000 time period (Figure 14),
which also shows that the result of the water balance model (Equation (18)) agrees with the mean water
level computed by CM and demonstrates its conservation property.
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Figure 14. Mean water-level simulations showing that exact conservation property of the COMSOL
finite element model.

The mean water level rose rapidly by about 2.8 m from 1960 to 1965, from 1968 to 1971, and from
1998 to 2000. As a result, the increased water level seen in the peaks of 1961–1964, 1968–1971 and
1998–2000 in Figure 14 are also noticeable in the discharge.
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6. Conclusions

A systematic method was developed in Matlab for lake bathymetry and lake flow was analyzed
with a depth-integrated shallow-water free-surface numerical model in CM. Depth data from old
depth soundings given as iso-depth curves were merged with modern echo-sounding data received
from NaFIRRI. Kriging interpolation was unable to produce a sufficiently smooth lake topography.
The DACE toolbox with Delaunay triangulation that created the Kriging interpolation was used,
followed by an isotropic Gaussian filter. Discrepancies in the lake shoreline were rectified by a bilinear
transformation of the old shoreline.

The successful bathymetry model was used in a vertically integrated flow model along with
measured inflow, outflow, rainfall, and evaporation data. The shallow water model analyzed mean
flows and predicted mean water levels reasonably well. The mean flow velocities were very small
overall, and the mean water-level changes were also small compared to the mean depth of the lake.
This means that the model was close to a linear, time-invariant model. This enabled computation of
the low-pass filtered time series of water levels as the result of low-pass filtered input data, providing
fifty-one year simulations. The mean water level was reproduced faithfully, offering only circumstantial
evidence of overall accuracy. A linear outflow boundary condition achieved a significant correlation
with measured outflow. The measured water level agreed reasonably well with the computed water
level, which is crucial for lake numerical model validation in CM.

Software and data sources: The Comsol Multiphysics [48] software has many model libraries to focus
on different areas, however, no special model libraries for surface waterbody analysis. The bathymetry,
inflow/outflow, and precipitation/evaporation data for the model were obtained as described above:
From our collaborators at Makerere University, Uganda, Water Resources Management Authority
(WRMA), Kisumu, Kenya and Lake Victoria Basin Commission (LVBC), Kisumu, Kenya. Access to the
data was granted by the sources referenced. Matlab was used for bathymetry data processing.
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