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Abstract: Early progress in non-Newtonian fluid mechanics was facilitated by the emergence
of two fundamental and complementary principles: objective constitutive characterizations and
unambiguous identification of irreversible processes. Motivated by practical and economic concerns
in recent years, this line of fluid research has expanded to include debris flows, slurries, biofluids and
fluid-solid mixtures; i.e., complex nonlinear fluids with disparate flow properties. Phenomenological
descriptions of these fluids now necessarily include strong nonlinear coupling between the fluxes
of mass, energy and momentum. Here, I review these principles, illustrate how they constrain the
constitutive equations for non-Newtonian fluids and demonstrate how they have impacted other
areas of fluid research.
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1. Introduction

Perhaps the original motivation for non-Newtonian fluid research was to characterize the
viscoelastic properties of materials, such as paints and resins. In contrast to typical low Reynolds
number viscous flow described by linear Newtonian type viscosity, it was found that constitutive
equations for the stress required nonlinear terms. Walters [1] and Astarita [2] provide extensive reviews
of early developments in non-Newtonian fluids.

Driven by economic concerns, interest in recent years has turned to even more complex flows.
Examples are debris and slurries, biofluids and exotic mixtures, such as the huge surface slick resulting
from the Deepwater Horizon accident, along with turbulent phenomena in these flows. Not only
must phenomenological descriptions be characterized by nonlinearity, they usually require robust
nonlinear coupling between fluxes of matter, momentum and energy; i.e., processes not considered
important in many early studies in non-Newtonian fluid mechanics. These processes also are now
deemed important in many other areas of fluid mechanics not traditionally considered non-Newtonian.

Largely motivated by early research on non-Newtonian fluids, theorists developed two
fundamental principles: the principle of material frame indifference (MFI, also called objectivity)
and irreversibility. Considering the vast scope of fluid phenomena studied today and the inevitable
push for progress, these principles sometimes are neglected, even though they are rigorously and
well articulated in the theoretical mechanics literature. See [3] for a history and synopsis. They also
have emerged as important constraints in other areas of fluid mechanics usually not considered to be
non-Newtonian. Moreover, as noted by Hutter and Rajagopal [4], and Hutter and Schneider [5,6] both
principles play complimentary roles in constraining constitutive equations.

Fluids 2016, 1, 3; doi:10.3390/fluids1010003 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
http://www.mdpi.com/journal/fluids


Fluids 2016, 1, 3 2 of 14

The main goals here are to provide an overview of these two principles, demonstrate their
applications to non-Newtonian fluid mechanics and illustrate how they have impacted other areas
of fluid mechanics. It is hoped that this will contribute to a productive dialogue between disparate
research groups. To further this, I have adopted an informal presentation style.

The balance of the paper is organized as follows. Section 2 reviews the foundations of MFI.
It provides examples of objective and non-objective fluid mechanics quantities, develops objective rates
and extends the analysis to mixtures. Section 3 considers irreversibility and develops a general formula
that relates entropy production to scalar, vector and tensor processes. Section 4 briefly discusses
applications of MFI to turbulence. The paper concludes with a brief synopsis and discussion of some
areas of further research.

2. What is Objectivity?

2.1. Background

The notion of objectivity is found in early Greek and Chinese philosophies. This concept was
often implied in solid mechanics research, particularly in the theoretical foundations of nonlinear
elasticity early in the 20th century. Oldroyd [7] used the idea effectively in his work in rheology.
However, to my knowledge, Noll [8–10] was the first to quantify this concept for broader use in
physics. Malvern [11] and Gurtin [12] have lucid descriptions of the underlying mathematics. See also,
Speziale [13], Murdoch [14], Frewer [15] and Pucci et al. [16] for recent discussions of some basic issues.
As cogently explained by Truesdell and Toupin [3], objectivity encompasses two concepts. One is
simply a coordinate transformation involving just rotation and transformation. The other is concerned
with the philosophical matter of comparing measurements made by different observers attached to
these coordinate systems. At a fundamental level, a change of observer is more than just a change of
coordinate systems.

As noted by [3], Noll’s formulation of MFI provided important restrictions to the construction
of power law constitutive theories for viscoelastic materials. MFI also crystallizes the primitive
concept that material responses to dynamic processes, such as stress or inter-constituent fluxes,
are innate properties and thus insensitive to observer motions. I propose an additional reason.
The most fundamental characteristic of non-Newtonian fluid behavior is irreversibility. Not only
should constitutive equations that parameterize the intrinsic transport of mass, energy and momentum
be insensitive to observer motions, they should unequivocally agree on irreversible behavior as posited
by Grad [17].

Nevertheless, MFI is controversial. Müller [18] claimed that generally-accepted approximations
for the momentum and heat fluxes arising from kinetic theory were incompatible with the principle of
objectivity. Woods [19] further questioned the basic definitions. Murdoch [20] argued that Müller’s
results were in fact objective and that other studies, such as [21], could be readily rendered into
frame-indifferent forms. The utility of MFI as a constraint on constitutive equations was the topic of
an incisive discussion reported in Physica A [22]. Here, several investigators questioned the general
validity of objectivity in material where centrifugal and Coriolis accelerations are dominate. In a
later study [23], Evans and Heyes showed that ensemble averages arising from molecular dynamics
simulations and group theoretic considerations are frame dependent.

What should be made of this? As noted recently by Liu and Sampio [24], much of the debate about
MFI arises from confusion between the coordinate frame indifference and material frame indifference.
The former is concerned with transformations between coordinate systems moving with respect to
each other, while the latter concerns intrinsic properties of fluids, which are independent of observers.
Perhaps the position of Bird [22] is appropriate here. He agreed that MFI was an approximation, but it
has proven useful in many studies. To this, I would add that MFI also plays an important, but rarely
appreciated, role in irreversibility.
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2.2. Definition of Objectivity

The rationale for objectivity is that intrinsic properties of substances are not affected by the motions
of observers. Measurements by different observers vary because they may be made at different times
and because the observers may be moving and rotating with respect to each other. However, relative
motion and time delay effects cancel for objective measurements. To quantify this, consider observers α

and β embedded in two coordinate systems that are translating and rotating with respect to each other:

xα(X, t∗) = Q(t) · xβ(X, t) + b(t) (1)

Here, Q accounts for the rotation of β with respect to α. It satisfies Q ·Q† = I, where Q† is the
inverse of Q and I is the unit matrix. In the context used here, Q is the rotation matrix. The X are
material coordinates embedded in the observed specimen and, thus, are unaffected by the motion of
the observers. Furthermore, b is the translation of β relative to α. Finally, the observer times are simply
shifted relative to each other as given by t∗ = t− a, where a is an arbitrary time delay. I stress that
objective transformations are more general than simple Galilean transformations in that they account
for the instantaneous relative orientations of observers.

Obviously, relative motions of the observers will not affect measurements of scalar properties,
such as temperature. It is not so simple with observations of vectors and tensors, as their components
depend on observer coordinates. Objective vectors and tensors must depend only on the instantaneous
orientations of the observers. That is, objective vectors v and tensors T must satisfy:

v∗ = Q · v
T∗ = Q · T ·Q† (2)

Here, I have used ∗ to denote the coordinates and objects of one of the coordinate systems. This is
in distinction to Equation (1), where the superscripts denoted observers embedded in the coordinate
systems. It is noted that in solid mechanics applications, certain tensors that are functions of both
spatial and initial coordinates transform objectively as vectors in the spatial frame [11].

Is the velocity of X as observed by α and β objective? Differentiation of Equation (1) gives:

dxα

dt∗
= uα =

dQ
dt
· xβ + Q · dxβ

dt
+

db
dt

=
dQ
dt
· xβ + Q · uβ +

db
dt

(3)

Clearly, velocity is not consistent with Equation (2), so such observations are not MFI. This is
due to the relative rotation rate of the coordinate systems and any time dependence of the relative
translation. A second differentiation of Equation (1) shows that acceleration observations also are
not objective.

What about observations of gradients of objective vectors? The gradient of Equation (2) gives:

∇∗v∗ = Q · ∇v · ∇∗x = Q · ∇v ·Q† (4)

Here, Equation (1) was solved for xβ to get ∇∗xβ = Q†. Apparently, the gradient of an objective
vector is objective. However, the gradient operation applied to Equation (3) gives:

∇∗uα = Lα = Q · Lβ ·Q† + dQ
dt ·Q

† = Q · Lβ ·Q† + Ω

(∇∗uα)† = (Lα)† = Q† ·
(
Lβ
)† ·Q + Q · dQ†

dt = Q† ·
(
Lβ
)† ·Q + Ω†

(5)

The velocity gradient is not MFI, because of the difference in coordinate rotations Ω.
Differentiation of Q ·Q† = I establishes that Ω + Ω† = 0; hence, the spin cancels for the symmetric
part of the velocity gradient, as seen by adding the two equations of Equation (5). Thus:

Lα + (Lα)† = 2Dα = Q · [Lβ + (Lβ)†] ·Q† = 2Q ·Dβ ·Q† (6)
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In contrast, the fluid spin or vorticity is not objective, as the difference gives:

∇∗uα − (∇∗uα)† = 2Wα = Q · [∇uβ − (∇uβ)†] ·Q† + 2Ω = 2Q ·Wβ ·Q† + 2Ω (7)

Expressions for dQ/dt and dQ†/dt are readily obtained from either Equation (5) or Equation (7).
Two particularly useful in non-Newtonian fluid research are:

dQ
dt = Wα ·Q−Q ·Wβ = Lα ·Q−Q · Lβ

dQ†

dt = Wβ ·Q† −Q† ·Wα = Q† · (Lα)† −
(
Lβ
)† ·Q†

(8)

Viscoelastic non-Newtonian models require rates of change of dynamic quantities, such as stress
or the heat flux, and even kinematic quantities, such as deformation rate or vorticity. Of course, these
derivatives must also be objective; hence the question: Are material derivatives of objective quantities
objective? Start with the derivative of the first equation of Equation (2) to get:

dv∗

dt∗
= Q · dv

dt
+

dQ
dt
· v = Q · dv

dt
+
(

Wα ·Q−Q ·Wβ
)
· v (9)

Using Equation (8) and recognizing that uα = v∗ and uβ = v, this reduces to:

dv∗

dt∗
−Wα · v∗ =

djv∗

dt
= Q ·

(
dv
dt
−Wβ · v

)
= Q ·

djv
dt

(10)

The material derivative is not objective, but the operator denoted by the subscript j is. This is the
Jaumann derivative [25]. An analogous calculation for an objective tensor leads to:

djT∗

dt∗
=

dT∗

dt∗
−Wα · T∗ + T∗ ·Wα = Q ·

(
dT
dt
−Wβ · T + T ·Wβ

)
·Q† (11)

Obviously, Equations (10) and (11) are not unique, as other combinations of terms in Equation (8)
could be used. For example, straightforward calculations give:

dov∗
dt∗ = dv∗

dt∗ − Lα · v∗ = Q ·
(

dv
dt − Lβ · v

)
doT∗
dt∗ = dT∗

dt∗ + (Lα)† · T∗ + T∗ · Lα = Q ·
(

dT
dt +

(
Lβ
)† · T + T · Lβ

)
·Q†

(12)

This last operator is known as the convective or Oldroyd derivative [7].
It is stressed that although these and other co-rotation rate measures are objective, they are not

equal. Hence, predictions of non-Newtonian fluid responses depend on which MFI derivative operator
is used. Appendix D of [25] summarizes these derivatives and includes tables that compare notations.

There is considerable empirical evidence suggesting that the constitutive behavior of
non-Newtonian fluids should include some measure of fluid vorticity. Consequently, considerable
effort has been spent to develop objective measures using MFI operators, such as the above. See,
for example, [26] for an application to Rivlin–Ericksen fluids, [27] for an application to a general
polymeric fluid, [28] for a straightforward application to viscoelastic flows and [29,30] for applications
to objective measures of vortices in geophysical fluid settings. Useful theoretical templates for
constructing objective measures of skew-symmetric tensors are given by [31–34].

Typically, these measures depend on a “co-rotation rate” of the principle axes of the deformation
tensor. In this case, care should be exercised in applying these measures whenever two or more of the
axes are the same. Moreover, delineating these axes from experimental or computational experiments
is not always straightforward. Nevertheless, as the cited studies show, inclusion of an objective spin in
constitutive models has produced some remarkable successes.
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2.3. Objectivity in Mixtures and Multiphase Materials

Application of MFI to multiphase materials and mixtures raises additional issues. Massoudi [35]
has discussed these in the context of an application to lift forces in multiphase flows. His approach is
followed here.

Instead of a single test specimen with material coordinates X, consider two specimens with
material coordinates X1 and X2. The specimens may be different constituents or different phases of the
same constituent. A fundamental tenant of mixture theory is that the two specimens occupy the same
geometric point, i.e., x1 = x2. See [36,37] for thorough discussions of the tenants of mixture theory.
Whether a mixture or multiphase material, Equation (1) is generalized to:

xα
1(X1, t†) = Q(t) · xβ

1 (X1, t) + b(t)

xα
2(X2, t†) = Q(t) · xβ

2 (X2, t) + b(t)
(13)

The velocities of the specimens are:

dxα
1

dτ
= uα

1 =
dQ
dt
· xβ

1 + Q · uβ
1 +

db
dt

dxα
2

dτ
= uα

2 =
dQ
dt
· xβ

2 + Q · uβ
2 +

db
dt

(14)

Then:

uα
1 − uα

2 = u12 = Q · (uβ
1 − uβ

2 ) (15)

Here, u12 = −u21 is the “diffusion” velocity. For those not familiar with mixture theory, it is
noted that the material derivatives of the two substances are not the same, since their velocities are
different (see Massoudi [35] and Rajagopal and Tao [37] for a careful analysis and discussion of this
matter). Nevertheless, the constituent velocity differences are objective! Moreover, as shown by [35],
the relative acceleration and spin differences are also objective. This is a key result for developing
constitutive equations for mixtures of solids and fluids.

3. What Does Irreversibility Mean?

It is widely accepted that all natural processes are irreversible. Entropy production is the standard
gauge of irreversibility. However, as astutely noted by Denbigh [38], many processes are irreversible
that apparently do not result in significant entropy production. In this regard, Pavelka et al. [39]
showed that it is possible to make a distinction between entropy production and irreversibility in
nonequilibrium thermodynamics. Thermodynamic analyses of Newtonian fluids and linear heat flow
establish that the appropriate phenomenological coefficients are constrained so as to produce positive
entropy production. However, as noted in [26], some objective constitutive models of non-Newtonian
fluids may have phenomenological coefficients that do not appear in the entropy production inequality.
In the case of viscous fluids with deformable microstructure [40], such unconstrained coefficients can
produce solutions that grow rather than decay in time. I conclude that objective characterizations of
dissipative fluxes alone do not guarantee realistic solutions.

As widely noted (see [3,36,37,41]), entropy is produced by heat flux, mass flux in the case of
mixtures, mechanical dissipation from viscous processes, chemical reactions and electro-magnetic
processes. This is described by the Clausius–Duhem inequality, a generic form of which is:

ρ
ds
dt

+∇ ·
(q

θ

)
− ρ

( r
θ

)
= σ ≥ 0 (16)

The symbols are standard: ρ is density; s is entropy; q is heat flux; θ is temperature; and r is
radiation. σ is the rate of entropy production and for irreversible processes is > 0. Now, chemical
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reactions are characterized by scalar affinities, heat and mass fluxes and electro-magnetic processes
by vectors and mechanical dissipation by second order tensors. See Klika [41] for an extension that
includes biochemical reactions. For fluids with microstructure, one must also include higher order
tensors [42], but this is not considered here. The disparate processes involved in entropy production
of non-Newtonian fluids, along with the requirement that the flux characterizations obey MFI, may
require tedious analysis and, hence, are not often attempted.

The processes that make up σ are intrinsic and so are quantified by “conjugate forces” through
constitutive relations, which vanish under equilibrium conditions. Elementary examples are Fourier’s
law, which characterizes heat flux, Ohm’s law, which specifies the electrical current, and the
Navier–Stokes law, which relates deformation rate to viscous stress for Newtonian fluids. Generally,
one expects nonlinear constitutive relations.

Kuiken [43] has outlined an elegant approach that simplifies the analysis. Standard manipulation
of the evolution equations for mass, momentum and energy renders σ ≥ 0 as:

σ = SsGs + Vv ·Gv + Tt : Gt (17)

Here, Ss, Vv and Tt account for the scalar, vector and tensor fluxes of mass, momentum and
energy. The G’s are the appropriate scalar, vector and tensor functions of the dependent variables of
the evolution equations. The superscripts remind us that the particular terms refer to scalars, vectors
and tensors.

It is emphasized that the fluxes are generally nonlinear functions of the G’s. There is no restriction
on the functional forms, other than Equation (17). As shown shortly, non-Newtonian fluids may
require several scalar, vector and tensor processes, so each term in Equation (17) may itself be a sum.
It also will be convenient to use the canonical decomposition of Tt given by:

Tt =

(
T
3

)
I + Tt

d + Tt
a (18)

In Equation (18), T is the trace of Tt; Tt
d is its traceless deviator; and Tt

a is its skew symmetric
component. Tt is taken as objective, so Tt

a is, as well. An analogous decomposition for Gt can be made.
In the theoretical development of constitutive equations, the principle of equipresence is evoked.

This states that Ss, Vv and Tt must all depend on Gs, Gv and Gt. I have never seen this principle
rigorously used in any application. The simplest approach is to evoke Curie’s principle that fluxes
depend only on like forces. That is, a scalar flux can only depend on scalar forces. A somewhat more
general, yet commonly-applied approach is to postulate a symmetry center for the material. As shown
by [43], this produces:

Ss = LssGs + Lst : Gt

Vv = Lvv ·Gv

Tt = LtsGs + Ltt ·Gt
(19)

Here, the L are phenomenological coefficients usually evaluated from controlled experiments.
They are functions of invariant properties of the forces, as well as other thermodynamic functions.

This model allows the scaler fluxes to depend on a tensor process, and vice versa, while vector
fluxes only depend on vector processes. The Lss are scalars; Lst, Lts and Lvv are second order tensors;
and Ltt is fourth order. If Curie’s principle is applied to Equation (19), then Lst = Lts = 0.

It is instructive to consider the special case where the constitutive equations are linear and the
coefficients are all isotropic. Then, Equation (19) reduces to:

Ss = LssGs + LstG
Vv = LvvGv

Tt = (LtsGs + LttG) I + LtdGt
d + LtaGt

a.
(20)
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The isotropic assumption reduces the number of phenomenological coefficients to just seven:
Lss, Lst, Lvv, Lts, Ltt, Ltd and Lta. Inserting Equation (20) into Equation (17) gives:

σ =
[

Lss (Gs)2 + (Lst + Lts) GsG + LttG2
]
+ Lvv(Gv ·Gv) + Ltd(G

t
d : Gt

d) + Lta(Gt
a : Gt

a) ≥ 0 (21)

This is a quadratic form, and the inequality constrains the phenomenological coefficients to:

Lss, Ltt, Lvv, Ltd, Lta ≥ 0

4LssLtt − (Lst + Lts)
2 ≥ 0

(22)

The requirement of nonnegative entropy production provides six constraints on the seven
phenomenological coefficients. However, all seven coefficients appear in Equation (22). The irreversibility
constraints should be useful in experiments to determine the coefficients; however, I am unaware of a
case where this was done.

4. Parsing Constitutive Equations

4.1. Introduction

The purpose of this section is to use two recent results in non-Newtonian fluid mechanics to
show how MFI impacts irreversibility. The following subsection focuses on a constitutive model for
a mixture of two viscous fluids at different temperatures. Although the constitutive equations are
linear, there is considerable interaction between the temperature and velocity fields of the two fluids.
Subsection 4.3 deals with a nonlinear constitutive model for a granular substance. Here, the nonlinear
cross-coupling between the vector and tensor processes is fundamentally nonlinear. In both cases,
objective specification of the vector and tensor processes is a key aspect to demonstrating irreversibility.

4.2. Linear Two-Fluid Mixture at Different Temperatures

A distinctive characteristic of many non-Newtonian fluids is the robust interaction between
different dynamic fields, such as stress and heat flux. An illustration of the interaction of these fields
and the consequent impact on irreversibility was reported by [44]. The vector processes are restricted
to just sensible heat flux associated with two temperature gradients and heat generated by the friction
of the fluids moving past each other. Vectorial mechanisms, such as Dufour and Soret processes, are
certainly important in many applications, but are not considered here. Tensor processes include the
viscous stresses of each of the constituents in addition to viscous interactions between the constituents.
Consequently, the constitutive equations for the stresses include the asymmetric effects depicted in
Equation (21). Characterization of asymmetric stresses uses the spin differences of the two fluids in
accordance with [35].

The appropriate vector objective variables are the two temperature gradients,∇θ1 and∇θ2, along
with the diffusion velocity u12. Applying the restricted principle of equipresence noted earlier, the
constitutive equations are given as:

qi = −φi

[
kii∇θi + ∑2

j=1 φj
(
kij∇θj + hijuij

)]
mi = −∑2

j=1 φiφj

(
lijuij + ∑2

γ=1 rijγ∇θγ

) (23)

Here, qi and mi are the heat flux and internal momentum source of substance/phase i,
respectively; φi is the volume fraction of that constituent; and kij, hij, lij and rijγ are phenomenological
coefficients. These equations were formulated so that if one of the constituents vanishes, the system
reduces to just Fourier’s law of heat conduction for a single constituent.
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Tensor processes are simply generalizations of the Navier–Stokes law to include all objective
tensor quantities. These are the deformation of each phase Di and the spin difference Wi. Consistent
with Equation (18), deformation is divided into trace and deviator components.

The tensor constitutive equation is:

Ti = φi

[(
λiiDi +

2

∑
j=1

φjλijDj

)
I + 2

(
µiiDdi +

2

∑
j=1

φjµijDdj

)
+

2

∑
j=1

νijφj
(
Wi −Wj

)]
(24)

Note that if one of the volume fractions vanishes, then Equation (24) reduces to the Navier–Stokes
equations for a single constituent.

The irreversibility condition is given by:

σ = −
2

∑
i=1
Ci (Ciqi · ∇θi + mi · vi − Ti : ∇vi) ≥ 0 (25)

Here, Ci = θ−1
i . This is sometimes called the coldness of constituent i. Examination of Equation (25)

indicates a dilemma: all of the dependent variables are objective, except vi. This obstacle was overcome
in [44] by imposing the following constraints on lij and rijγ:

C1l12 = −C2l21 = L
C1r121 = −C2r211 = R1

C1r122 = −C2r212 = R2

(26)

Then, Equation (25) reduces to:

C2
1 φ1k11∇θ1 · ∇θ1 + C2

2 φ2k22∇θ2 · ∇θ2 + φ1φ2
(
C2

1 k12 + C2
2 k21

)
∇θ1 · ∇θ2

+ φ1φ2ud ·
(
C2

1 h12∇θ1 − C2
2 h21∇θ2

)
+ φ1φ2ud · [Lud + R1∇θ1 + R2∇θ2]

+ φ1λ11C1D2
1 + φ2λ22C2D2

2 + φ1φ2D1D2 (C1λ12 + C2λ21)

+ 2
(
φ1µ11C1D2

d1 + φ2µ22C2D2
d2

)
+ 2φ1φ2Dd1 : Dd2 (C1µ12 + C2µ21)

+ φ1φ2
[
ν12C1W2

1 + ν21C2W2
2 − (C1ν12 + C2ν21)W1 : W2

]
≥ 0

(27)

The irreversibility constraints arising from Equation (27) can be divided into two groups. The
first are essentially those that would arise from single fluid analysis:

kii, λii, µii,≥ 0 (28)

The second group are Onsager-type constraints involving the magnitudes of the interaction
coefficients. These are:

4 λ11 λ22 C1 C2 ≥ φ1 φ2 (C1λ21 + C1λ22)
2

4 µ11 µ22 C1 C1 ≥ φ1 φ2 (C1µ12 + C2λ21)
2

ν12 C1 = ν21 C2

(29)

and that the roots of the matrix: C2
1 φ1k11 φ1φ2(C2

1 k12 + C2
2 k21)/2 φ1φ2(R1 + C2

1 h12)/2
φ1φ2(C2

1 k12 + C2
2 k21)/2 C2

2 φ1k22 φ1φ2(R2 − C2
2 h21)/2

φ1φ2(R1 + C2
1 h12)/2 φ1φ2(R2 − C2

2 h21)/2 φ1φ2L


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be nonnegative. A special case of the latter condition is when the diffusion velocity u12 = 0. Then:

4C2
1C2

2 k11k22 ≥ φ1φ2(C2
1 k12 + C2

2 k21)
2 (30)

Note that the interaction irreversibility constraints impose both temperature and volume fraction
dependences on the phenomenological coefficients. Both functions are obtained from solutions to the
dynamic equations. That they also appear in the irreversibility constraint indicates a coupling between
the solution and the irreversibility condition. This connection is rarely, if ever, explored.

4.3. Nonlinear Granular Fluid

Yang et al. [45] proposed a general nonlinear constitutive model for granular materials that
includes both dissipation and heat conduction. Furthermore, see Massoudi and Kirwan [46] for
additional analysis and discussion of this model. For an incompressible fluid, the constitutive equations
reduce to:

Td = β3Dd + β4(∇φ⊗∇φ)d
q = [a1I + a3Dd + a5Dd ·Dd] · ∇θ + [a2I + a4Dd + a6Dd ·Dd] · ∇φ

(31)

Here, φ is the volume fraction; θ is the temperature; Dd is the deviator of the velocity gradient; and
the subscript on (∇φ⊗∇φ)d indicates the deviator of the tensor product. I imposed this restriction
so that this model only applies to the deviator component of T. Furthermore, the phenomenological
coefficients β j and aj are functions of φ and perhaps geometric invariants of Dd. Note also that Dd : Dd
was neglected in the equation for T in Equation (31). As detailed by [45], the variables ∇θ, ∇φ and Dd
are objective. Note also that Equation (31) reduces to the Navier–Stokes equation for viscous stress
when only β3 6= 0 and Fourier’s heat conduction law when only a1 6= 0.

Application of the Clausius–Duhem inequality, Equation (16), to Equation (31) requires:

q · ∇θ + Td : Dd = σ ≥ 0 (32)

Using Equation (31) in Equation (32) produces the inequality:

β3(Dd)
2 + β4(∇φ⊗∇φ)d : Dd + a1(∇θ)2 + a2∇ρ · ∇θ + a3(Dd · ∇θ) · ∇θ

+ a5Dd · (Dd · ∇θ) + a4(Dd · ∇φ) · ∇θ + a6(Dd ·Dd · ∇φ) · ∇θ ≥ 0.
(33)

The constraints that arise from Equation (33) are:

β3, a1 ≥ 0
β3(Dd)

2 + a1(∇θ)2 ≥ −[β4(∇φ⊗∇φ)d : Dd + a2∇ρ · ∇θ + a3(Dd · ∇θ) · ∇θ

+a5Dd · (Dd · ∇θ) + a4(Dd · ∇φ) · ∇θ + a6(Dd ·Dd · ∇φ)] · ∇θ.
(34)

The first two conditions are recognized as the irreversibility conditions for Navier–Stokes fluids
and Fourier’s law for heat conduction. As in the previous example, the second condition restricts the
interaction coefficients and the solution properties. In view of Equation (29) and the fundamental
nonlinearity of the constitutive model, it is not surprising that the dependent dynamic variables appear
in the irreversibility constraint. I am unaware of any study that evokes this condition on solutions for
the dynamic variables.

5. Turbulence

As reviewed by Luca and Hutter [47], turbulence is emerging as an important process in
non-Newtonian fluids. Moreover, there are many similarities between constitutive modeling of
non-Newtonian fluids and the closure problem in turbulence. It seems appropriate then to review
relevant aspects of turbulent theory that are applicable to non-Newtonian fluids.

Classical turbulence theory is based on an elementary application of statistical mechanics to
the Navier–Stokes equations and related balance equations for density and any added constituents.
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The basic assumption is that any field quantity, such as the velocity, can be partitioned into mean and
turbulent components. For the velocity u, this produces:

u = ū + w (35)

where ū and w are the mean and turbulent velocities, respectively. Ideally the statistics are based
on an ensemble of experiments; in practice, experimenters often rely on temporal statistics and the
assumption of stationarity in the flow.

Recall now the Navier–Stokes equations for an incompressible fluid:

∂u
∂t

+ u · ∇u = −ρ−1∇p + µ∇2u (36)

Here, p is pressure and µ is the molecular viscosity. For the present purpose, it is sufficient
to neglect external forces and take density ρ constant, as the theory readily generalizes to include
these effects. Following, for example, [48,49], substitute Equation (35) into Equation (36) and average
to produce:

∂ū
∂t

+ ū · ∇ū +∇ · R = −ρ−1∇ p̄ + µ∇2ū (37)

Here, R = w⊗w is the Reynolds stress. Two aspects of this last equation are noteworthy. First,
nonlinear advection is still present in the mean field. In many studies, mean fields are prescribed, so
nonlinearity issues in these fields rarely arise. Second, there is a second order statistic, the divergence
of the Reynolds stress. This term resembles the viscous stress term in Equation (36), except that here, it
arises purely from the nonlinearity of the Navier–Stokes equations and not from intrinsic mechanisms.
Much of classical turbulence theory is concerned with developing models for R.

An evolution equation can be obtained for the Reynolds stress by subtracting Equation (37) from
Equation (36), multiplying by w and averaging. Details are given in [48,49], for example. This gives:

∂R
∂t

+ ū · ∇R = −R · ∇ū− (∇ū)† · R + Π− 2µ∇w · (∇w)†)−∇ · C −∇P + µ∇2R (38)

Here:

Π = ρ−1 p′[∇w + (∇w)†]

C = w⊗w⊗w

P = ρ−12p′w (39)

Note that Equation (38) can also be written in terms of Oldroyd or Jaumann derivatives. Here, C
is the triple turbulent velocity correlation and is a third order tensor. Of course, evolution equations
could be derived for it, as well, but it is clear that unknown higher order correlations will arise, hence
the need to close the hierarchy of equations that arise from this procedure by parameterizations.
Most turbulence theories are based on models for R. It appears then that the approach to closing
the turbulent hierarchy is similar to that used for early non-Newtonian fluid models. See [49–51] for
examples of the formulations of these equations.

By rewriting Equation (35) to express w as a velocity difference, Speziale [48] constructed a clever
argument reminiscent of that used by [35] for mixtures to show that w was objective. Using this,
he was able to show that all of the terms in Equation (38) were objective. He then argued that closure
models for the terms in Equation (38) should also be objective. This initiated a major direction of
research in turbulence. Among many others, this includes a generalized K− ε model for turbulent
dissipation [52]; an objective model for Π [53]; objective models for R as detailed in [13,54,55]; and a
special objective rotation tensor for non-Newtonian fluids [28].
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The parallel of MFI in turbulence and non-Newtonian fluids is striking. In fact, Speziale’s original
motivation for objective stresses was drawn from this area. As with non-Newtonian fluids, the concept
of MFI was controversial. Shortly before his untimely death in 1999, Speziale reversed his view on
the role of MFI in turbulence [56]. Nevertheless, it is still widely employed in turbulence modeling.
See Dafalias [57] for a recent discussion about the impact of MFI in this field.

6. Envoi

The huge breadth of phenomenology now classified as non-Newtonian demonstrates that this is
the dominant branch of fluid mechanics research. Two concepts proposed here unify this research:
objective characterizations of the intrinsic processes and the inevitable tendency to irreversibility.
Two examples were given that showed how objectivity plays a role in the thermodynamic face of
irreversibility. In these examples, all phenomenological parameters appear in the irreversibility
inequality, as do some of the solution variables. This is in contrast to some non-Newtonian fluid
models, such as reported by [26].

Constitutive equations that involve space and/or time integrals of objective variables were, by
omission, indirectly identified as another topic worthy of further study. Two prominent examples are
the theory of fading memory developed by Coleman [58] and the theory of nonlocal fluid mechanics
as proposed by Eringen [59]. Since the integral kernels used in these theories are objective, so too are
the consequent constitutive equations. However, the irreversibility requirement used here is based on
thermodynamics and, thus, is differential. This constraint applies instantaneously to point values of the
field variables. In contrast, memoric and nonlocal theories use information from surrounding regions
of space and time. Consequently, the inequality given by Equation (17) would use integral convolutions
of objective functions to characterize q and T. Then, Equation (17) would involve products of these
integrals with instantaneous point values of the temperature gradient and velocity gradient. It is not
clear, at least to me, how the irreversibility requirement establishes constraints on the integral kernels.

A reviewer appropriately noted that the thermodynamic irreversibility conditions considered here
are restricted to centrosymmetric fluids. Certainly, other symmetry classes along with non-isotropic
constitutive properties are important for many non-Newtonian fluid applications.

It should be noted that MFI, a concept originally developed in non-Newtonian fluid mechanics,
has migrated to another area of fluid mechanics, namely the identification of long-lasting coherent
structures in turbulent fluids identified by Lagrangian analysis [60,61]. These features are typically
referred to as Lagrangian coherent structures (LCS). As reviewed by Peacock [62], numerous methods
have been developed to identify these structures. Consequently, there is some confusion as to what
constitutes LCS. Haller [29] first raised the possibility of using objectivity as a criterion for assessing
the methodologies. See the papers in the Special Issue Chaos 15, 2015, for recent developments.

This last development raises another issue worthy of further research. Here, I used entropy
production as the sole gauge of irreversibility. However, in turbulence, this is problematic, since there
can be several routes to dissipation. See [63–66] for lucid discussions of routes to viscous dissipation in
large-scale turbulent flow. The evolution of large turbulent structures, like LCS, shows irreversible
behavior with negligible generation of heat. Similarly, other non-Newtonian fluids exhibit irreversible
behavior over large time and space scales, and not all aspects are amenable to thermodynamic analysis.
Perhaps, other gauges of irreversibility should be explored.
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