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Abstract: Hydrogels containing renewable resources, such as hemicellulose, have received a lot of
attention owing to their softness and electrical conductivity which could be applied in soft devices
and wearable equipment. However, traditional hemicellulose-based hydrogels generally exhibit
poor electrical conductivity and suffer from freezing at lower temperatures owing to the presence
of a lot of water. In this study, we dissolved hemicellulose by employing deep eutectic solvents
(DESs), which were prepared by mixing choline chloride and imidazole. In addition, hemicellulose-
based DES hydrogels were fabricated via photo-initiated reactions of acrylamide and hemicellulose
with N, N′-Methylenebisacrylamide as a crosslinking agent. The produced hydrogels demonstrated
high electrical conductivity and anti-freezing properties. The conductivity of the hydrogels was
2.13 S/m at room temperature and 1.97 S/m at −29 ◦C. The hydrogel’s freezing point was measured
by differential scanning calorimetry (DSC) to be −47.78 ◦C. Furthermore, the hemicellulose-based
DES hydrogels can function as a dependable and sensitive strain sensor for monitoring a variety of
human activities.

Keywords: hemicellulose; deep eutectic solvents (DESs); anti-freezing; conductivity; hydrogels

1. Introduction

Hemicellulose is abundant in nature and is the second highest source of biomass
resources after cellulose. It has been utilized in the manufacture of hydrogels, which are
applied in heavy-metal adsorption, medication administration, wound dressings, and other
fields due to its satisfactory biocompatibility and a huge number of active functional groups.
For example, Hu and co-workers prepared xylan-based PAM hydrogels with high tensile
and electrical conductivity from hemicellulose of the shell of Camellia oleifera Abel with the
addition of MXene [1]. However, traditional hemicellulose-based hydrogels still suffer from
several drawbacks, such as poor mechanical and electrical conductivity features. Therefore,
it is crucial for building highly conductive hemicellulose-based hydrogels with adequate
mechanical characteristics.

On the other hand, in addition to the explosive growth of portable electronic devices,
the designing of environmentally friendly flexible electronic devices has recently garnered
much research attention [2–4]. Hydrogels with 3D polymer networks are highly malleable,
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flexible, and biocompatible, which mean that they can be applied in touch screens, wearable
devices, and flexible energy storage devices [5–10]. However, due to their poor electrical
conductivity and lack of resistance at low temperatures, conventional hydrogels have
been limited in their applicability. To overcome the drawbacks of conventional hydrogels,
researchers have tried a variety of techniques, such as adding functional components to
the hydrogel, modifying the ratio of reactants, and so on. To date, by adding conductive
components to hydrogels [11–15], e.g., MXene, graphene, carbon nanotubes, polypyrrole,
polyaniline, ions, etc., flexible conductive hybrid hydrogels with high electrical conductivity
and excellent stability have successfully been synthesized. However, hybrid hydrogels may
exhibit phase separation or inhomogeneous distribution as a result of incompatibility of
the filler materials, which can somewhat reduce the mechanical and conductive capabilities
of the hydrogels [16,17].

Some water-soluble conductive components, such as salts, ionic liquids, and organic
acids, have been incorporated into hydrogel matrices to alleviate these problems [18–20].
When the temperature falls under the point of freezing, hydrophilic polymer hydrogels
unavoidably freeze and become brittle, losing their original suppleness [21]. Therefore,
the study of the hydrogels’ ability to withstand freezing is extremely significant to extend
the applicability of hydrogels in extreme environmental tolerance. To add anti-freezing
properties, hydrogels are currently manufactured by combining hydrophobic components
with antifreeze chemicals. For example, hydrogels based on hydrophilic/oleophilic hetero-
geneous networks may withstand extremely low temperatures (−78 ◦C) [22]. Employing a
binary H2O/glycol solvent, Rong and colleagues created a conductive self-healing hydrogel
with consistent strain sensitivity in the −55.0 to 44.6 ◦C range in temperature [23].

One of the potential options for producing conductive hydrogels is the deep eutectic
solvent (DES), a novel environmentally friendly solvent, because it exhibits low toxicity, it is
easily available, and is of low cost [24]. DES is a two-part mixture comprising (1) hydrogen
bond acceptors (HBA) like choline chloride (ChCl), thiocyanate, and others; and (2) hydro-
gen bond donors (HBD) involving urea, acrylamide, and others. Furthermore, the molar
ratio and type of HBAs and HBDs are tunable, and therefore the physicochemical features
of DES may be adjusted, making it widely applicable in polymer synthesis, compound
extraction, organic solvents, harmful gas capture, and so on [25–28]. DESs are a new type
of solvent that can not only dissolve lignocellulosic biomass (such as lignin, hemicellulose,
and cellulose), but also provide electrical conductivity to the system. DESs and ionic liquids
have comparable properties; they have the potential to create conductive hydrogels [29].

In this paper, in order to address the poor mechanical properties and limited function-
alities of hemicellulose-based hydrogels, we developed a novel transparent hemicellulose-
based hydrogel with high conductivity and anti-freezing properties using a simple two-step
method. Specifically, this material was synthesized through a straightforward photo-
initiated free-radical polymerization of acrylamide (AM) monomers in the presence of
hemicellulose and deep eutectic solvents (DES). The role of each component in the hydro-
gel preparation was investigated by introducing DES to address the problems of difficult
solubility of alkaline hemicellulose and poor mechanical and electrical conductivity of
bio-based hydrogels. A comprehensive study of the physicochemical, mechanical, and
electrical conductivity properties was carried out to reveal the function of the various
parts. Hydrogen bonds between AM units within the hydrogel constitute the primary
network. This PAM-DES-HC hydrogel possesses several attractive features, including
stretchability, high toughness, transparency, and excellent electrical cycling stability. Finally,
the potential of hemicellulose-based DES hydrogels for initial application as strain sensors
to detect human activity was displayed as well. This study provides insight in designing
hemicellulose-based functional hydrogels for various applications.
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2. Results and Discussion
2.1. Preparation and Characterization of Hemicellulose-Based Hydrogels

In this study, hemicellulose-based hydrogels were prepared via dissolving hemicel-
lulose in ChCl-imidazole DES with high conductivity and anti-freezing properties. The
hemicellulose was separated from Camellia oleifera Abel by adjusting the concentration
of potassium hydroxide. The preparation process is shown in Figure 1. First, choline
chloride and imidazole were combined and stirred at 80 ◦C till the mixture became clarified,
homogenized, and translucent. The mixture was dried in a vacuum for 8 h to yield a solid
deep eutectic solvent. Then, the hemicellulose was dissolved in ChCl-imidazole DES at
80 ◦C, and acrylamide, crosslinker agent MBA and photo-initiator 2959 were added. Finally,
a photo-initiated polymerization process was applied. The prepared hydrogel was colorless
and transparent.
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Figure 1. Schematic illustration of fabricating highly conductive and anti-freezing hemicellulosebased
hydrogels via dissolving hemicellulose in ChCl-imidazole DES.

The structural features of the PAM, DES, PAM-DES, and PAM-DES-HC were studied
with FT-IR spectroscopy to demonstrate the interactions that occur among the PAM, DES,
and hemicellulose. The FT-IR spectra of the produced hydrogels are displayed in Figure 2a.
The distinctive peaks of hydrogels (C=O) were at 1653 cm−1, which could be seen in
PAM, PAM-DES, and PAM-DES-HC. The intensity of peaks at approximately 3180 cm−1

was ascribed to the stretching and bending vibration of O-H. The peak at 1045 cm−1 was
ascribed to C-O-C stretching vibrations and -C-OH mixing vibrations in hemicellulose,
respectively [30,31]. Vibrational bonds at 3200 cm−1 and 1800–880 cm−1 refer to a hydroxyl
or amino group (N-H stretching the former and C-N+ symmetric stretching the latter);
meanwhile, vibrational bands at 2990–2985 cm−1 referring to an alkyl group were also
observed. The prepared hemicellulose-based DES hydrogels had a compact structure and a
low number of pores compared to PAM hydrogels (Figure 2c). The G′ and G′′ parameters
were important for measuring dynamic rheological characteristics [32]. Figure 2d shows
G′ > G′′ values over the whole frequency from 0.01–100 Hz, which indicates that the
hemicellulose-based DES hydrogels were elastic hydrogels. The viscoelastic modulus of
the hemicellulose-based DES hydrogel increases with increasing scan frequency over the
frequency scan range, indicating a frequency dependence of the viscoelastic modulus. The
fundamental explanation for this might be the fact that the macromolecular chains did not
instantly reorganize in the high-frequency range, causing them to stiffen, resulting in an
increase in the moduli of G′ and G′′, similar to the results of prior studies [33].
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Figure 2. Characterization of the hydrogels. (a) FT-IR spectra of hemicellulose-based hydrogel and
PAM hydrogel. (b) SEM image of the hemicellulose-based hydrogel. (c) SEM image of the PAM
hydrogel. (d) Rheological properties of the hemicellulose-based hydrogels.

2.2. Mechanical Properties of the Hydrogels

The produced hydrogels can be stretched, twisted, and knotted as illustrated
in Figure 3a, exhibiting their remarkable mechanical capabilities. Pure PAM hydrogels
and PAM-DES hydrogels were examined under identical conditions to compare the me-
chanical characteristics of the hemicellulose-based hydrogels, and the results are depicted
in Figure 3b−d. The tensile stress of the pure PAM hydrogels was 7.65 kPa, the strain
was 977%, the modulus was 39.59 kPa, and the toughness was 5.09 kJ/m3. This study
showed that DES may not only enhance hemicellulose dissolving and facilitate hydrogel
production, but also offer hydrogel-enhanced mechanical characteristics. The explana-
tion is that DES functions as a hydrogen bond acceptor and donor, and DES and PAM
interact through hydrogen bonding to form a strong network system that improved the
mechanical properties of the hydrogel, including its fracture stress of 112.73 kPa, strain of
2058.49%, modulus of 99.20 kPa, and toughness of 72.46 kJ/m3, which is consistent with
the reported results [1]. When hemicellulose was added, the hemicellulose-based DES
hydrogels had greater fracture stress and deformation, suggesting that the hydroxyl groups
of hemicellulose interacted with PAM and DES through non-covalent bonds to improve
mechanical properties.
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Figure 3. Tensile stress–strain curves, modulus, and toughness of the hemicellulose-based hydrogels.
(a) Photographs of stretching, twisting, and knotting hemicellulose-based hydrogels. (b) Tensile
stress–strain cures of the hemicellulose-based hydrogels. (c) Modulus of the hemicellulose-based
hydrogels. (d) The toughness of the hydrogels.

To investigate the elasticity and energy dissipation of hydrogels, loading–unloading
experiments were carried out. The hydrogels were stretched 10 times at a set strain of
150%, as shown in Figure 4a, and the biggest amount of energy was dissipated for the
first time with an energy dissipation of 1.31 kJ/m3. In addition, the hydrogels showed
good elastic recovery, with an elastic recovery rate of 88%, as shown in Figure 4b. Loading–
unloading experiments with various maximum stresses were performed to further study
the energy dissipation of the hydrogels (Figure 4c). There was no break between the two
loading sessions. When strain was increased, the energy wasted increased consistently
from 6.2 kJ/m3 (100% of strain) to 34.2 kJ/m3 (200% of strain, Figure 4d).

2.3. Conductive Properties of the Hydrogel

When the produced hydrogel cut in the shape of a dumbbell was connected to the
circuit, as illustrated in Figure 5a, the PAM-DES-HC hydrogels could be used as part of an
electric circuit to transmit the current that lights up an LED bulb, and the LED light showed
significant brightness. This demonstrated that the prepared hydrogel had good electrical
conductivity. Indeed, the electrical conductivity data from the prepared hydrogels showed
that the hydrogel conductivity achieved 2.13 S/m at room temperature, with the conductiv-
ity decreasing marginally from room temperature to low temperature, with the electrical
conductivity still reaching 1.97 S/m even at −29 ◦C, (Figure 5b). This was attributed to
the fact that hydrogel networks consisting only of non-covalent interactions between each
component, such as hydrogen bonding, and electrostatic interactions, may contribute to
the formation of a DES system with unique properties and electrical conductivity.

2.4. Anti-Freezing Property of the Hydrogels

The water content in hydrogels inevitably freezes in low-temperature environments,
resulting in the loss of elasticity of hydrogels. Therefore, it is necessary to develop a
hydrogel sensor with frost resistance to extend the operating temperature range of the
sensor. After 24 h of freezing the hemicellulose-based hydrogel (Figure 6a) at −29 ◦C,
revealed almost no difference, and the frozen hydrogel could be tested for mechanical
behaviors such as tensile, twisting, and bending (Figure 6c–e). The hydrogels were analyzed



Gels 2023, 9, 725 6 of 12

for their anti-freezing properties by DSC (Figure 6b) and the hydrogel had an exothermic
peak of water crystallization at −47.78 ◦C compared to −13 ◦C for the PAM hydrogel [34].
This was due to the fact that DES can lower the freezing point of water. These ions can
interact with water molecules, limiting the formation of ice crystals, and enhancing the
hydrogel’s antifreeze property. Furthermore, the prepared hydrogel had a stable and
repeatable change in resistance, and the magnitude of the change in resistance at low
temperatures was found to be higher than that at room temperature. The frozen hydrogel
was tested for the change in hydrogel tensile-reciprocal resistance below 0 ◦C (−29 ◦C),
and it was discovered that the prepared hydrogel had that change in resistance.
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Figure 4. Strain cycling and energy dissipation in hemicellulose-based hydrogels. (a) Cyclic tests at
the strain of 150%. (b) The toughness and dissipated energy at strain 10%, 20%, 50%, 200%. (c) The
cyclic tests with increasing strain. (d) The calculated dissipated energy, dissipated ratio, toughness,
and elastic recovery.
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Figure 5. The electrical conductivity of hemicellulose-based hydrogels. (a) Photos of the luminance
of LEDs (working voltage of 3.0 V) using hemicellulose-based hydrogels as the conductor. (b) The
electrical conductivity of hemicellulose-based hydrogels at normal temperature (25 ◦C) and low
temperature (−29 ◦C).

2.5. Application of PAM-DES-HC as Strain Sensors

When DES-conducting hydrogels were stretched, the channel for DES ions to travel
narrowed, increasing the resistance value and impeding the flow of HBA and HBD ions.
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It was, therefore, strain sensitive. Several applications for sensing human motion are
displayed in Figure 7 to demonstrate the viability of this sensor in flexible electronic
devices. To track human movement, the sensors were attached to various body areas of a
24-year-old female volunteer. DES hydrogel showed good cycle stability and durability.
The resistive response signal in Figure 7a was reproducible and steady after repeated
elbow flexion/extension movements. The relative resistance varied when the elbow was
bent, but when the elbow was straightened again, the resistance reverted to its initial
value. Notably, there was a positive correlation between angle and signal intensity when
the change in the R/R0 signal at various angles was monitored. The relative resistance
was constant while the finger was kept at a particular angle. At a fixed angle, the signal
remained constant, and when the elbow was straightened, the signal was fully recovered.
Numerous other body parts, such as the elbow and knee, were also subjected to similar
motion detection. Figure 7b–d shows that various sensor extensions cause various changes
in relative resistance. These results showed that hemicellulose-based DES hydrogels could
be ideal sensors for applications in human motion detection.
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3. Conclusions

In this work, we showed how to effectively produce multifunctional hemicellulose-
based DES hydrogels using a straightforward technique. The prepared hydrogels have
good mechanical properties, excellent electrical conductivity, and resistance to freezing
with a conductivity of 2.13 S/m and still achieve a conductivity of 1.97 S/m at extreme
temperatures (−29 ◦C). Hemicellulose and PAM interact via hydrogen bonding to increase
the mechanical properties of the hemicellulose-based DES hydrogel, which had a fracture
stress of 112.73 kPa, a strain of 2058.49% a modulus of 99.20 kPa, and a toughness of
72.46 kJ/m3. The hemicellulose-based DES hydrogel was the subject of an investigation
into a flexible sensor that had high linearity, sensitivity, and stability across the strain range.
The sensor had excellent repeatability and resistance-change stability. When the flexible
sensor was fastened to the body, it was possible to accurately detect a variety of human
motions. This work provides a new strategy to prepare hemicellulose-based hydrogels
with enhanced mechanical properties and functionality compared to previous studies. It
can serve to enlarge the potential application of hemicellulose-based hydrogels and inspire
others to design multifunctional integrated wearable devices and smart bionic hydrogel
soft robots.

4. Materials and Methods
4.1. Materials and Reagents

Acrylamide (AM), N, N′-methylenebisacrylamide (MBA), ammonium persulphate
(APS), choline chloride, and imidazole were purchased from Aladdin Chemical Reagents
Ltd. (Shanghai, China). Photo-initiator 2959 was obtained from Sigma-Aldrich Co., Ltd.
St (Saint Louis, MO, USA). Hemicellulose was prepared from the shell of Camellia oleifera
Abel (Jinhua, China) and the sugar analysis showed 95.82% xylose, 1.93%, 0.87%, and 0.69%
glucose, mannose, and arabinose, respectively. All reagents were not further purified.

4.2. Preparation of Hemicellulose-Based Hydrogels
4.2.1. Preparation of ChCl-Imidazole DES (Solution A)

Imidazole and choline chloride were dried and stored in a desiccator for future use.
The heating process was used to prepare DES. In a round bottom flask, choline chloride
52.36 g and imidazole 59.57 g (choline chloride: imidazole 7:3 (mol/mol)) were weighed
and heated at 80 ◦C with an electromagnetic stirrer (RT10, IKA, Staufen, Germany) at
a 50 rpm rate until the mixture became a clear, homogeneous, and transparent liquid.
The mixture was then heated for another 30 min, dried under vacuum for 8 h, and a
solid product of ChCl-imidazole DES was obtained according to the previous report with
modification [35]. The solid product was melted into liquid at 80 ◦C and named solution A
for subsequent uses.

4.2.2. Configuration of PAM Prepolymers (Solution B)

A total of 12 g of AM was dissolved in 30 g of water and stirred at 25 ◦C with an
electromagnetic stirrer (RT10, IKA, Staufen, Germany) at a 100 rpm rate for 2 h. Then, 2.4 g
of hemicellulose (prepared from the shell of Camellia oleifera Abel) was added to the AM
solution and the mixture was stirred with an electromagnetic stirrer (RT10, IKA, Staufen,
Germany) at room temperature for 30 min. Finally, MBA was added to the above solution
and stirred with an electromagnetic stirrer (RT10, IKA, Staufen, Germany) at 25 ◦C for
30 min till a translucent and clear solution was obtained and stored in a freezer cabinet at
4 ◦C. This solution, named solution B, was set aside for polymerization.

4.2.3. Fabrication of Hemicellulose-Based Hydrogels

To synthesize a hemicellulose-based DES hydrogel, the following procedure was
conducted: solution A, 3 mL, and solution B, 9 mL were mixed together and stirred at
ambient temperature for 30 min. Then, photo-initiator 2959, 0.27 g, was added into the
mixture, and stirred with a magnetic stirrer (RT10, IKA, Staufen, Germany) at ambient
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temperature for 30 min, poured into a PTFE mold, and placed in the reactor. Afterwards,
the mixture was put in a light curing oven (36 W, 365 nm wavelength) and kept for 120 s.

4.3. Characterizations

FT-IR analysis was performed on samples ranging from 4000 to 400 cm−1 with a spec-
tral resolution of 4 cm−1. The spectra were recorded on a single reflection attenuated total
reflection (Nicolet iS50, Thermo Fisher Scientific, Waltham, MA, USA). A scanning electron
microscope (SEM) (Gemini 450, Zeiss, Oberkochen, Germany) was used to characterize the
hydrogels. Cured hydrogel samples placed in the circuit were frozen at −40 ◦C and then
freeze-dried for 24 h. Next, the samples coated with 5 nm of gold were sliced and manually
fractured in cross-section.

4.4. Mechanical Properties Testing of the Hydrogels

Tensile tests were conducted using universal testing equipment (UTM2503, SANS,
Shenzhen, China) and a 20 N load cell on dumbbell-shaped hydrogels (4 mm × 25 mm). By
using linear fitting (stress–strain), the modulus of a hydrogel was calculated, with the slope
indicating the modulus. The total area curve was used to calculate toughness. Calculations
for elastic recovery, dissipated energy, and dissipated ratio were performed in accordance
with earlier research by Jian et al. [36]. Elastic recovery (E) was determined by employing
the following equation to assess the mechanical properties of cyclic loading–unloading:

E =
εmax − εmin

εmax
, (1)

where εmax represents the maximum strain in the loading circle and εmin represents the
strain at the point in the loading circle when the tensile stress is zero.

The dissipated energy (∆Ui) was calculated as follows:

∆Ui =
∮

σdε, (2)

where ∆Ui is dissipated energy, σ and ε are tensile stress and strain, respectively.
The dissipated ratio (η) was used to measure the rates of dissipating energy of

the materials.
The dissipated ratio was measured via the following equation:

Ui =
∫ σmax

0
σdε, (3)

where Ui is the elastic energy of the materials during the tensile stress from σ = 0 to σmax in
the loading circle. The dissipated ratio (η) was calculated as follows:

η =
∆Ui
Ui

. (4)

Water content was calculated according to the following equation:

ω(H2O) =
ms −md

ms
× 100%, (5)

where md is the sample’s weight after drying and ms is the sample’s weight at equilibrium.
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4.5. Testing of the Electrical Conductivity of Hydrogels
4.5.1. Electrical Conductivity of Hydrogels (σ)

The evaluation of hemicellulose-based hydrogels was performed using an electro-
chemical workstation (CHI-660E, Chen Hua, Shanghai, China). According to the equation,
the conductivity was determined as follows:

σ =
L

R× S
, (6)

where σ (S/m), L (m), R (Ω), S (m2) are the conductivity, length, resistance, and contact
area of the samples, respectively.

4.5.2. Hydrogel Resistance Variation

An LCR meter (TH2830, Tong Hui, Shanghai, China) was used to capture the hydrogel
resistance signals using the following formula:

R− R0

R0
× 100%, (7)

where R (Ω) are the resistance of the sample at different strains; R0 is the sample resistance
at the 0% strain.

4.6. Freezing Resistance of Hydrogels

A differential test scanning calorimeter (DSC 214 Polyma, NETZSCH, Selb, Germany)
was used to measure the hydrogels’ ice crystallization temperature in the range of −80 ◦C
to 25 ◦C at a temperature-decreasing rate of 5 ◦C/min. To measure the freezing resistance of
the hydrogels, the samples were sealed and placed in a refrigerator at −29 ◦C for 12 h and
then removed and immediately observed to determine whether they remained elastic and
to demonstrate the performance of hydrogels such as conductivity, mechanical properties
of stretching, twisting and knotting.

4.7. Rheological Testing

On a parallel plate rheometer (AR 2000, TA Instruments, New Castle, DE, USA), the
hydrogels’ dynamic rheological characteristics were assessed. Before being deposited onto
a Brookfield DVIII instrument plate, the samples were first dissolved in a 1 wt% NaOH
solution at 25 ◦C and agitated until a homogeneous and stable clear solution was created.
To prevent the water from evaporating from the solution, the borders of both parallel plates
were sealed with silicone oil. With shear rates ranging from 10−2 to 103/s and storage (G′)
and loss (G′′) moduli measured at oscillatory strain rates of 10−2 to 102/s, specific strain
values were set to ensure that the shear tests were carried out within a linear viscoelastic
range of dynamic storage and loss moduli.
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