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Abstract: The use of gels in oil production processes has become a regular practice in oilfield
operations and is constantly developing in all oil-producing countries of the world, as evidenced by
the growth of publications and patent activity on this topic. Many oil production processes, such as
hydraulic fracturing, conformance control, water, and gas shutoff, cannot be imagined without the
use of gel technologies. Inorganic, organic, and hybrid gels are used, as well as foams, gel-forming,
and gel-dispersed systems. The possibility of a broad control of structural and mechanical properties,
thermal stability, and shear resistance by introducing microscale and nanoscale additives made
hydrogels and hydrocarbon-based gels indispensable tools for oil engineers.

Keywords: gel; hydrogel; hydrocarbon-based gel; structural and mechanical properties; filtration
properties; hydraulic fracturing; conformance control; oil production stimulation; enhanced oil
recovery; well drilling; well killing

1. Introduction

The use of hydrogels and hydrocarbon gels in oil production processes is very diverse
and significantly affects many stages of the oil production process chain, such as well
drilling, oil production stimulation, water and gas shutoff, injection well conformance
control, and enhanced oil recovery. Organic and mineral gels are used, as well as gels made
from hybrid organo–inorganic materials.

Partially hydrolyzed polyacrylamide [1] and guar polymers [2] have become the most
commonly used materials of the water-soluble polymers that form the basis of gels, as
well as silicon- [3] and aluminum-containing [4] compounds from inorganic materials.
This direction is constantly developing. Oilfield service companies around the world are
continuously improving their formulations both to increase process efficiency and reduce
costs. Many extremely important operations, including hydraulic fracturing, conformance
control, and gas and water shutoff in wells, are generally unthinkable today without the
application of a variety of gels.

Guar and hydroxypropyl guar gels have become the most widespread, while xan-
than and polyacrylamide gels are less commonly used in hydraulic fracturing [2,5–10].
Hydrocarbon-based gels are used for this as well [11–13]. Recently, gels based on viscoelas-
tic surfactants have been used [14–22]. They have one clear advantage over other polymer
gels: they are destroyed during well inflow after fracturing by both oil and water.

Water shutoff operations using hydrogels to reduce the idle circulation of injected
water, intensify oil production, and enhance oil recovery are conducted both in injection
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(flow-diversion technologies) and production (remedial cementing) wells [23]. The quali-
tative composition of hydrogels used for both flow diversion and water shutoff is almost
identical. Gels differ mainly in their concentration parameters: lower concentrations of pri-
mary components are used for flow diversion, and the structural and mechanical properties
of hydrogels are weaker. For water shutoff, by contrast, the concentration of the primary
components is many times higher, and such rheological characteristics of hydrogels as the
ultimate shear strain, viscosity, and storage modulus are significantly higher. Moreover,
depending on the type of remedial cementing operations (selective water shutoff, isolation
of watered out formation intervals, elimination of behind-the-casing, casing leak repairs,
etc.), hydrogels are used both in pure form and are combined with more rigid grouting
materials, which are reinforced with curing resins or micro cement [24].

The use of hydrogels in well drilling is currently limited to the drilling of horizontal
sections in clay reservoirs, but they are more often used for controlling disastrous lost circu-
lation since viscoelastic gels reinforced with dispersed particles can effectively eliminate
absorption zones [25].

Hydrogels are used as acid diverters for well stimulation by acid treatment. Various
application options are possible, from polyacrylamide gels that have already become a
conventional option to gels based on viscoelastic surfactants.

The purpose of this review is to identify trends in the development of chemistry and
technology of gels when they are used in the oil industry, as well as to identify the most
promising areas of scientific research in this area.

Figure 1 shows a schematic illustration of various processes in the oil industry in
which gels are used.
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Gels can be classified according to various characteristics. In this review, the gels
used in the oil industry are divided according to their application. Table 1 shows the
compositions of the dispersion and dispersed phases of gels.
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Table 1. Classification of gels used in the oil industry.

Application Dispersion Medium Dispersed Phase

Hydraulic fracturing
Water

1. Cross-linked polymer gels based on guar (cross-linkers: boron, titanium, and zirconium
compounds).
2. Polacrylamide (slickwater, friction-reducing agent).
3. VES (cationic, zwitterionic, anionic surfactants, and their mixtures) and structure-forming
agents (electrolytes, polymers, and nanoparticles).

Hydrocarbons Aluminum or iron alkyl phosphates

Water and gas shutoff Water

1. PAM with Cr3+ or Al3+ cross-linkers.
2. PAM with organic cross-linkers.
3. Acidic and basic silicate gels.
4. Hybrid organic–inorganic gels.
5. Gels with microparticle and nanoparticle additives.

Conformance control
and flow diversion Water

1. PAM with Cr3+ or Al3+ cross-linkers.
2. Insoluble particles of cross-linked polymers (gel particle dispersions).
3. Cross-linked PAM with nanoparticles.
4. Aluminum oxychloride with modified PAM.
5. Sodium silicate with viscoelastic water-soluble cellulose derivatives.

EOR Water
1. PAM with Cr3+ cross-linker.
2. Water-swellable phenolaldehyde resin.
3. PAM with a complex organic cross-linker—a mixture of formalin and resorcinol.

Stimulation with acidic
compounds Water 1. Hydrolyzed polyacrylonitrile and reagent based on inorganic gel.

2. VES

Well drilling Water (WBM)

1. Cross-linked polymer-gel systems based on polyacrylamide–polyethylenimine, with organic
cross-linkers (a mixture of resorcinol and paraform) reinforced with polypropylene fiber.
2. Water-soluble cellulose esters and modified starch combined with silicate reagents,
lignosulfonates, calcium, potassium, and magnesium chloride salts, as well as caustic soda.
3. Hydrogels filled with mineral fibrous-dispersed materials.
4. Intercalated polymers.

Well killing Water

1. Guar gum.
2. Xanthan gum.
3. Various types of cellulose (CMC, PAC, HEC).
4. Starch

2. Hydraulic Fracturing Gels

Hydraulic fracturing is a well-known method for oil and gas production stimulation.
The essence of the process is based on the injection of a composite viscous liquid or gel
under pressure exceeding the pressure of fracturing. As a result, a system of fractures
is formed, the length of which can reach several hundred meters. The permeability of
fractures, as a rule, is several times higher than the initial permeability of the pores of
collectors, which justifies the increased influx of fluids.

In most cases, a propping material is used in hydraulic fracturing such as a proppant
or sand to prop the resulting fractures; that is, to prevent them from closing under the
impact of rock pressure. Fracturing fluids should have stable rheological properties. Thus,
during the entire duration of hydraulic fracturing, the viscosity of the gels should be the
maximum for retaining the proppant in the volume, for its uniform distribution over the
volume of fractures, and for the development of fractures of the required geometry. After
the process, the viscous liquid is an obstacle to the filtration of reservoir fluids. Therefore,
the viscosity of hydraulic fracturing gels decreases, i.e., the gels are destructed under the
action of special destructor reagents or in contact with reservoir fluids.

The existing variety of hydraulic fracturing gels can be divided into two large classes:
water gels (hydrogels) and hydrocarbon gels. Various modifications of compositions in the
form of emulsion and foam compositions are already possible due to their base. There are
also alcohol-based gels.

The development and successful application of technologies and various compositions
for hydraulic fracturing have a history of almost 80 years, starting from the late 1940s. Only
hydrocarbon-based gels were used at the first stages of technology development. Systems
based on light fractions of hydrocarbons thickened with aluminum soap were used. Due to
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the high hazard of such compositions, they were later replaced by gels based on heavier
fractions and emulsions. Their use did not damage the formation rock and formation
fluids; they did not cause any swelling of clay particles with subsequent migration and
clogging of pores and formed fractures; and they did not form emulsions and sediments
with in-place oil.

Water gels for hydraulic fracturing were not used until the 1960s to avoid these prob-
lems. However, their studies continued, as they are cheaper, more environmentally friendly,
and significantly less demanding on safety issues. Researchers showed that the introduction
of potassium and calcium chlorides into the composition of the hydrogel can significantly
reduce the damaging effect on water-sensitive formations. These studies opened up the pos-
sibility of using hydrogels in hydraulic fracturing. Since the 1970s, the possibility of using
synthetic polymers as thickeners of aqueous media has been investigated. These are mainly
polyacrylamide and its derivatives. Extensive studies of the so-called “pure” hydraulic
fracturing gels based on viscoelastic surfactants began in the 1990s. These gels became
known due to their complete destruction and subsequent cleaning of the hydraulic fracture.

Currently, there are a large number of reagent-thickeners (gelling agents) for aqueous
and hydrocarbon media. As a rule, natural and synthetic polymers are used for aquatic
environments, and there is a huge variety of such polymers. The former is most often
subjected to various chemical modifications to increase the viscosity, thermal, and salt-
resistant properties. There are significantly fewer thickeners for the formation of gels from
hydrocarbon media. Most often, these are soaps of higher fatty acids and alkyl phosphates
of aluminum and iron.

This section of the review will focus mainly on the chemistry and mechanism of the
formation of hydraulic fracturing gels, as well as their destruction in various environments.
We will also consider additional chemicals that are introduced into gels and their effect on
the properties of compositions. We will identify the main features of various formulations
based on the most common chemicals at the present time.

The review briefly discusses the main methods of studying the main process properties
of hydraulic fracturing gels. The American Petroleum Institute (API) has developed a
standard method for determining the properties of fracturing fluids API RP39 to assess the
quality of various hydraulic fracturing gels. The methodology of the American Petroleum
Institute includes methods for preparing hydraulic fracturing fluids in laboratory conditions
and methods for studying their physico–chemical properties. In particular, it includes the
determination of rheology, friction pressure losses, filtration, and sand retention capacity,
for which special equipment is used. In addition, special techniques have been developed
and used for the study of rheology, destruction of gels, filtration, determination of the
restoration of rock permeability, and proppant packing, which are associated with specific
testing equipment.

2.1. Guar-Based Gels

As mentioned above, there is a wide variety of polymer thickeners for the formation
of gels. They have been used in hydraulic fracturing operations since the 1960s. Guar gum
and its derivatives have become the most widespread gelling agents.

Using the example of this polymer in this section, we will consider the mechanism
of gel formation and its destruction, as well as the action of various chemical additives
in its composition. As described earlier, the destruction capability is an integral property
of hydraulic-fracturing gels for the possibility of cleaning the fracture and the produc-
tive interval, as well as causing the inflow of formation fluids. However, the premature
destruction of gels is also highly undesirable.

In addition to guar gum and its derivatives, other polysaccharides of plant and
microbial origin have also become widespread:

1. Water-soluble cellulose derivatives (carboxymethylcellulose, carboxymethylhydrox-
yethylcellulose, hydroxyethylcellulose, etc.) [26,27]. Depending on the substituents,
these polymers form gels in a wide range of viscosity, application temperatures, and
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mineralization of the water base. Heavy metal cations are often added to these systems
to increase the viscosity.

2. Microbial polysaccharides: xanthan, emulsifier, simusan, kurdlan; bacterial alginates
and fungal: aubazidan, pullulan, rodexman, scleroglucan. The most common of these
is xanthan, which, due to its structure, forms highly viscous solutions in a wide range
of pH, mineralization, and temperature. Guar and hydroxypropyl guar (HPG) are the
cheapest of a biopolymer series, as well as effective thickeners of aqueous media for
hydraulic fracturing. The general structural formula for guar and HPG is shown in
Figure 2. The degree of polymerization of molecules (n) is usually 400–600, and the
average molecular weight is in the range of 200,000 to 2,000,000 Daltons.
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Hydration of polymer molecules occurs due to hydrogen interactions between poly-
mer and water. Moreover, the introduction of substituents into the guar molecule with
the formation of HPG increases the number of these interactions. The introduction of
substituents into the molecule also increases the thermal oxidative and salt stability of the
polymer. This is facilitated by the screening of polymer molecules by substituents intro-
duced into the structure from oxygen dissolved in water, iron cations, and other metals, as
well as from microorganisms.

When forming hydrogels for hydraulic fracturing, guar or its derivatives are dissolved
in water to obtain low-viscosity solutions (viscosity about 100 mPa·s) [26]. In this case, the
so-called “linear gel” is obtained. Such a hydrogel can form a suspension of proppant only
at sufficiently high concentrations. In addition, the linear gel is considered suitable for
creating zones with high permeability near the borehole. It should also be taken into account
that a low-viscosity linear gel, in addition to the difficulty with suspending the proppant,
has another feature: large filtration leaks, especially in highly permeable collectors.

In the 1970s, complex elements such as boron, titanium, and zirconium were added
to linear gels. Interacting with the polymer, they provide cross-linking of its links, and
a “cross-linked polymer gel” is formed. Moreover, as shown in [28], cross-linking occurs
at hydroxyl groups of guar, which are located in the cis position relative to each other
(Figure 3). At the same time, the viscosity of the gel increases 5–10 times [29], which creates
the ability to suspend and retain the proppant in the liquid volume, while filtration leaks
into the formation also decrease.

The introduction of borate ions is possible in the form of water–alcohol solutions of
boron compounds or suspensions [30,31], depending on the required cross-linking time. At
the same time, it is necessary to create an alkaline medium for cross-linking (pH = 8.5), for
which various buffer reagents can be used [32,33]. The use of other metals, such as titanium
and zirconium [28,34–38], provides the resulting gels with a higher mechanical strength
and thermal stability. Cross-linking takes place at a wider pH range. The quality of the
cross-linking is strongly influenced by the composition of the water used, which should be
pretreated [39].
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After the fracturing and propping the fracture, the fracturing gel should lose its
viscosity. In other words, it should undergo destruction, as mentioned above. There is
a wide variety of destructor reagents, depending on the type of systems. The destructor
should perform its functions at reservoir temperatures, while the viscosity of the gel should
not decrease much before the fracturing cracks are fixed. The most common destructors are
oxidizing agents, such as persulfates or peroxides [40]. Moreover, the structure of these
compounds justifies the possible temperature ranges of application. Destructors in the
polymer shell are used to slow down the action at temperatures above 70–80 ◦C [41]. The
action of oxidative destructors is based on the generation of free radicals that interact with
the polymer chain and provoke its rupture to lower molecular weight components [42,43].
The generation of free radicals can be depicted by the example of a persulfate anion
(Figure 4).
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The interaction of the obtained radicals with the polymer chain passes through hy-
drogen atoms, which are attached to the carbon skeleton of the polymer. Hydrogen atoms
of hydroxyl groups in this case are less reactive. An example of destruction is shown in
Figure 5.
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Currently, enzyme destructors are often used, which undergo enzymatic cleavage of
polysaccharide molecules [44]. Acids or reagents generating acids in situ conditions can be
used as destructors in cases of borate cross-linking, which requires an alkaline medium. In
this case, the polysaccharide–boron complex is destroyed [40].

Speaking of destructors, it is worth noting one of the features of guar-based gels.
Currently, the issue of the completeness of the destruction of guar hydrogels is under
discussion. The reduction of permeability by an undisturbed gel based on guar can reach
85%. Depending on the permeability of the collector, the quality of the colmatant can be
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affected by the types of salts present in the formation water and dissolved gases (hydrogen
sulfide, for example) [45,46]. According to the researchers, a strong adsorption of polymer
molecules also contributes to a decrease in permeability. It is proposed to reduce it by
introducing various nanoparticles into the gel structure [47–49].

Guar gels, as well as hydrogels for hydraulic fracturing in principle, became widespread
after the development of methods to reduce the negative impact of water systems on clays,
which are an integral part of formations. Special reagent-stabilizers are used to prevent the
swelling of clays (to stabilize them). Potassium and calcium chlorides have been used as
clay stabilizers, while low-molecular-weight quaternary nitrogen-containing compounds,
also called “ionic liquids”, are also used to prevent the swelling of clays [50,51].

It is worth noting that guar and its derivatives are subject to biodegradation. The mech-
anism of biodestruction is similar to the destruction under the action of enzyme destructors.
Reagent-biocides are introduced to protect the system from the effects of microorganisms.
Low-molecular-weight nitrogen-, sulfur-, or halogen-containing compounds are often used
as biocide reagents, which completely suppress or inhibit the action of microorganisms [52].

In addition to these reagents, thermal stabilizers, friction reducers, and surfactants
are additionally introduced into hydraulic-fracturing hydrogels in order to prevent the
formation of stable oil–water emulsions, minimize capillary effects and changes in the
wettability of the collector surface, as well as special corrosion inhibitors of steel, salt
deposits, and asphaltene–resin–paraffin deposits.

Therefore, it can be concluded that guar-based hydrogel is a multicomponent system,
and each component of the hydrogel performs certain functions to ensure the flow of fluids
with minimal negative consequences for the formation rock and mining equipment.

2.2. Polyacrylamide-Based Gels

Water gels based on a synthetic polymer—polyacrylamide (PAM) and its derivatives
(also called slickwater) are widely distributed nowadays. The structural formula of the
simplest PAM link is shown in Figure 6.
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In fact, PAM and sodium polyacrylate copolymers are most often used in hydraulic
fracturing fluids (Figure 7).
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The mechanism of hydration of PAM and guar is similar; they are hydrogen interac-
tions between water and functional groups of the polymer. An increase in the degree of
hydrolysis groups of the polymer molecule contributes to the production of solutions with
higher viscosity values due to the repulsion of similarly charged functional groups, and, as
a consequence, the opening of the polymer molecule.

One of the main differences between PAM gels and guar gels is the lower values of
the “sand–bearing” viscosity: 100–200 mPa·s on average [6], at which the polymer solution
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is able to retain and transport the proppant. The method of oscillatory rheology is used for
a more complete assessment of the properties of PAM solutions [6,7]. Based on the results
of these studies, it is possible to most accurately assess the technological properties of these
liquids: the ability to suspend proppant, resistance to thermal oxidative degradation, etc.

Cross-linkers are usually not introduced in PAM-based gels. There are strong interac-
tions between the functional groups of polymer molecules (Figure 8).
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Due to this, the solutions have sufficient rheology for hydraulic fracturing without the
introduction of cross-linkers. However, cross-linkers can be used to obtain thermally stable
hydraulic-fracturing gels [8].

The PAM molecule contains functional groups that are reactive in themselves and
affect the properties of the polymer chain. This is the reason for the peculiarities of these
systems: sensitivity to thermal oxidative and salt degradation of PAM.

The scheme of thermo–oxidative destruction in the presence of iron salts is shown in
Figure 9 [10].
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High reservoir temperatures can also contribute to the degradation of solutions
(Figure 10), especially in the presence of acidic media.
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The rheology of solutions is also strongly affected by the presence of salts of monova-
lent and, to a greater extent, divalent metals [53].

Various substituents and copolymers are introduced into PAM molecules to improve
the rheology of systems, as well as their thermal and salt resistance. Substituents can be
hydrophobic radicals of various lengths, which are attached to the amide group. In addition,
various substituents are introduced into the head groups in order to obtain cationic, anionic,
and ampholytic polymers, which have a huge variety of properties. “Supramolecular”
complexes consisting of surfactant–PAM associates are becoming widespread [54–57].

Functional groups of PAM are the reason for another feature: the tendency of the poly-
mer molecule to strong adsorption (Figure 11), which goes through the stage of diffusion,
fixation on the rock (metal equipment), and redistribution on it.
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A positive consequence of this is that PAM minimizes friction pressure losses by
adsorbing on the metal of the pipes. Adsorption on the rock leads to a decrease in the
rheological characteristics of the solution, the filtration properties of the rock itself, and
the destruction of the polymer [58]. PAMs are most susceptible to adsorption in acidic me-
dia [59]. However, studies [60] revealed that adsorption occurs mainly through hydrogen
interactions with the rock. The authors suggest adding urea to hydraulic fracturing gels to
reduce the adsorption of PAM.

As in the case of guar gum, PAM-based liquids should be subjected to destruction
after the hydraulic-fracturing operation. Mainly oxidative destructors are used for these
purposes. Various persulfates, perborates, peroxides, hypochlorites, and their combinations
have been used as destructors [61–63]. The destruction of these systems is effective, and
colmatation occurs to a lesser extent than in the case of guar. The general scheme of PAM
destruction is shown in Figure 12.
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Clay stabilizers and various surfactants can be added to PAM gels in addition to these
reagents, like in the case of guar gum. Usually, fewer reagents are used in these systems
since most of the properties necessary for hydraulic fracturing can be achieved by chemical
modification of the polymer itself.

2.3. Gels Based on Viscoelastic Surfactants

Fracturing fluids based on viscoelastic surfactants (VESs), or “pure” fracturing fluids,
are new systems. Their intensive study has been conducted for two decades.

A large number of VESs are known from the literature. They are used as the basis
of viscoelastic compositions, while most VESs belong to the class of cationic surfactants
(including dimeric [14–17] and trimeric [18] surfactants) and zwitterion surfactants [19–21].
They form associates in the aqueous medium in the form of long cylindrical micelles [17,22].
Solutions of cylindrical micelles are similar in properties of polymer solutions. Long
cylindrical micelles are capable of forming a three-dimensional interlaced grid in a solution
(Figure 13), due to which the solution acquires viscoelastic properties.
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Unlike polymer chains, worm-like micelles of VESs are dynamic structures. They are
also called “living polymers.” The micellar chains of the VES are reversibly destructed
under mechanical impact and then restored. Significant changes in the structure of the
micelles of the VES are observed with a slight change in the thermodynamic parameters,
which affects the rheology of the solution, phase behavior, etc.

We will highlight some features of hydraulic-fracturing gels based on VES:

• Relatively low viscosity values, which contribute to the formation of a long conductive
fracture [17,65,66].

• High elastic properties in fresh and mineralized water, due to which the fracturing
fluid has the necessary sand-carrying capacity [15,21].

• Oil-flushing properties, which can increase the oil recovery factor (ORF).
• Hydrophobization of the formation rock due to the adsorption of surfactants. This

contributes to the stabilization of clays, and also prevents the formation of water
blockades after hydraulic fracturing [67].

• Destruction of the structure in contact with reservoir fluids, which contributes to the
complete restoration of the permeability of the rock after treatment [15,21,68].

As in the case of PAM-based compositions, oscillatory rheology is an important
criterion for evaluating fracture fluids based on surfactants.

VES-based compositions are characterized by high values of elastic properties (mod-
ulus of elasticity/accumulation). The viscoelasticity of the compositions can provide
fracturing fluids with an optimal mechanical strength, as well as a good ability to retain
the proppant in volume. Well-known studies show that the “sand-bearing” viscosity of
surfactant-based compositions is lower than compositions based on polymer gels [69,70].
The energy is more efficiently transferred from the well head to the bottom due to the



Gels 2023, 9, 609 11 of 50

elastic component when using surfactant systems as fracturing fluids, which can reduce
the energy consumption during hydraulic fracturing.

Usually, the use of VES-based fluids eliminates the need to introduce a destructor.
Worm-like micelles in contact with petroleum hydrocarbons solubilize them. At the same
time, the volume of micelles increases until such a state ceases to be energetically advan-
tageous. Then, the micelles break up into smaller aggregates. As a result, the viscosity of
the composition decreases sharply [71]. This process runs in parallel with another: a long
hydrocarbon radical is most often present in the VES molecule, which has an affinity for
petroleum hydrocarbons. A certain number of surfactants can pass into the oil phase as a
result. The viscosity of the aqueous medium of the VES will simultaneously decrease. How-
ever, it is necessary to investigate in each specific case how this will affect the properties
of oil. It was shown in [72] that VESs are capable of entering into very strong interactions
with hydrocarbons containing polar functional groups (Figure 14). Such components are
present in almost any oil.

Gels 2023, 9, x FOR PEER REVIEW 12 of 53 
 

 

 
Figure 14. Schematic representation of intermolecular interactions between surfactants and polar 
hydrocarbons on the example of a zwitterion surfactant and phenol. (Reprinted/adapted with 
permission from McCoy et al., 2019, Ref. [72]). 

In rare cases, researchers propose destructors for surfactant-based compositions. For 
example, in the work considered earlier [71], for the destruction of the “hook-like” dimeric 
VES, the authors propose using a strong oxidizer, such as ammonium persulfate, which 
breaks the surfactant molecule at double bonds. The length of the hydrocarbon radical 
decreases and, as a result, hydrophobic interactions decrease. 

Destruction in case of contact with reservoir fluids and the absence of polymer in the 
system ensures almost a complete recovery of the conductivity of the proppant batch and 
the fractures formed after the hydraulic-fracturing operation. Therefore, fracturing fluids 
based on surfactants are called clean fracturing fluids [69,70,73]. However, the absence of 
a polymer in the system justifies a significant drawback of this type of liquid: filtration 
leaks in reservoirs with a permeability of more than 100 mD. Large filtration leaks of VES-
based systems are attributable to the fact that such liquids do not form a sufficiently 
pronounced filter cake that prevents filtration leaks. A polymer is added to the fracturing 
liquid based on surfactants to avoid filtration losses, as, for example, in [74]. The authors 
conducted a study of a mixed system based on cationic surfactant and xanthan. It was 
found that a filter cake is formed during filtration through a porous medium, which 
prevents filtration leaks. The filter cake is removed with the subsequent injection of oil, 
and the permeability is almost completely recovered. 

Surfactant compositions are rarely used in an individual form. Structure-forming 
reagents are introduced into almost any system, which contribute to the improvement of 
the structural and mechanical properties of the compositions. Surfactants containing two 
or three hydrophobic tails at once are increasingly being considered as new, modified 
high-tech systems [75,76]. Various electrolytes [77], surfactants of another class [78], 
polymers [79], and nanoparticles [80,81] can act as structure-forming reagents. 

2.4. Hydrocarbon Gels 
Hydrocarbon gels were used at the first stages of the development of the hydraulic-

fracturing process, but they are also currently used in high-temperature and water-
sensitive formations. Soaps of higher fatty acids are used among the hydrocarbon liquids 
for hydraulic fracturing at low temperatures, and aluminum or iron alkyl phosphates are 
used at high temperatures. However, carboxylic acids are known as destructors at low 
temperatures, as well as medium (NaHCO3 and CaO) and high organic amines. The best 
filtration reducers are oil-soluble polymers, benzoic acid, ground naphthalene, or 
inorganic salts [11]. 

Aluminum and iron alkyl orthophosphate soaps are the most promising 
hydrocarbon gels for hydraulic fracturing in terms of the stability of structural, 
mechanical, and rheological properties at high temperatures. Associated complexes of 
significant molecular weight are formed, coordinated by intermolecular hydrogen bonds 
produced when these forms of thickeners are dissolved in hydrocarbons (Figure 15) 
[12,13]. 

Figure 14. Schematic representation of intermolecular interactions between surfactants and polar
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In rare cases, researchers propose destructors for surfactant-based compositions. For
example, in the work considered earlier [71], for the destruction of the “hook-like” dimeric
VES, the authors propose using a strong oxidizer, such as ammonium persulfate, which
breaks the surfactant molecule at double bonds. The length of the hydrocarbon radical
decreases and, as a result, hydrophobic interactions decrease.

Destruction in case of contact with reservoir fluids and the absence of polymer in the
system ensures almost a complete recovery of the conductivity of the proppant batch and
the fractures formed after the hydraulic-fracturing operation. Therefore, fracturing fluids
based on surfactants are called clean fracturing fluids [69,70,73]. However, the absence of a
polymer in the system justifies a significant drawback of this type of liquid: filtration leaks
in reservoirs with a permeability of more than 100 mD. Large filtration leaks of VES-based
systems are attributable to the fact that such liquids do not form a sufficiently pronounced
filter cake that prevents filtration leaks. A polymer is added to the fracturing liquid based
on surfactants to avoid filtration losses, as, for example, in [74]. The authors conducted
a study of a mixed system based on cationic surfactant and xanthan. It was found that a
filter cake is formed during filtration through a porous medium, which prevents filtration
leaks. The filter cake is removed with the subsequent injection of oil, and the permeability
is almost completely recovered.

Surfactant compositions are rarely used in an individual form. Structure-forming
reagents are introduced into almost any system, which contribute to the improvement of
the structural and mechanical properties of the compositions. Surfactants containing two or
three hydrophobic tails at once are increasingly being considered as new, modified high-tech
systems [75,76]. Various electrolytes [77], surfactants of another class [78], polymers [79],
and nanoparticles [80,81] can act as structure-forming reagents.
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2.4. Hydrocarbon Gels

Hydrocarbon gels were used at the first stages of the development of the hydraulic-
fracturing process, but they are also currently used in high-temperature and water-sensitive
formations. Soaps of higher fatty acids are used among the hydrocarbon liquids for hydraulic
fracturing at low temperatures, and aluminum or iron alkyl phosphates are used at high
temperatures. However, carboxylic acids are known as destructors at low temperatures, as
well as medium (NaHCO3 and CaO) and high organic amines. The best filtration reducers
are oil-soluble polymers, benzoic acid, ground naphthalene, or inorganic salts [11].

Aluminum and iron alkyl orthophosphate soaps are the most promising hydrocarbon
gels for hydraulic fracturing in terms of the stability of structural, mechanical, and rheolog-
ical properties at high temperatures. Associated complexes of significant molecular weight
are formed, coordinated by intermolecular hydrogen bonds produced when these forms of
thickeners are dissolved in hydrocarbons (Figure 15) [12,13].
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Dry inorganic compounds of an alkaline nature (for example, sodium carbonates and
bicarbonates) are used as a destructor of these gels. They are hydrolyzed in case of contact
with water contained in the reservoir fluid producing an alkali, which, interacting with
aluminum salts of organic orthophosphoric esters, forms sodium salts and destroys the gel
complex (Figure 16).
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The exchange reaction also occurs in an anhydrous medium, but the presence of water
accelerates the rate of destruction. Therefore, increased requirements are imposed on the
water content in the hydrocarbon liquid used for gelling; its amount should not exceed
1%. In case of filtration during hydraulic fracturing, the particles of the destructor mainly
remain in the fracture. The gel, filtered into the formation due to the lack of the destructor,
clogs the pores for a long time.

To conclude this section, let us note the main features of each type of fracturing gels.
Gels based on guar gum and other polysaccharides are currently the most common. This
is due to their low cost, ease of preparation, and eco-friendliness. However, despite the
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various modifications of polysaccharides, this type of gel still has a complex composition.
Incomplete destruction of the gel system in reservoir conditions makes research on the
development of destructors that will provide a complete restoration of the porous media
permeability relevant.

Gels based on synthetic polymers such as polyacrylamide and its derivatives solve
the problem of the multicomponent nature of the previous type of fluid. PAM is much
more resistant to various environmental conditions, and its properties can be easily var-
ied through chemical modifications of the polymer chain. For these gels, the issue of
possible filtration leakage of fluid is relevant; various fillers are proposed to solve this
problem. The chemical resistance of PAMs leads to the need for stronger destructors than
for polysaccharide-based gels.

Surfactant-based compositions are the most modern direction of research in hydraulic-
fracturing technologies. The variety of surfactants allows for the selection of systems prac-
tically for almost any medium and condition. Surfactants in these compositions perform
several functions at once: gelling agent, clay stabilizer, demulsifier, rock hydrophobizing
agent, lowering interfacial tension at the boundary with hydrocarbons, etc. The relevant
direction of research for these systems is the selection of various modifier reagents, the use
of which is aimed at reducing the working concentration of surfactants in gels to reduce
composition costs while maintaining necessary rheological properties.

Hydrocarbon gels were the very first fracturing systems. However, their use is becom-
ing increasingly rare due to increased safety requirements for their use, as well as high
environmental risks. Of the listed systems, hydrocarbon gels have the least damaging effect
on the reservoir and crude oil, which is why their use remains relevant.

3. Gels for Conformance Control and Flow Diversion

Gels for conformance control and flow diversion are almost identical in composition
and are based on the same reagents. The term “flow diversion” is usually used to emphasize
the significance of the volume of injection of the gel-forming composition and regulation
of water filtration over the area of the site, and the term “conformance control” is used to
denote the regulation of water filtration along the section and refers to injectivity profile
data before and after gel injection. We will use both terms depending on the formulation of
the problem being addressed.

3.1. Gels Based on Acrylamide Polymers

Historically, gels based on partially hydrolyzed polyacrylamide, as well as chromium
and aluminum salts, were used as one of the first compositions for conformance control,
and an interest in these gels has not decreased at the present time [1,82]. Due to the
adjustable cross-linking time and the transition of the polymer solution into the gel, it is
possible to place the gel screen at a predetermined distance from the injection well in such
a way that, by changing the direction of the water flow, it leads to the displacement of oil
from the bypassed parts of the reservoir (Figure 17).
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Trivalent metal salts act as cross-linkers in this technology: when they interact with
the carboxyl group of the polymer, a cross-linked spatial structure is formed that prevents
water filtration [83] (Figure 18).
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Such hydrogels are called cross-linked polymer compositions (CLPC). The gelling
time, as well as the structural and mechanical properties of the CLPC, is selected depending
on the reservoir temperature by varying concentrations of components.

The CLPC treatment of layers with high layer-by-layer heterogeneity in permeability
(≈10:1) and large values of the thickness ratio of the layers of different permeability (low-
permeable intervals are ≈10 times thicker than high-permeable ones) is especially efficient.
Deep treatment of the bottom-hole zone of the formation allows for the redirection of the
water flow from a highly permeable interval to a low-permeable one (Figure 16). Due
to the different filtration rates of the unformed gel (gelant) in the intervals of different
permeability after gelling, the water flow bends around the barrier in the highly permeable
part of the reservoir and displaces oil from the low-permeable part.

The rheological behaviors of solutions of linear polymers and CLPC-forming gels
differ significantly [23]. For instance, the rheological curves of the gels have an extreme
character if the shear strain for polymer solutions increases parabolically with an increasing
shear rate (Figure 19).
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The area of shear strain growth to the maximum value corresponds to an unbroken
cross-linked structure. The spatial structure is destroyed with a further increase of the
shear rate. The strain at the inflection point represents the “ultimate strength”, and the
corresponding shear rate represents the “critical deformation”. Such cardinal differences in
rheological behavior in polymer solutions and gel structures also lead to a fundamental
difference of their filtration characteristics [23]. If the residual resistance factor, calculated
as the ratio of the pressure drop in water after and before the injection of polymer and
gel slug, decreases hyperbolically with increasing permeability in case of linear polymer
solutions, then by contrast, it increases in the case of cross-linked gel structures [23,84,85]
(Figures 20 and 21).
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CLPC (the size of the slug is 0.3 pore. vol.) [23].

A lot of theoretical and laboratory studies address the properties of CLPC of various
nature and composition [86–88]. However, polyacrylamide-based hydrogels with a Cr3+ or
Al3+ cross-linking are still the most popular in commercial practice. It should be noted that
the use of organic staplers—a mixture of phenol and formaldehyde—has allowed for the
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expansion of the boundaries of the applicability of gels in high-temperature layers, since
the cross-linker protects the polymer from thermal oxidative destruction (Figure 22, [88]).
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nism includes two steps: (1) Hydroxymethylation of the nitrogen on the amide functional group; and
(2) Cross-linking with multiple alkylations on the phenol ring. (Reprinted (adapted) with permission
from Zhu et al., Ref. [88], Copyright 2017 American Chemical Society).

In commercial practice, the injection of sufficiently large volumes of polyacrylamide
with a cross-linker (≈10 thousand m3) in concentrations corresponding to the lower bound-
ary of gel formation allows for the deep treatment of the bottom-hole zone of the formation
and significant redistribution of filtration flows [84,89]. Therefore, Figure 23 shows that
there was actually a linear flow of water from the injection well in two perpendicular
directions before CLPC treatment according to the tracer study data. There was a noticeable
redistribution of the flow after the first injection of CLPC, and the flow became radial after
the third treatment [23].
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Mixtures of water-soluble cellulose esters and polyacrylamide are also capable of
forming gels under reservoir conditions under the impact of a cross layer with an ad-
justable gelling time [90]. Gels based on hydrolyzed polyacrylonitrile with formalin and
hydrochloric acid are used in carbonate fractured reservoirs. Moreover, in this technology,
formalin is the cross layer of the polymer, and hydrochloric acid is the initiator of the
gelling reaction [90]. Hydrolyzed polyacrylonitrile in carbonate-fractured reservoirs is
pumped without any additives. The polymer is cross-linked with the formation of gel
deposits by reaction with ions of alkaline earth metals contained in reservoir water [91]. In
addition, already-formed polyacrylamide-based gels and a cross-linker are injected into
carbonate reservoirs to isolate fractures from injection wells, which are not filtered into the
pore matrix but selectively shut off only the fracture conductivity of the formation [1].

Gel systems containing water-swellable yet insoluble particles of cross-linked poly-
mers (gel-particle dispersions) are of great interest for flow-diversion purposes. The
synthesis of water-swellable polymers can be carried out in various ways:

− At the polymerization stage, the bifunctional monomer methylene bisacrylamide is
introduced into the composition of acrylamide and acrylic acid monomers [92].

− Heat treatment of polyacrylamide at moderate temperatures when the cross-linking
of macromolecules occurs as a result of the imidization reaction [92].

− Radiation cross-linking of powdered polyacrylamides by gamma or beta radiation [93–97].

The gel fraction is a particle with a three-dimensional cross-linking; it is capable of
swelling up to 1000 times. Such systems containing dispersion of gel particles are able to
significantly reduce the permeability of water-conducting, highly permeable porous and
fractured interlayers, and the presence of a linear polymer bearing the gel fraction ensures
a better filterability, provides viscoelastic properties, and increases the penetration depth of
the flow diversion composition into the formation [98–100].

The injection of microparticles of cross-linked polyacrylamide obtained by emul-
sion polymerization after thermal activation in the formation allows for the formation
of flow-diversion gel screens at a particular distance from wells. Polymer microparticles
of ≈0.5 microns in size are injected as a dispersion in an organic solvent and forced through
the formation. Due to the reservoir temperature in the water, the particles swell, after which
they lose the ability to filter. This technology was named BRIGHT WATER and was devel-
oped by a consortium of SHEVRON TEXACO, BP, and Nalco Company in 1977 [101,102].
A schematic diagram of oil displacement in an inhomogeneous reservoir by intra-reservoir
flows is shown in Figure 24.
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3.2. Gel-Dispersed and Sedimentary-Gel-Forming Compositions

The transformation into sedimentary-gel-forming and gel-dispersed materials by
introducing dispersions (clay, chalk, marl, and wood flour) has been one of the remarkable
trends in the development of conformance control technologies using gels in Russia over
the past 10 years, which enhances the structural and mechanical properties of the system,
allowing for the reduction of the volume of its injection [23,103,104]. Sedimentation and gel-
forming systems are obtained by the interaction of aluminum oxychloride with modified
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polyacrylamide [105]. Such gel additives also have selectivity in permeability, i.e., with
increasing permeability, the residual resistance factor also increases (Figure 25).
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Figure 24 shows the values of the residual resistance factor during filtration of the
sedimentary-gel-forming reagent in three media differing in permeability and structure of
the pore space: pore medium, super reservoir, and fracture. It can be seen that in the pore
medium, the residual resistance factor is minimal compared to the super reservoir and the
fracture model.

The original solution to increase the thermal stability of the CLPC is described in [106]
and the review [88] (Figure 26).
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However, not only the thermal stability of the gel increases, but also the resistance to
salt aggression of formation water.

3.3. Gels Based on Inorganic Compounds

Methods of regulating intra-layer filtration flows using inorganic gels allow for the
creation of strong barriers to water filtration, which leads to a change in the direction of
movement of the displacing agent and to the connection of oil-saturated, poorly drained,
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untreated interlayers to development [3]. Gels based on silicon compounds, such as
silicates and aluminosilicates, have become the most widespread. Silicate gels are formed
by the acidification of alkaline solutions of sodium silicate with acids to neutral pH values.
The silicate gel, being a pseudoplastic material, “breaks” with the formation of microgel
agglomerates ranging in size from 2 to 27 microns when injected into the injection well
and advancing through the formation. Such a microgel dispersion in sodium silicate
solutions has both viscoplastic and viscoelastic properties, which allows for the redirection
of water flows from the developed high-permeable intervals to low-permeable, oil-saturated
ones [107,108].

Polysilicic acid gels, for leveling the conformance control, are also obtained from
aluminosilicate, a natural mineral of nepheline [109]. The principle of the technology is that
the aluminosilicate, when dissolved in inorganic acids, forms a composition that is able to
coagulate, turning into a gel. Dissolution occurs with an excess of acid. Subsequent gelling
occurs by aggregation with the formation of three-dimensional polymer meshes. The initial
particles condense together with an increase in the concentration of the solution, forming
a “ringing” gel. As a result of the interaction of aluminosilicate with hydrochloric acid,
an aluminosilicate sol is formed, followed by a monosilicic acid, its low-molecular-weight
oligomers, and then its silicic acid sol, which turns into a gel [110].

Solutions of other acids, such as phosphoric and sulfamic acids, can also be used in
gel-forming compositions [111–113]. In addition, synthetic zeolites are used as aluminosili-
cates [114].

The use of bicalcium silicate allows for the accumulation of acidic gels with an ad-
justable gelling time, which makes it possible to place the flow diversion material at a
particular distance from the well [115,116].

It is proposed to add partially hydrolyzed polyacrylamide to the composition to
provide gels based on sodium silicate with viscoelastic properties [117]. A similar technique
for obtaining a silicate–polymer gel is described in [118]. Only the spent catalyst Zeokar-10
was used as a source of aluminosilicate after dissolving it in a weak alkali. Water-soluble
cellulose derivatives were also used as a polymer, along with polyacrylamide.

L. K. Altunina and her co-researchers experimentally substantiated and implemented
the technological process of using both inorganic and organic gels for well conformance
control for deposits characterized by high layer-by-layer heterogeneity and temperature.
These are gel-forming systems that are low-viscosity solutions in surface conditions and
turn into gels in reservoir conditions. The factor that causes gelling is the thermal energy
of the reservoir or the injected coolant. Gel-forming compositions with different gelling
times—from several minutes to several days—in the temperature range of 40–120 ◦C were
proposed. These include inorganic gel-forming compositions GALKA, GALKA–PAV, and
GALKA–U based on the system “aluminum salt—urea—water,” as well as compositions
METKA based on thermally reversible polymers of methylcellulose [4,119–121].

GALKA and GALKA–PAV surfactants are low-viscosity solutions with pH = 2.5–3.
They contain aluminum salt, carbamide, and some additives that improve their process
parameters. The urea is hydrolyzed, forming ammonia and CO2 due to the thermal energy
of the reservoir or the energy of the injected coolant, which gradually increases the pH of
the solution. The aluminum hydroxide gel is formed in the entire volume of the solution
at pH = 10. This is manifested in an abrupt increase in the dynamic shear strain of the
gel-forming solution.

The gels formed by the METKA compositions are reversible. When the temperature
decreases, they can turn back into a liquid. When the temperature rises, they can form
a gel again, which makes it possible to “open” and “close” the interlayers by changing
the temperature to regulate filtration flows. This property of gels can be used for a cyclic
injection of hot water or steam in order to increase the coverage of the reservoir by thermal
action. Currently, thermotropic inorganic gel GALKA is used with steam-assisted gravity
drainage (SAGD) technology for steam diversion in horizontal wells [122].
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Thus, various gel-forming compositions based on water-soluble and water-swelling
polymers, as well as inorganic silicon and aluminum compounds, are used for flow diver-
sion and conformance control. The combination of gels with dispersants and precipitating
compositions allows for the enhancement of the structural–mechanical properties of the
diversion system, making it possible to apply these compositions in naturally fractured
reservoirs. The ability to regulate the gel formation time allows for the placement of the gel
screen at a specified distance from the injection wellbore. This approach has firmly entered
industrial practice and continues to be improved both in terms of reducing the cost of the
compositions used and increasing their effectiveness.

4. Gels for Water and Gas Shutoff
4.1. Gels Based on Organic Polymers and Inorganic Compounds

Remedial cementing is of particular importance in the conditions of intensive watered
wells and aged main well stock, while most of the remedial cementing operations today
cannot be imagined without the use of gels [24,123,124].

It is known that the wells’ watering is caused by such factors as the rise of oil–water
contact, the inflow of injected and edge water through highly permeable interlayers or frac-
tures, production casing leaks, water coning, and behind-the-casing cross-flows [125,126].
Water shutoff technologies based on gels capable of forming blocking screens in flooded
areas of the formation are used depending on the task being addressed, the purpose of
which is to shut off highly permeable water-saturated layers from active development.
If necessary, the gel screen is reinforced with a more rigid grouting compound based on
curing resins or microcement, which are pumped after the gel-forming composition.

The treatment of watered interlayers with cross-linked polymer compositions based on
polyacrylamide and chromium salts, which we have already mentioned when describing
the injection of such compositions for conformance control, has long become a classic tech-
nology. The main difference between water shutoff compositions is a higher concentration
of reagents that allow for the formation of “strong” gels (according to the terminology of R.
Seright, the world’s leading expert in this field) so that the flow of fluids into the well does
not tear or pierce through the water shutoff screen.

The work [124] describes the study of the development of selective water shutoff
gel-forming compounds based on polyacrylamides and polyatomic phenol alcohols. The
authors of the article [127] used a mixture of paraform and resorcinol as a cross-linker to
increase the strength and thermal stability of polyacrylamide gel. This hydrogel has passed
comprehensive laboratory testing and commercial tests, which allowed it to gain steady
positions in the field operations [128,129].

Another example of a gel formed by cross-linked covalent bonds is shown in [130],
which is obtained by the interaction of polyethylene glycol and polyvinylpyrrolidone.
N,N′-methylene-bis-acrylamide is used as a cross-linker, and ammonium peroxodisulfate
is used as the initiator of gelling. Polyvinylpyrrolidone is used in the system to increase the
strength of the gel. Gelling occurs at temperatures from 25 to 100 ◦C in a time interval from
6 to 60 h.

The results of studies of gels based on polyvinyl alcohol and polyvinylpyrrolidone,
in which a mixture based on resorcinol and formaldehyde was used as a cross-linking
agent, are of interest. Viscoelastic and thermal properties of the mixtures were studied
by oscillatory rheometry and differential scanning calorimetry. The results of rheological
studies have shown that the developed gel systems are viscoelastic since the values of the
elastic modulus of the studied samples are higher than the values of the loss modulus
(G′ > G′′). The content of free and bound water in the gels was determined, as well as their
thermal stability at temperatures up to 90 ◦C based on the results of calorimetric studies.
The effectiveness of the prepared gel-forming compositions for isolating the water inflow
was tested on bulk reservoir models (super reservoir model). During the experiment, a
noticeable decrease in permeability was shown in the case of the use of all the proposed
gel-forming compositions [131].
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Compositions based on liquid glass have been used for a long time as a water shutoff
gel [132–134]. Such gels are characterized by good filterability in the pore space, controlled
setting time, high values of the limiting shear strain, and the ability to form homogeneous
mixtures with various reinforcing additives.

An interesting development of gel technologies using liquid glass was obtained in
the works of V. N. Duryagin [135], in which the initiator of gelling—mineral acid—was
replaced by Lewis acid. Polycondensation of silicic acids under the action of chromium
acetate leads to the production of strong ringing gels with an adjustable gelling time,
which makes it convenient to use them in field operations. Acidic silicate gels based on
natural nepheline material, as well as synthetic zeolites or waste from production, allow
for relatively cheap waterproofing materials to be obtained [136–139]. A distinctive feature
of the rheological behavior of silicate gels is that they have viscoplastic properties with
high values of the ultimate shear strain. However, they also lack viscoelastic properties
necessary for a high-quality water shutoff. In [140], partially hydrolyzed polyacrylamide
in an amount of only 0.05% was introduced into the sodium silicate–chromium acetate
system to impart viscoelastic properties to the silicate gel. The authors of this article used a
relaxometer for the primary analysis of the viscoelastic properties of the obtained hydrogels.
The mechanical part of this device consists of two disks in the space between which the gel
understudy is placed. The upper disk is quickly raised by a spring mechanism during the
study, colliding with the locking mechanism. Under the action of the spring, it returns to its
original stationary position. The lifetime of the thread, which to some extent is a measure
of the viscoelastic properties of the gel, was determined automatically by recording the
time during which there is electrical conductivity between the upper and lower disks of the
relaxometer. An illustration of the process of forming a liquid filament of a three-component
hydrogel is shown in Figure 27.
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Figure 27. Formation of liquid hydrogel filament (filament lifetime ~0.45 s).

It was determined that a liquid bridge is not formed for a highly viscous gel-forming
composition consisting of liquid glass and chromium acetate without polymer.

Rice-husk dispersion was introduced into the composition of the three-component
hydrogel to increase viscoelastic properties [141]. Previously, this dispersion was used
for water shutoff in silicate compositions [142,143]. It was determined that mechanically
activated rice husk increases the stability of hydrogel during filtration in cracks. According
to the results of rheometry, it was found that the addition of a rice husk to the gel in question
increases the safety of its undisturbed structure with an increase in shear strain while also
increasing the yield strength.

Rheological measurements (flow curves, viscosity curves) of this gel were carried out
before and after filtration through a model of an ideal crack with a different opening of
0.01 to 0.1 cm. It was determined that the intensive destruction of the insulating material
occurs in fractures with an opening of 0.01 cm. The addition of rice-husk dispersion leads
to a significant increase in the resistance of the hydrogel to mechanochemical destruction.
The addition of 0.1% rice husk reduces the difference in effective viscosity by an order of
magnitude before and after filtration through a 0.01-cm opening. There was no noticeable
difference in rheology of a hydrogel in the case of its filtration through a 0.1-cm opening
with the rice husk. Without it, only a slight strengthening of the gel is noticeable after
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filtration at low shear rates. This behavior of gels is explained by the fact that the geo-
metric dimensions of the crack reformat the structure of the insulating material during
filtration [144]. Supramolecular formations provide the necessary complex of properties
of hydrogels. They also deform and collapse in small fractures, and they are preserved in
large fractures. In turn, dispersed rice-husk particles strengthen the hydrogel, contributing
to the preservation of the structural and mechanical properties of the hydrogel [145].

The results of experimental work indicate that large fractures that account for the
greatest inflow of water will be most reliably isolated. Apparently, the addition of rice
husks strengthens the hydrogel structure due to the flocculation of dispersed particles by
polymer macromolecules.

Quantitative representations of viscoelastic properties are provided by oscillatory
measurements. In particular, this includes creep and recovery tests and their interpretation
using the Maxwell, Kelvin–Feucht model, as well as the Burgers model made up of them.
A single Kelvin–Feucht link is not enough to approximate the data of real measurements.
Here, a two-component Burgers model is used, which corresponds to two relaxation times.

The results of creep and recovery testing with hydrogel and rice-husk additives are
shown in Figure 28.
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Figure 28. The results of the creep-and-recovery test of a hydrogel based on sodium silicate, poly-
acrylamide, and chromium acetate with the addition of 0.15% rice husk, approximated by a two-
component Burgers model (The green line is the overall Burgers model response). Other colors
highlight the responses of different elements of the Burgers model (viscous dampers and purely
elastic springs).

Each element of the analog model corresponds to curves, which, in total, approximate
the experimental data.

The features of the rheological behavior of hydrogel with rice husks suggest structural
changes in the interpolymer formation under the action of shear loads. The two relaxation
times of the viscoelastic medium established during the experiment are due to two types of
cross-linking: ionic, due to the bonding of the chromium ion with the polymer, and floccu-
lation, due to the flocculation of dispersed particles by polyacrylamide macromolecules.
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Ion cross-linking corresponds to a shorter relaxation time, and flocculation corresponds to
a longer one, which generally results in a high-quality water shutoff.

Oscillation experiments allow for one to distinguish a linear measurement range
(LMR). In particular, tests showed an increase in LMR, from 50 to 91 Pa, and the maximum
shear strain from 104 to 128 Pa, with an increase in the content of dispersed rice husks from
0 to 0.5% (Figure 29).
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Detailed rheological studies of hybrid hydrogel with rice husk additives are provided
in [146].

The papers [147,148] consider an approach implemented by creating thermotropic
compositions, which, under surface conditions, represent low-viscosity aqueous solutions
and, directly in the formation under the influence of reservoir temperatures, form cohesive
nanoscale structures of the “gel-in-gel” type. A high-temperature nanostructured composi-
tion with improved rheological characteristics based on a composition (named MEGA by
the authors) consisting of two gel–forming agents—polymer and inorganic—is used for
water shutoff in the case of steam cyclic treatment. At a temperature above 70 ◦C, carbamide
hydrolysis occurs in this composition with the formation of ammonia and carbon dioxide,
with a gradual increase in the pH of the solution. The aluminum hydroxide gel is produced
in the entire volume of the solution when the threshold pH value of 10 is reached.

Thus, the MEGA composition with two gel-forming components based on the system
“aluminum salt—cellulose ether—urea—water”, when heated above the lower critical
dissolution temperature in the system due to a reversible phase transition, forms a polymer
gel. Then, an aluminum hydroxide gel is formed inside it by the mechanism of hydrolytic
polycondensation. These gels have viscoplastic and viscoelastic properties because they are
capable of elastic restoration of the structure after stress relief. Such gels are characterized
by a spatial structure that persists under the impact of shear strain until the value of the
latter exceeds the critical value, after which its destruction occurs. The ultimate shear strain
of the MEGA composition ranges from 433 to 590 Pa, which is 1.6–2 times higher than the
ultimate shear strain of gels based on a single inorganic component. The filtration studies
of MEGA gel found that the critical pressure gradient equals 6–14 MPa/m.

A self-generating foam gel composition has been used for gas shutoff in oil wells. Gel
in this composition is formed from partially hydrolyzed polyacrylamide and chromium
acetate, and the foam is produced by the release of nitrogen from the solutions of salts:
sodium nitrite and ammonium chloride. The components of the composition are mixed
at the well head, and the time of gelling and gas release can be regulated by varying the
concentration of the starting substances, depending on the reservoir temperature. It should
be noted that the structural and mechanical properties of the foam gel exceed the properties
of pure gel, which makes it possible to solve a rather complex technical problem of gas
shutoff in horizontal wells [149].
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Another technically difficult task is water shutoff in gas wells. Both traditional hydro-
gels and hydrocarbon-based gels are used for this purpose. The use of hydrocarbon-based
gels looks preferable since gas wells are very sensitive to water-based remedial fluids [150].

4.2. Gels with Nanocomponent Additives

The use of nanocomposites has been one of the most significant trends in the de-
velopment of gel-forming compositions for water shutoff in wells in the last 10 years.
Either synthetic polymers or biopolymers are used as base polymers for nanocompos-
ites used for water shutoff. Synthetic polymers are mainly derivatives of acrylamides,
including polyacrylamide, partially hydrolyzed polyacrylamide, polyvinyl alcohol, and
polyacrylamide–tert–butyl acrylate. They are broadly used in field conditions because they
are relatively low cost and easily soluble in water, which makes the technology of their
application quite simple. Biopolymers such as xanthan gum and others are fermentation
products. Although they are environmentally friendly and form high-viscosity solutions,
biopolymers are rarely used in the fields due to their high cost [151].

We will try to highlight in more detail the fundamental advantages of this approach,
taking into account the novelty and prospects of using nanoparticles in shutoff compositions.

Various nanocomponent additives are used to increase the success of the use of hy-
drogel polymer systems for water shutoff and expand the scope of their application in
complicated reservoir conditions (temperature, pressure, mineralization of formation wa-
ter). These include inorganic nanoparticles (such as silicon oxide, titanium oxide, zirconium
hydroxide) and organic (cellulose and graphene nanoparticles), which increase the stability
and strength of cross-linked gels in reservoir conditions [152].

The authors [153] considered hydrogel systems based on hydrolyzed polyacrylamide,
chromium acetate cross-linking, and silica nanoparticles. The study results showed an
increase in the gelling time at 90 ◦C in a hydrogel system with the addition of silica
nanoparticles. The gelling time can increase due to the impact of the cluster structure of
silica nanoparticles [153,154]. In addition, an up-to-1.5-times decrease of the viscosity of the
polymer solution, with an increase of the concentration of nanoparticles, was revealed at a
concentration of nanoparticles of 9 wt.%, which simplifies its injection into the formation.
Oscillatory studies showed that the addition of nanoparticles increases the storage modulus
G′ from 520 Pa (conventional hydrogel) to 26,100 Pa (with added nanoparticles). The results
of the determination of viscosity and rheological properties showed that silica nanoparticles
not only reduce the viscosity of the polymer system but also increase the strength of the
hydrogels formed.

A similar hydrogel with the addition of silica nanoparticles (15–20 nm) was used in
the work [155]. The study showed that the gelling time increased at low concentrations of
nanoparticles (from 4 h for the initial composition to 9.5 h at a concentration of 0.3 wt.%
nanoparticles) but then significantly decreased as the concentration of nanosilicon particles
increased (up to 0.5 h at a concentration of 1 wt.% nanoparticles). The increase of gelling
time is, thus, attributable to an increase of viscosity, which is associated with a slowdown of
the diffusion process. In addition, small particles create obstacles that prevent the effective
collision of molecules.

A gel based on colloidal silicon dioxide and various salts (NaCl, KCl, NH4Cl, CaCl2,
NaNO3, and Na2SO4) used as activators was developed in the work [156]. It is noted that
silica nanoparticles carry a negative surface charge, due to which they are stabilized in an
alkaline solution in which the repulsive forces between equally charged particles prevent
them from colliding with each other. Therefore, the initial colloidal system is stable and
usually has a high negative value of the zeta potential since it directly determines the
repulsive forces between particles in a colloidal solution.

When using a gel-forming system based on nanosilicon to block the inflow of water, it
is expected that the gelling process will begin as soon as the colloidal system is destabilized
from its initial state. One of the ways to initiate the gelling process is to reduce the
repulsive forces between negatively charged silica nanoparticles by introducing opposite
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ions (cations), the addition of which directly reduces the zeta potential of the system.
Consequently, the colloidal system of nanosilicon becomes unstable, and the gelling process
begins. At the first stage of gelling, nanoparticles, as a rule, simply come into contact due
to a decrease in the repulsive force. However, no covalent bonds are formed, so the system
has a low viscosity. As the particles enter into a reaction of condensation-forming covalent
bonds, which results in the formation of extended networks represented as aggregates and
agglomerates, the system demonstrates an increase of viscosity. A nanosilicon gel is formed
at the third stage of gelling, but the strengthening of the gel is still ongoing, although the
stability of the system is completely lost.

In general, cross-linkers used for the preparation of cross-linked polymer gels can
be represented by both metal ions and organic molecules. Trivalent metal ions cross-link
polymers with ionic bonds and organic cross-linkers with covalent bonds. Such cross-
linkers as Cr3+, Zr4+, and Al3+ are known as toxic compounds, which is unpractical from
an environmental point of view. Moreover, gels cross-linked with metal ions usually have
poor thermal stability and a short gelling time at temperatures above ~60–70 ◦C [157].
Polymer gels cross-linked with organic cross-linkers have better thermal stability and a
longer gelling time, even at high temperatures. This is because covalent bonds have a
higher binding energy than ionic bonds [158].

The reinforcing effect of silica nanoparticles on a gel consisting of polyacrylamide,
hydroquinone, and hexamethylenetetramine was studied [158]. The base gel, as well as the
gel that contained silica nanoparticles (median size 13 nm) up to 0.3 wt.%, was prepared
at 110 ◦C. When silica nanoparticles were added, the gelling time was noticeably reduced
(from 16 to 9 h for a concentration of 0.3 wt.%), and the gel strength increased. Rheological
measurements showed that silica nanoparticles significantly increased the elasticity and
viscosity of the gel. Thus, the storage modulus G′ increased 6.4 times on average (from 5 to
32 Pa), and the temperature stability of the gel increased from 137.8 ◦C to 155.5 ◦C with
the addition of silica nanoparticles with a concentration of 0.3 wt.% It should be noted that
the content of bound water also increased from 22.5% to 39.9%, which can be explained
by the hydrophilicity of silica nanoparticles attributable to the presence of a large number
of hydroxyl groups on their surface that can bind water [106]. Improved hydrophilic
properties protect the gel from dehydration, which ensures its improved thermal stability
(Figure 30).

A modified polymer gel system was obtained in the work [159] using polyacrylamide,
polyethylenimine, thiourea, and nanosilicon with a mineralization of 212 mg/L. When
nanosilicon particles with an average particle size of 152.1 nm were added to the polymer
solution, the gelling time at a temperature of 105 ◦C was 14 h. The content of bound water in
the subject gel system (as well as in the work [158]) increased by 19.5% after the addition of
nanosilicon particles. In addition, the residual resistance factor remains high after 30 days
at 105 ◦C (with the addition of 1 wt.% of nanoparticles). The mechanism of hydrogel
strengthening by nanoparticles is generalized in this paper with the identification of two
reasons. Firstly, hydrophilic nanosilicon can act as a cross-linking agent that generates
silanol groups and increases the cross-linking density in a modified gel system. Secondly,
the formed silanol groups interacting with segments of polymer chains through hydrogen
bonds can significantly reduce the dehydration of the polymer gel system.

Nanocellulose, as a natural and renewable polymer material, is widely used for the
preparation of polymer gel systems [160–162], ensuring the resistance of nanocomposites
to high temperatures and mineralization.

Nanocrystalline cellulose, also known by the name as cellulose nanocrystals, or cellu-
lose nanofibers, is a material with a high strength and is usually extracted from cellulose
fibrils by acid hydrolysis [163,164]. Cellulose nanocrystals are one-dimensional particles
(diameter 2–20 nm, length 50–300 nm) [164], which, being a renewable natural material,
have a unique high crystallinity (crystallinity) in the range of 54–88% [165,166], low density,
and excellent mechanical properties [167].
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The authors [168] consider the addition of nanocrystalline cellulose to produce a
hydrogel (based on an acrylamide monomer, initiator potassium persulfate, and crosslayer
N,N′-methylene-bis-acrylamide with high-thixotropic properties). The optimal properties
of the gel were achieved at a concentration of nanocrystalline cellulose equal to 10%.
However, it was determined that mineralization (NaCl, CaCl2) and reservoir temperature
have a significant negative effect on properties of the modified hydrogel.

The hydrogel prepared from polyacrylic acid, potassium persulfate, and nanocellulose
was considered in the work [169]. The structure of the resulting hydrogel was studied by
electron microscopy methods. It was also studied in the deformed state when the mechani-
cal strain is applied. The strength of the modified hydrogel (at different concentrations of
nanocellulose) was compared with a gel based on an organic cross layer: N,N′-methylene
bis-acrylamide using oscillation methods. The modified hydrogels showed better results
in the order of magnitude, which confirms a significant improvement in the mechanical
properties of nanocellulose-based waterproofing compounds.

The results of the study of a hydrogel prepared from acrylamide, acrylic acid, ammo-
nium persulfate, and N,N′-methylene bis-acrylamide in the presence of nanocellulose are
provided in [170]. It was shown that the addition of nanocellulose (0.2 wt.%) increases the
compressive strength of the gel by seven times, as well as the thermal stability and elasticity
during shear due to the formation of double cross-linked hydrogels. The combination of
acrylamide and acrylic acid monomers, as well as nanocellulose, results in cross-linking
due to the interaction of hydrogen bonds with polyacrylamide and polyacrylic acid chains.
When aluminum chloride is added to the system a rigid and durable double-cross-linking
hydrogel is formed due to its coordination interaction with the carboxyl group, which
showed a critical gradient value of 23.73 MPa in filtration experiments, which is an order
of magnitude higher than that of a single cross-linking gel (2.87 MPa).

A self-healing hydrogel with double cross-linking was developed in the study [171]
for gas shutoff in formations in production wells for implementing enhanced oil-recovery
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technology based on CO2 injection. The gel was synthesized using acrylic acid, heat-treated
carboxylated nanocellulose, and Fe3+ ions. This gel increases the self-healing properties
and withstands a strain of 1.03 MPa and high deformation (1491%). After fracturing, it
recovers itself to the original values of up to 98% in terms of strain strength and up to 96%
in terms of deformation strength, respectively.

The authors of the paper [172] synthesized pre-crosslinked particles of cellulose-modified
hydrogel (nanocellulose-regulated particle-gel) in the process of radical polymerization by the
penetration of nanocellulose into the matrix of partially hydrolyzed polyacrylamide.

One of the methods of obtaining strong hydrogels with improved self-healing prop-
erties is the preparation of nanocomposite hydrogels by reinforcing polymers with two-
dimensional nanofillers, such as graphene, graphene oxide, and boron nitride [173–175].
Graphene nanoparticles are also a promising filler for creating heat-resistant hydrogels.

New thermoelastic and self-healing polymer composite hydrogels for high-temperature
reservoir conditions were obtained and studied in [175]. The hydrogel was prepared by
reinforcing polyacrylamide with a low molecular weight with two-dimensional nanolayer
fillers (at concentrations of 0.01–0.1%), including graphene oxide, commercial graphene,
and boron nitride. These polymer composite hydrogels were cross-linked using hydro-
quinone and hexamethylenediamine. An alkali metal salt (for example, potassium chloride)
was also added to facilitate the self-healing properties of the hydrogel due to the ionic bond
with the amide group of the polyacrylamide chain.

Figure 31 shows micrographs of the structure of the base gel and modified gel.
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It was determined that the interaction between the matrix of polyacrylamide and
graphene oxide occurs through physical cross-linking, while fillers such as commercial
graphene and boron nitride interact with polyacrylamide through Van der Waals forces
and π–π interactions. The results of oscillatory studies (G′, G′′) showed that the inclusion
of 2D fillers reinforced the hydrogel matrix despite stretching due to the capture of water
molecules inside its structure.

Similar studies of the use of hydrogels for leveling the inflow profile under conditions
of steam treatment were carried out in the work [176] where a high-molecular organic
polymer was modified by the addition of graphite nanoparticles. Studies showed an
increase in the blocking ability of the gel when graphite particles are added.
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The paper [173] proposes an approach for the preparation of new elastic graphene
oxide—polyacrylamide hydrogels with exceptional mechanical behavior due to the syner-
gistic effect of the interaction of graphene oxide with calcium ions due to the combination
of the characteristics of a conventional double-network hydrogel and a hydrogel nanocom-
posite. Hybrid hydrogel based on graphene oxide and polyacrylamide demonstrated high
strength, good elasticity, and super-stretching (up to 1350% of the original length).

New nanocomposites based on zirconium oxide and graphene oxide synthesized in
situ by microwave irradiation were used in the work [177] as a cross-linking agent for
a water-insulating composition based on polyacrylamide with a low-molecular weight.
Nanocomposites were prepared using a simple, cost-effective, environmentally friendly
and scalable method of chemical reduction using microwave irradiation. Studies showed
that only 0.2 wt.% nanocomposites based on zirconium oxide and graphene oxide formed
a highly stable gel at high temperature (150 ◦C) with improved mechanical properties in
case of addition of 4 wt.% of polyacrylamide solution.

4.3. Mathematical Modeling of Water Shutoff Operation with Gel-Forming Compositions

Various mathematical models (from statistical to numerical) are used by scientists and
engineers of the oil and gas industry to improve the accuracy of predicting the effect of the
use of polymer gels and optimize the volume of their injection in water flow restriction
technologies [178–183]. Treatment modeling allows for the identification of the most
significant factors, affecting the results of processing via selecting proper candidate wells
and optimizing the process parameters of the treatment.

Statistical models are based on the analysis of the efficiency and process parameters of
previously performed treatments.

A large number of studies use regression analysis methods [178,179] to obtain an
explicit equation for calculating the predicted parameter (flow rate of oil, water, liquid after
water shutoff, watercut). However, such approaches have their drawbacks. For example,
a long history of application of the subject technology in specific geological and physical
conditions is required because obtained relationships or models do not take into account
the physico–chemical and rheological properties of insulating compositions, as well as the
structure and structural features of the formation.

The authors of the work [180] use machine-learning algorithm Random Forest method
to select candidate wells. The analysis of the results of hydrodynamic modeling, taking
into account the water shutoff operations in wells selected by the random forest method,
showed greater technological efficiency than the Fuzzy Evaluation Method previously used
by the authors.

Other modeling methods can be attributed to analytical ones when solutions of equa-
tions derived from basic physical laws are used with significant assumptions and simplifi-
cations of the process itself. This approach can be attributed to express methods because it
does not require specialized software and is quite simple. However, the considered proce-
dure prevents us from describing with sufficient accuracy the mechanisms of placement
of the water shutoff mixture in the formation and during the subsequent operation of the
well. Thus, the analytical calculations do not take into account the rheological properties of
the water shutoff mixture, which have a significant impact on the process of placement and
distribution of the composition in the interlayers of a watered heterogeneous formation.
In addition, the depth of penetration is not taken into account explicitly, which prevents
the description of the process of the subsequent recovery of the watercut. However, it is
possible to use the results of analytical calculations in commercial hydrodynamic simulators
(Black Oil) to predict not only the starting indicators, but also the dynamics of operating
indicators during the time of the effect [183–187].
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Analytical calculations allow for the estimation of the volume distribution of the
selective water-insulating mixture Vi, taking into account the thickness h, absolute k, and
phase kw permeabilities of the layers of a heterogeneous formation:

Vi = V0·
ki·hi·kw(Swi)

∑n
i=1 ki·hi·kw(Swi)

, (1)

where V0 is the total volume of the water shutoff composition selected according to the
technology of its implementation.

The values of phase permeabilities depend on the water saturation of the subject layers.
These parameters can be unloaded from a history-matched hydrodynamic model, or they
can be determined analytically.

The radius of penetration Rsi of the blocking compound along the interlayers is
calculated using the formula:

Rsi =

√
rw2 +

Vi
mi·π·hi·(1− Sowcr− Swcr)

, (2)

where: mi—porosity of the i-th layer, u.f.; Rsi—radius of the formed water shutoff screen,
m; rw—radius of the well, m; Sowcr—residual oil saturation, u.f.; Swcr—connate water
saturation, u.f.

According to the Hawkins formula [188] the skin factor is calculated for each layer Si,
taking into account the residual resistance factor of the shutoff composition (Frr):

Si = ln
Rsi
rw
·(Frr− 1). (3)

The corresponding water and oil productivity indexes, the startup flow rate of the well,
and the watercut can be determined based on the calculated values of the skin factor for
each layer. They can also be loaded into a hydrodynamic model, and predictive calculations
of well operation indicators will be performed.

There are a large number of software products that allow the modeling of the imple-
mentation of various physico–chemical-enhanced oil recovery methods within which there
is the possibility to simulate the use of cross-linked gels. These software products include
three-dimensional multiphase multicomponent hydrodynamic simulator UTCHEM (cre-
ated by Shell, London, UK, currently supported by scientists from the University of Texas
(UT Austin)), STARS (Computer Modeling Group (CMG), Calgary, AB, Canada), ECLIPSE
300 (Schlumberger, Houston, TX, USA), SCORPIO (Simulator for Chemical Oil Recovery
and Polymer Injection from AEA Petroleum Services), PC-GEL (a joint project of the Illinois
Institute of Technology Research Institute (IITRI, Chicago, IL, USA) and the US National
Institute for Petroleum and Energy Research (NIPER), POL-GEL (Institute of Petroleum
Exploration and Development (RIPED)), PUMAFLOW (Beicip–Franlab and the French
Institute of Petroleum (IFP)), VIP (Landmark, Houston, TX, USA and Halliburton, Hous-
ton, TX, USA), REVEAL (Petroleum Experts, Edinburgh, UK), IORCoreSim (University of
Stavanger (UIs), Norwegian Research Center (NORCE), and the Norwegian Institute of
Energy Technology (IFE)) [189].

For example, in the works [190,191], the modeling of the injection of gels for water shutoff
is performed in the CMG STARS software package. The kinetics of gelling were described in
terms of reaction rate constants, where gel adsorption in the formation was considered.

The works [192,193] consider the use of the POL–GEL simulator, which is a simulator
with 3-dimensional, 3-phase (oil/gas/water), 9-component (oil/gas/water/polymer/cross-
linker/gel/monovalent ions/divalent ions/additional sensitive component). The simulator
can be used to simulate all types of gel-forming polymers that have appeared recently. The
simulator takes into account the main mechanisms, physico–chemical phenomena, and
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factors influencing the use of cross-linked and non-cross-linked polymer systems. The model
considers the processes of gel formation, reduced permeability, and changes in fluidity.

The paper [194] analyzes articles on the methods of modeling the use of gel systems
in the processes of limiting water inflow for various technologies, including those imple-
mented in the simulators discussed above. It is noted that in situ gel modeling is quite
a difficult task since the viscosity and flow regime in the system vary greatly before and
after gelling. In addition, the system has both liquid and solid properties during the
cross-linking process and after gel formation. The author divides the evolution of the gel
composition injected into the reservoir into three stages: non-cross-linked polymer solution,
gel formation, and cross-linked gel. In each of the stages considered, the gel composition
will have different physicochemical and, especially, rheological properties that require
different approaches to modeling.

However, this approach prevents us from fully taking into account all the features of
gel injection, gel formation, and subsequent behavior of the blocking screen since commer-
cial simulators implement a more general approach for modeling chemical EOR methods.

The last group includes separate mathematical models that require the use of numerical
methods of solution and implementation in program code [182,194,195]. In general, the
task of mathematically modeling the process of injection and placement of water shutoff
compositions in the bottom-hole zone of the formation to block the watered intervals of the
formation, oil, and water inflow conformance control. Redistribution of filtration flows in
the reservoir in the well area has many options for meaningful formulation and solutions
determined by a significant number of physicochemical processes occurring in the near-
well zone of the formation at filtration of reservoir fluids and water-insulating compositions
in it, including the gelling of the polymer composition used and the subsequent interaction
of the formed gel with reservoir fluids under dynamic conditions [195,196].

In the paper [195], the authors considered a combined chemical and technological
process of water shutoff of a watered oil formation in the form of a combination of the
following processes (Figure 32): hydrodynamic process of pumping an organo–mineral
solution, physico–chemical process of gelling an organo-mineral solution, and the process
of two-phase filtration of oil and water, taking into account vertical flows.
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Figure 32. Simplified scheme of the near-well zone of the watered oil formation and the water shutoff
combined with chemical–technological process: (a) Injection of a water shutoff solution; (b) The
physico–chemical process of gelling of the solution and filtration of oil and water, taking into account
vertical flows. rc is the radius of the well, m; R3 is the radius of the near–well zone of the formation,
m; h is the thickness of the formation, m; ϕ is porosity, u.f.; k is permeability, µm2; ρw, ρo is the
density of water and oil, respectively, kg/m3; µw, µo is the viscosity of water and oil, respectively,
mPa·s. (Reprinted/adapted with permission from Meshalkin et al., 2021, Ref. [195]).
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A number of prerequisites were adopted to substantiate the methodology of math-
ematical modeling of water shutoff processes using cross-linked polymers and liquid
filtration processes in the near-well zone of the formation: a model of two-phase filtration
(water and oil phases) was used, which will allow the consideration of the impact of phase
viscosity on the injection of a gel-forming agent and performing predictive calculations
of changes of well operation parameters (watercut, oil flow rates) after water shutoff; a
layered-inhomogeneous formation with several layers with different reservoir properties is
considered; vertical anisotropy of permeability is taken into account to calculate vertical
filtration flows between layers of different permeability to quantify changes in the direction
of oil and water flows in the near-well zone of the formation after water shutoff; and
the numerical model is implemented using a three-dimensional calculated grid, which
is necessary to account for the heterogeneity of the reservoir permeability. However, the
mathematical model was developed without taking into account the compressibility of
the fluids under consideration and the elasticity of the porous medium of the formation;
the gravitational component of the pressure gradient field, which is due to the short du-
ration of the injection of process fluids and small values of pressure gradients created by
gravitational forces in comparison with existing filtration gradients in the bottom-hole
area during the entire water shutoff process; and capillary pressures, since the existing
pressure gradients in the bottom-hole area during injection of process fluids and subsequent
operation of the well after the job significantly exceeded them.

A generalized block diagram of the mathematical model is shown in Figure 33.
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Figure 33. Simplified block diagram of a mathematical model of the chemical and technological pro-
cess of water shutoff of an oil reservoir. X(t)—input parameters (process characteristics); Y(t)—output
parameters (calculation results); Z(t)—calculation functions of additional parameters characterizing
the effectiveness of the operation. (Reprinted/adapted with permission from Meshalkin et al., 2021,
Ref. [195]).

The mathematical model of the filtration process consists of the following basic equations:

1. Flow continuity equations (for the water and oil phase) [78]:

d(ϕ·ρα·Sα)

dt
= −div(ρα·uα) + qα, (4)

where α—the index corresponding to a certain phase: w is water, o is oil; ρα is the density of
the phase α, kg/m3; ϕ—the coefficient of open porosity, u.f.; t is the process time, s; Sα is
the saturation of the phase α, u.f.; uα—phase filtration velocity, m/s; qα—mass density of
the drain or source of phase α, kg/m3 s−1:

2. Darcy’s linear filtration law:

uα = − krα

µα
·K·(∇P− ρα·g·∇z), (5)

where krα is the relative phase permeability, u.f.; µα is the coefficient of dynamic viscosity,
mPa·s; K is the tensor of the coefficient of absolute permeability of a porous medium, µm2;
P is pressure, Pa; g is the acceleration of gravity, m/s2; z is the vertical coordinate, m.
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3. Equation of normalization of saturation of pore space:

Sw + So = 1. (6)

For the numerical solution of a well-founded system of equations of the mathematical
model (4, 5, 6), the implicit pressure explicit saturation method IMPES (implicit pressure
explicit saturations) is used [197,198], which implies a sequential solution for pressure
using the implicit method of the equation and the explicit method of the equation for satu-
ration. The discretization of differential equations is performed using the finite difference
method. The presented mathematical model and the numerical scheme of its solution were
implemented in the program code in the MATLAB programming language.

The process of injection of the gel-forming composition into the bottom-hole zone
of the formation is described by the continuity equation for the active component of
the mixture:

ϕ· d(C·S w)

dt
= −div(ut· fw·C) + qvw·C, (7)

where C is the concentration of the component of the water shutoff solution in the aqueous
phase, u.f.

The physical and chemical model of the gelling process in this work consists of
reducing the phase permeability in the model cells filled with a water shutoff solution
according to the following dependence:

k′αi,j,k =
kαi,j,k

1 + (Rα − 1)·Ci,j,k
, (8)

where k′i,j,k is the permeability of the cell (i, j, k) after the gelling of the water shutoff

composition, µm2; ki,j,k;—the initial permeability of the cell (i, j, k), µm2; Rα is the residual
resistance factor for the phase α, d. units; Ci,j,k—the concentration of the water-insulating
solution, u.f.

The residual resistance factor Rα is determined by the results of filtration studies on
core samples in the laboratory.

The validation stage (confirmation of adequacy) of the proposed computer model
consisted of performing predictive calculations of the efficiency of water shutoff operations
using a gel-forming composition (the authors’ technology) for a real object—well C1 of the
oil field M. Pilot field tests of the subject technology were conducted in this well. The real
geological and physical characteristics of the object and technological parameters of well
processing were incorporated into the computer model.

Figure 34 shows the graphs confirming the adequacy of the model; the dynamics of
the actual and forecast parameters of the operation of the well C1 (watercut of well fluid
and oil-flow rate) after water shutoff works are carried out. The average absolute error
(MAE, Mean Absolute Error) was calculated to assess the forecast quality metric: its value
was 0.5 t/day for oil flow rate and 0.9% for oil flow rate.

The approach considered above provides more flexibility than commercial simulators
for addressing the issues of modeling of water shutoff operations, directly taking into ac-
count the results of physical and chemical, rheological and filtration studies of compositions
and allows for the use of the obtained dependences of the properties of the polymer solution
and gel for specific conditions (for example, the dependence of the residual resistance factor
on the pressure gradient).

Summarizing this section, it can be noted that gels for water and gas shutoff in
wells are based on the same polymers and inorganic compounds as flow-diversion gels.
The difference lies in the fact that the hydrodynamic conditions under which these gels
are operated in producing wells are more severe. Therefore, the concentrations of the
active base are higher, and the values of the structural and mechanical characteristics of
water isolation screens are higher. Hybrid organo–inorganic gel screens are now being
used to provide selective water isolation in fractured reservoirs based on fluid type and
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permeability heterogeneity. Microcomposite and nanocomposite materials are used to
increase thermal stability and strength characteristics. Considering that the success rate of
water shutoff operations in the oil industry is low, mathematical modeling has recently been
carried out to increase its effectiveness. This has led to a more rigorous determination of
the volume of gel injection, increased technological and economic efficiency of the process,
and prioritization of wells for treatment on large fields.
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5. Gels for EOR

The use of acrylamide polymers in polymer flooding technology is one of the most
reliable and widespread methods of increasing oil recovery for fields with viscous oil [199].
However, polymer flooding in its pure form is not a technology with the use of hydrogels,
but its modifications can already be safely attributed to the use of hydrogels for enhanced
oil recovery. In particular, I. A. Shvetsov at the end of the 1980s developed, successfully
tested, and implemented the technology of hi-vis pill polymer flooding at the Kalamkas
field in Kazakhstan [200]. This field is characterized not only by high oil viscosity but
also by high layer-by-layer permeability heterogeneity. In this regard, at the first stage,
the conformance control was performed using viscoelastic polyacrylamide rims with a
chrome cross-linker, and only then the linear polyacrylamide slug was injected to align the
mobility of displaced and displacing agents. The technology turned out to be very effective,
which inspired the authors to develop a software product for modeling this process since
the known programs were applicable only for pure polymer flooding [200,201]. Another
modification of polymer flooding is the gel polymer flooding technology implemented
at the Severnye Buzachi field (Kazakhstan) [201–203]. This deposit has a very high oil
viscosity (400–500 mPa·s) and a very large permeability heterogeneity. An international
group of specialists from China, Kazakhstan, and Russia has introduced a new modification
that is used for the development of the field to this day. Therefore, at the first stage, a
water-swellable phenolaldehyde resin is injected to equalize the injectivity profile, which
can be safely attributed to gel technologies. At the second stage, polyacrylamide is injected
with a complex organic cross-linker: a mixture of formalin and resorcinol. As a result, a
so-called rarely cross-linked polymer is formed, which has viscoelastic properties and is
easily filtered in a porous medium. Such a technique not only provides the displacing agent
with valuable rheological properties but also allows for the saving of an expensive polymer.
The reaction scheme for the formation of the polymer-gel system is shown in Figure 35.
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Polymer flooding by the injection of colloidal-dispersed gels (CDG, Tiorco, Inc.),
which are low-concentrated polyacrylamide solutions with a concentration of 0.03–0.07%,
cross-linked with aluminum citrate, occupies an intermediate position between the actual
flooding and conformance control by the volume of injection. However, guided by the
mechanism of oil displacement, we still use this technology attributed to the modification
of polymer flooding [204,205].

When it comes to the application of gels for enhanced oil recovery, it should be noted
that there are only a few projects in global practice, while polymer flooding is one of
the most common methods. This is because the reservoir of geological conditions and
fluid properties that meet the criteria for the applicability of polymer flooding are much
more common. For polymer-gel flooding, the reservoir should have viscous oil (more
than 100 mPa·s) and be permeability heterogeneous, meaning it is a reservoir where the
alignment of mobility of displacing and displaced agents is insufficient. Permeability
heterogeneity should be equalized as well. However, for objects like the West Kazakhstan
fields, the option of gel-polymer flooding is promising and economically justified.

6. Gels for Acid Stimulation of Wells

One of the most popular methods of stimulation of wells in carbonate reservoirs is
acid treatment; gels of various nature find their application in this technology. Taking into
account the permeability heterogeneity of the bottom-hole zone of the formation, combined
well treatment technologies assume the injection of a gel-forming agent at the first stage to
seal fractures and highly permeable intervals. After the flow-regulating slug, a stimulating
acid slug is pumped for treatment of low-permeable intervals. These types of combined
effects include directed acid treatment using hydrolyzed polyacrylonitrile or the KARFAS
reagent based on an inorganic gel [206].

The injection of self-diverting acids with viscoelastic surfactants has been the most ef-
fective and rapidly developing type of acid treatment using gels over the past 20 years [207].
The advantage of such treatment is the ability of the acid composition to accumulate vis-
coelastic properties during the treatment of the well, and then to collapse when the inflow
is triggered. There are many types of surfactants capable of forming viscoelastic solutions.
These are zwitterionic amphoteric compounds, such as oleylamidopropylbetaine; cationic
surfactants, such as erucyl-bis-(2-hydroxyethyl)chloride; anionic surfactants, such as sulfos-
uccinates; amino oxides and amidoaminoxides, such as dimethylaminopropylamidooxide
of tallic acid; and ethoxylated fatty amines. The mechanism of action of self-diverting
acid compositions is based on their ability to multiply the viscosity during reaction with
carbonate rock. The pH of the solution increases in the water-saturated intervals of the
formation when the acid composition reacts with carbonate rock, and the formation of Ca2+

and Mg2+ ions causes surfactant molecules to form long rod-like micelles, which leads to
high viscosity. As the viscosity increases, the composition directs the next portion of acid to
the low-permeable oil-saturated intervals of the formation [208].
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Acid compositions with zwitterion-amphoteric surfactants have become the most
commonly applied in oilfield operations [209–211]. The rheological properties of an acid
viscoelastic gel based on oleylamidopropylbetaine and anionic surfactant were studied in
detail in [212,213]. It was shown that the rheological behavior of the gel under study is
well-described by the Maxwell model with one relaxation time according to the data of
oscillatory rheometry, which indicates the interweaving of long cylindrical micelles and the
formation of a mesh of meshes by them, which can be destroyed and restored under the
impact of external conditions. The use of self-diverting acid compositions allows for the
minimization of the volume of acid injection for the formation of dominant wormholes,
which facilitates the withdrawal of the well to a potential flow rate due to the ease of the
removal of surfactant-based gels during filtration of both oil and water [214].

When it comes to the application of gels for acid well stimulation, it should be noted
that the number of such treatments is increasing year by year, and the injection method is
determined by geological conditions. For matrix acid stimulation, diverting acid systems
are undoubtedly the most effective, while for fractured reservoirs, directional acid treatment
is used where a strong gel is first injected to block the fractures, followed by regular or
diverting acid composition to increase the conductivity of the pore matrix.

7. Gels for Well Drilling

Water-based drill muds are the most common type of drill muds that have been widely
used in the oil industry for more than 150 years [215].

Drilling muds are usually divided into three main types: water-based muds (WBM),
hydrocarbon-based muds (HBM), and synthetic-based muds (SBM) [215].

At the moment, the actual problems of drilling oil and gas wells are:

• Loss of circulation of the drilling flushing fluid [216–219].
• Uncontrolled inflow of formation fluid into the well [220].
• Regulation of the density of the drilling flushing fluid [215,221,222].
• Swelling of clay rocks [223,224].
• Thermal stability of the drilling flushing fluid [215,217,223].
• Resistance of the drilling flushing fluid to aggressive environments.

The drilling practice has shown that one of the promising methods for obtaining
drill muds is the use of gel technologies, which are understood as obtaining materials
with certain chemical and physico–mechanical properties due to the formation of sol and
its transfer to gel during condensation, as well as the formation of a polymer spatial
grid [225,226].

Much attention is paid to the loss of circulation of the drilling flushing fluid. This
problem is widespread due to the diversity and heterogeneity of composing rocks with
fractures and cavities [216–219].

In particular, absorbing and pressurized formations are drilled without complications
using gel-forming drill muds based on nepheline concentrate with mineral and dry organic
acid additives. The temporary blocking of formations is also achieved using viscoelastic
mixtures based on water-soluble cellulose esters and lignosulfonates and combined silicate
reagents—regulators of structural and rheological properties of drill muds [227].

Cross-linked polymer-gel systems are among the most effective among various ma-
terials for controlling drill mud losses, since they can seal fractures of various open-
ings, strengthen the borehole, and provide solutions to absorption problems in extreme
drilling conditions [228,229]. To combat the absorption of drilling mud in fractured high-
temperature formations, a gel based on polyacrylamide–polyethylenimine has proven itself
well. It has been shown that this cross-linked gel effectively clogs multiple and complex
fractures near the borehole [230].

New copolymers are synthesized that reduce the cost of the used PAM. The creation of
intercalated polymers [231,232], the synthesis of which is shown in Figure 36, is of interest
when used in drilling. This type of polymer can be used with a cross-linker.
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Figure 36. Schematic diagram of in situ intercalated polymerization [232].

A polyacrylamide gel is proposed to prevent and eliminate the loss of drill mud
circulation. The traditionally used polyethylenimine is replaced in polyacrylamide gel
by functionalized silicon dioxide. In addition, nanosilicon strengthens the gel structure
and improves its stability [233]. The works [217,234] show the synthesis of a nanoscale
plugging gel to stabilize the borehole during drilling. Synthesized polymer nanospheres
of a double cross-linked structure using monomers (styrene, acrylamide, 2–acrylamide-2-
methylpropanesulfonic acid and dimethyldiallylammonium chloride) have a complex of
necessary plugging properties in the temperature regime of 150–200 ◦C [234]. Figure 37
shows the scheme of interaction of the synthesized polymer with hydrophobic groups
and nanoparticles of calcium carbonate (nano-calcium carbonate, NCC) proposed by
the authors [217], which also ensures the stability of systems at high temperatures
and mineralization.
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Many authors devote their works to the inclusion of nanoparticles and their stabiliza-
tion in drill muds [217,224,233,234]. It should be noted that these solutions at the moment,
for the most part, have been studied only in laboratories. There is a task of reducing the
cost of these reagents for use in large volumes for well drilling.
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The paper [235] demonstrates the advantages of acid and alkaline silicate gels when
drilling wells. In particular, their ability to prevent collapses was proven. Factors affecting
the effect of a silicate drill mud on the walls of the well, and the protection of the productive
reservoir, were studied. In addition, it was determined that silicate drill muds protect drill
pipes and casing strings from corrosion.

Drill muds based on gels containing modified starch, aluminum sulfate, and sodium
silicate make it possible to obtain a stable gel-like system of the required density without a
solid phase, which prevents peptization of drilled clay rocks and ensures their effective
removal from the flushing fluid [236]. The use of this drill mud allows for drilling wells in
clay rocks without complications.

The use of Premium-Gel drill mud based on starch and calcium, and potassium and
magnesium chloride salts, as well as caustic soda, ensures the stability of active and softened
clay deposits, high-quality cleaning of the borehole, and the preservation of the productive
reservoir [237]. In addition, a specialized drill mud called “hydrogel” based on inorganic
components is used for drilling horizontal holes in clay-containing reservoirs [238]; a
similar approach to well drilling in reservoirs with active clays is described in [239].

Cellulose esters are also used in drill muds. Polymer-gel clay drill mud based on
polyethylene cellulose and polyanionic cellulose was successfully tested when drilling
unstable rocks for drilling horizontal directional wells under conditions of abnormally
high-reservoir pressures [240]. Hydroxyethyl cellulose and the possibility of cross-linking
this polymer with divalent salts contained in reservoir water are considered in [220].

The use of hydrogels filled with mineral fibrous-dispersed materials seems very
promising [241]. In particular, a grouting compound based on a low-molecular par-
tially hydrolyzed polyacrylamide cross-linked with organic cross-linkers (a mixture of
resorcinol and paraform), reinforced with polypropylene fiber, 6-mm long and chrysotile
(3MgO·2SiO2·2H2O), which can split into microfibers 0.5-microns thick, limiting disastrous
lost circulation during drilling of the Serpukhov horizon at the fields of the Volga–Ural
region [25,236]. The appearance of the grouting material selected during testing at one of
the wells is shown in Figure 38.
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It should be noted that in modern drilling technology, the use of hydrogels is not as
common as the use of polymer–clay drilling fluids and inverse emulsions. The main and
relevant directions in the application of gel technologies are the search for economically
advantageous systems based on polymers, dispersed particles, and additional components,
allowing for the creation of a highly structured system. Gels developed to date using
various nanoparticles as fillers are mainly at the laboratory development stage and have a
low level of implementation in wells, indicating the need to continue creating new fillers
and studying the mechanisms of their interaction with polymers.
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8. Well-Killing Gels

Density is an important property of the well-killing fluid. In general, without any
complications, water or an aqueous solution of salts of a certain density can act as a silencing
fluid. The variety and relevance of the development of new compositions of killing fluids
is attributable to the anomalous value of the reservoir pressure coefficient; the presence
of aggressive media; the mud losses in fractures and highly permeable intervals; and the
low-viscosity well killing fluids with high penetrating ability, which worsen the reservoir
properties of the productive formations.

The following solutions can be used for the listed complications:

• Use of hydrocarbon base (reverse emulsion, thickened oil).
• Introduction of special modifying additives to the well killing fluid.
• Creation of a colloidal system from the well killing fluid (gel, foam, emulsion, etc.).
• The use of blocking compounds in combination with a well killing fluid.

The use of hydrogel as a well killing fluid can solve many of the complications. In this
case, there is a problem associated with the subsequent development of the well. This fact
determines the main advantage of using natural polymers (polysaccharides) over synthetic
ones, which is the possibility of a complete-and-easy destruction of the system. High
susceptibility to biodegradation, which in conditions favorable for the development of
destructive microorganisms can take several days, significantly reduces the effectiveness
of their use. The introduction of biocides to process fluids is a widespread practice and
successfully solves the problem of biodegradation, including biodegradation of biopolymer
solutions [242].

It is possible to use xanthan as a thickening component of a water-based killing fluid
since this polymer can provide it with high performance [242].

It is known that various thickened well-killing fluids are used to prevent the pene-
tration of salt-based well-killing fluids to the formation as they have increased viscosity
and a low coefficient of filtration into the formation. The use of thickened well-killing
fluids is associated with low-reservoir pressure when the reservoir pressure is lower than
hydrostatic. E. N. Kozlov, in [243], proposes well killing and flushing polysaccharide fluids
on a water or water-alcohol basis, which constitute gels based on modified guars.

The main parameter of a killing fluid is the density, the value of which should balance
the pressure inside the well-formation system. The possibility of destruction and the
absence of colmatation of the bottomhole area with degradation of reservoir properties
of a productive formation. It is possible to create drawdown and ensure filtration of the
killing fluid into the formation when the reservoir pressure anomaly coefficient is lower
than the corresponding value of the density of the well-killing fluid column. The solution
to this problem can be the use of cross-linked foam systems and blocking compounds.
The cross-linked foam system is a pre-foamed polymer solution cross-linked on the flow.
The viscosity of such a system is higher than the viscosity of the initial polymer solution
and the density can reach a value of less than 500 kg/m3. The blocking composition is a
cross-linked gel with the added colmatating filler that can be retained at the well bottom
without filtration into the absorbing layer.

Gubkin University developed a technology for killing gas wells with disastrous lost
circulation in a carbonate reservoir with a reservoir pressure anomaly coefficient below
0.5. The technology comprises the use of a blocking compound based on cross-linked guar
with microcalcite filler and cross-linked foam based on guar and xanthan as a killing fluid
with a density of about 500 kg/m3. The appearance of the blocking compound and the
cross-linked foam selected during testing in one of the wells are shown in Figure 39.

There are alternative well-killing fluids in the oil industry for killing low-pressure
formations, including foam liquid, oil-based emulsion liquid, and well-killing fluid with a
density-reducing agent. However, the density of these alternative fluids for well killing
is generally above 800 kg/m3. A formula of nitrogen foaming liquid for well killing was
developed in [244], where a xanthan gum was chosen as a foam stabilizer since it can
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thicken the liquid phase and reduce the rate of destruction. In addition, gelatin was added
to the composition since it can form a stable coacervate with xanthan gum.
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A relatively new direction in the development of silencing fluids is the use of brines
based on formic acid salts sodium and potassium formates, which allow you to adjust
the density in a very large range. Formates have undoubted advantages over commonly
used salts. As strong water-structured antioxidants, they allow the thermal stability of
polysaccharides to increase, such as xanthan gum, starches, and cellulose derivatives,
especially during long-term operation [243].

Xiong Ying et al., in [245], proposes the use of a gel-blocking system to solve the
problems of losing a killing fluid in low-pressure wells; low technical strength of existing
gel blocking pills for temporary blocking during well killing; difficult-to-control cross-
linking time; embrittlement of gel; and the complexity of destruction of some gel-blocking
pills. A mixture of esterified plant gum galactomannan, surfactant polyoxyethylene ether
isooctanol, and an oil phase was used as a thickener. A complex of inorganic salts containing
a long-chain polyhydroxy alcohol was used as a cross-linking agent, and the concentration
of long-chain polyhydroxy alcohol significantly exceeded the theoretical amount required
for metal-ion binding. A mixture of polyhydroxy alcohol with a small amount of weak acid
was used as a cross-linking regulator. A mixture of sodium thiosulfate and a long-chain
quaternary ammonium salt of a surfactant was used as a stabilizer.

Martyushev D.A. et al. in [246] propose a new viscoelastic gel with an adjustable
fracture time for oil well killing. Guar and xanthan gum are the basis of the developed
VEG A for oil-well killing. A borate cross-linker is the complexing reagent. Guar gum
is a gelling, stabilizing, and thickening agent. Xanthan gum is used as a gelling agent
and plasticizer. It provides the subject liquid with high rheological and pseudoplastic
properties. This simplifies the pumping of the composition into the well with a sufficiently
high relative viscosity. In addition, xanthan gum provides well-killing fluids with an
increased thermal stability. It also ensures stable rheological and pseudoplastic properties
at high temperatures. Due to this, the subject composition can be used in deep formations
with temperatures up to 90 ◦C, unlike known compositions that can be used at temperatures
no higher than 50 ◦C.

Weighting additives are added to the well-killing fluid for killing wells with a reservoir
pressure anomaly coefficient exceeding 1.2. The need for a highly viscous gel structure in
the well-killing fluid in this case is determined by the retention capacity of the weighting
particles in suspension.
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Mardashov D. V. et al., in their work [247], conclude that compositions based on
caesium formate are the most effective well-killing fluids for AHRP, but their high cost
prevent the use of these well-killing fluids on a commercial scale. Compositions based on
potash (potassium carbonate) demonstrate an optimal efficiency in conditions of abnormally
high reservoir pressures.

Well-killing fluids with a high density of 1.80, 1.70, and 1.60 g/cm3 were developed in
the study [248] to ensure the safety and efficiency of well-killing operations during oil and
gas development based on the requirements of high density, low corrosion, suitable pH
and density properties, absence of solid particles, low damage, and biological toxicity.

Thus, it can be concluded that hydrogels based on polymers such as xanthan and guar
gum are actively used as well-killing fluids.

In the last 15 years, fractured well killing in low-permeability hydrophilic reservoirs
has been carried out using blocking fluids that provide absorption control [249–254]. Before
the main killing fluid is injected using this technology, a block composition based on
xanthan gel is pumped in, in which particles of microcalcite or halite are suspended.
The optimal fractional composition of microcalcite is calculated using the theory of ideal
packing and the Kaeuffer criterion [255] for different types and sizes of proppant, taking into
account their translucency. This approach allows for easy wellbore cleanup after workover
by preventing absorption of water solutions and preserving oil phase permeability.

It should be noted that the trend towards modernizing and developing new composi-
tions based on biopolymers for well-killing fluids is driven by the possibility of complete
destruction and removal of these fluids from the wellbore. Due to their widespread
use and characteristics, xanthan and guar gum are receiving the most attention in terms
of hydrogels.

The depletion of oil and gas reservoirs leads to a decrease in reservoir pressure and,
as a result, the absorption of fluids in the wellbore, creating repression on the reservoir.
Therefore, scientists are focusing on developing well-killing fluids with a density less than
1000 kg/m3. In such cases, foaming the well-killing fluid and subsequently stabilizing
this system using hydrogels is often considered. Another promising direction for using
hydrogels in well killing is their ability to form sedimentation-stable suspensions with
particles of microcalcite and halite. Injecting such blocking fluids into the perforation
interval of wells ensures the preservation of the reservoir from the penetration of well-
killing fluids, which is especially relevant in water-sensitive hydrophilic collectors.

9. Conclusions

The most significant trends in the development of the use of gel technologies in oil
production processes can be highlighted in the conclusion of the review:

• In general, this is a relevant technological area. It is developing rapidly in all the
mentioned processes.

• A wide variety of gel compositions allows for the selection of the optimal composition
for any geological and physical conditions of wells for hydraulic fracturing. The use
of viscoelastic surfactants currently is the most promising direction of gel studies
for this process. With a minimum content of components, they have a good sand-
bearing capacity and do not have a damaging effect on the productive layer and the
proppant packing.

• The tendency to increase the depth of well treatment with gels with the lower gelling
concentration limit should be noted in flow-diversion technologies, which makes
it possible to pump large volumes of flow diverters and significantly increase the
sweep efficiency. In case of conformance control in wells along the section, the mod-
ern development of this technology has come to the injection of low-volume rigid
gel-forming and gel-dispersed systems, which is constantly developing in terms of
treatment cost reduction.

• There is a clear trend of using microcomposite and nanocomposite materials in water-
shutoff technologies to increase the strength of the water-shutoff gel screen; hydrody-
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namic modeling methods have also been actively used to increase the accuracy of the ef-
fect prediction and optimize the volume of injection of the water-shutoff composition.

• Self-diverting acid compositions based on viscoelastic surfactants are increasingly
actively and successfully used in the well-acid stimulation technologies.

• The use of non-damaging block pills and killing fluids is becoming increasingly
relevant due to the depletion of the fields being developed and the commissioning
of deposits with hard-to-recover reserves. The use of gels based on polysaccharides
(guar gum, xanthan gum, and modified cellulose) as remedial fluids allows for the
production potential of wells during workovers to continue, minimizing the well-
stabilization period.
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