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Abstract: Nanocomposite hydrogels offer remarkable potential for applications in bone tissue en-
gineering. They are synthesized through the chemical or physical crosslinking of polymers and
nanomaterials, allowing for the enhancement of their behaviour by modifying the properties and
compositions of the nanomaterials involved. However, their mechanical properties require further
enhancement to meet the demands of bone tissue engineering. Here, we present an approach to
improve the mechanical properties of nanocomposite hydrogels by incorporating polymer grafted
silica nanoparticles into a double network inspired hydrogel (gSNP Gels). The gSNP Gels were
synthesised via a graft polymerization process using a redox initiator. gSNP Gels were formed
by grafting 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as the first network gel followed
by a sequential second network acrylamide (AAm) onto amine functionalized silica nanoparticles
(ASNPs). We utilized glucose oxidase (GOx) to create an oxygen-free atmosphere during polymeriza-
tion, resulting in higher polymer conversion compared to argon degassing. The gSNP Gels showed
excellent compressive strengths of 13.9 ± 5.5 MPa, a strain of 69.6 ± 6.4%, and a water content of
63.4% ± 1.8. The synthesis technique demonstrates a promising approach to enhance the mechanical
properties of hydrogels, which can have significant implications for bone tissue engineering and
other soft tissue applications.

Keywords: polymer grafted silica nanoparticles; redox polymerisation; biomaterials; glucose oxidase;
hydrogels; tissue engineer

1. Introduction

Hydrogels are hydrophilic three-dimensional polymeric networks that hold large
amounts of water (up to 99%), giving them their intrinsically soft material properties. They
hold numerous properties including flexibility, transparency, permeability, biocompatibility,
and low friction [1–3]. Hydrogels can be formed through natural, synthetic, and hybrid
polymers, offering a wide range of biochemical and mechanical properties [4,5]. Single
network hydrogels are usually soft, weak, and brittle. Their applications are limited due
to their tensile and compressive properties being in the sub-MPa range, and inability to
withstand strains greater than 100% compared with the hydrogel-like natural-tissues such
as articular cartilage, muscle, tendon, and blood vessels [6].

Hydrogel technology has evolved beyond its initial single network systems, driven
by the inherent physical and biochemical limitations they possess [7]. This progress has
led to the emergence of several innovative and practical hydrogel subtypes, including
interpenetrating network hydrogels (IPNs), nanocomposite hydrogels, stimuli-responsive
hydrogels, and double network hydrogels (DNHGs). DNHGs consist of two contrasting

Gels 2023, 9, 486. https://doi.org/10.3390/gels9060486 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels9060486
https://doi.org/10.3390/gels9060486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0002-4270-006X
https://orcid.org/0000-0002-2647-8024
https://doi.org/10.3390/gels9060486
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels9060486?type=check_update&version=1


Gels 2023, 9, 486 2 of 15

polymeric networks of polyelectrolytes (rigid and brittle) and neutral polymers (soft and
ductile). The opposing properties of both networks have potential for achieving synergy of
the mechanical properties of the two networks, replicating the physical and biochemical
properties of native human tissue such as articular cartilage and bone [8–10]. This improve-
ment in mechanical properties is crucial for bone tissue engineering, where different bone
types exhibit varying compressive strengths. For instance, cortical bone demonstrates an
ultimate compressive strength ranging from 130 to 180 MPa, while trabecular bone typically
has a compressive strength of 1 to 5 MPa [11].

DNHGs are normally synthesized using a two-step sequential free-radical polymeri-
sation (FRP) where a high relative molecular weight neutral second polymer network
is swollen within a lightly cross linked heterogeneous first network polyelectrolyte [10].
DNHGs have been developed using a wide range of pairs consisting of polyelectrolyte first
networks and neutral second networks, which have shown enhanced mechanical proper-
ties when compared to their individual network hydrogels [9]. A DNHG developed by
Gong [10] consisting of poly(2-acrylamido 2-methylpropanesulfonic acid)/polyacrylamide
(PAMPS/PAAm) had a compressive fracture stress of up to 20 MPa at 92% strain whilst
holding 90 wt.% water. These properties closely matched that of native articular cartilage
and trabecular bone [10]. In contrast, the respective single network hydrogel components
had sub-MPa fracture stresses at 80% strain for PAAm and 40% for PAMPS. However, upon
bearing stress, the covalent bonds in conventional DNHGs exhibit permanent damage;
therefore, the gels cannot recover from large deformations and they suffer low fatigue
resistance [9,12,13]. To improve on these limitations, additives such as nanoparticles can be
introduced to create microstructures that increase resistance to strain and increase stiffness.

The introduction of nanocomposite structures such as silica nanoparticles
(SNPs) [14,15], copper nanopowder [16,17], laponite clay [17], superparamagnetic iron ox-
ide nanoparticles (SPIONs) [18], nanoceria (NC) [19], and nanocellulose crystals
(CNC) [20–22] have shown to further enhance the physical properties of hydrogels.
Nanocomposite hydrogels can provide unique properties based on the type of nanoparticle
introduced into the system. Properties can include internal physical reinforcement and
stiffness [8,14,19], topography for cellular anchorage crucial for cell adhesion and tissue
regeneration [23], conductivity [24], antibacterial, antioxidation [25–27], therapeutic ion
release [28,29], cancer therapeutics [30], magnetic responsiveness [18,31], and electrical
signals and sensing. Improvements in the properties of DNHGs through the addition of
nanocomposite structures have also been reported, e.g., mechanical improvements through
the addition of graphene oxide in alginate/nanofibrillated cellulose [32], and development
of thermoresponsive properties using as poly(N-isopropylacrylamide) (PNIPAAm) with
polysiloxane nanoparticles [33]. This expands their potential applications in specialized
tissues such as skeletal muscle, nerve, and cardiac tissues.

However, nanocomposite gel structures are challenging to produce due to particle
agglomeration, inhomogeneous distribution during synthesis, and a lack of covalent or
ionic bonds between particles and the polymer networks [34–38]. This could result in
weaknesses and potential points for failure when the hydrogel is under mechanical stress.
To avoid these issues and to ensure a more robust entanglement of polymer chains with
the nanocomposites, polymers can be grafted directly onto the nanoparticles to form
strong covalent bonds. In previous studies, polymers were successfully grafted on the
surface of SNPs, for example: polymethyl methacrylate (PMMA) by graft photopolymeri-
sation [39], polystyrene with living radical polymerisation [40], and with atom transfer
radical polymerisation (ATRP) [41]; poly-n-isopropylacrylamide (PNIPAM) brushes by
ATRP [42], polystyrene sulfonic acid sodium salt (PSSA), and PAMPS by surface initiated
redox polymerisation [43]. In a previous study, PAMPS and PSSA were grafted on the
surface of amine-functionalized SNP (ASNPs) [43]. The ASNPs were dispersed in acidic
solution of AMPS monomers before both the initiator ceric ammonium nitrate (CAN) and
stabilizer sodium dodecyl sulphate (SDS) were added. The mixture was degassed with
nitrogen gas and heated to 40 ◦C to initiate the graft polymerisation. Grafting was initiated
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by a redox pair of Ce (IV) (oxidant) and the alkyl amine (reductant) from the surface of
the ASNPs, causing an intermediate free radical at the α-carbon atom of the alkyl amine
group. However, graft percentage and polymer conversion were low, at 46% and 4.6%
for PAMPS, and 22% and 2.2% for PSSA, respectively. These low percentages may cause
issues in hydrogel formation due to low polymer grafts and extra post processing steps
to remove unreacted monomers. The study aimed at increasing polymer graft percentage;
however, attempts at hydrogel synthesis were not made. An optimization of the process
would be required to create a polymer-nanocomposite that has the potential to be used
in the synthesis of polymer grafted silica nanoparticle gels (gSNP Gels). In our previous
work, polymers were successfully grafted on the surface of cerium oxide using a novel
auto-catalytic graft polymerisation to form DNHGs for articular cartilage repair [19]. The
process used a self-initiating cyclical polymerisation technique that benefited from the two
alternating cerium ion states (Ce3+ and Ce4+) and reaction by-product H2O2.

In this work, a method for synthesizing a double network inspired nanocomposite
hydrogel is presented. The method involves using a redox initiator, ceric ammonium
nitrate, in combination with glucose oxidase (GOx), an oxidoreductase enzyme that can
quench oxygen in an open system, eliminating all oxygen inhibition steps that impact FRP
and increase the conversion of the polymer [14]. The redox polymerization is used to graft
polymers with high conversion on ASNPs, and GOx is used to enhance the kinetic profile
of each polymer by degassing all saturated oxygen in the monomer solution, allowing for
a more efficient graft polymerization process to take place. To demonstrate the efficacy
of GOx, a comparison with argon degassing will be made for both AMPS and AAm. The
gSNP Gels are produced by grafting AMPS as a first network polyelectrolyte on the surface
of ASNPs, followed by a sequential graft polymerization of AAm on ASNPs as the second
network. Both networks are synthesized in oxygen-free atmospheres in the presence of GOx.
The goal of this approach is to achieve improved integration of the nanocomposite structure
through a polymer grafting process compared to conventional mixing of nanoparticles
during synthesis.

2. Results and Discussion
2.1. Amine Functionalized Silica Nanoparticles (ASNPs)

ASNPs with 100 nm diameter were successfully synthesized by post synthesis func-
tionalization of SNPs using APTES; a schematic representation of this is shown in Figure 1a.
The spherical shapes of bare SNPs (Figure 1b) and ASNPs (Figure 1c) were confirmed using
TEM imaging, and size was determined by taking an average diameter of 100 individual
nanoparticles using the processing program Image J. The average diameter of the ASNPs
was 108 ± 6 nm (PDI 0.095), using direct light scattering (DLS). Functionalisation was
confirmed using zeta potential (Figure 1d). Figure 1d shows bare nanoparticles (red line)
had a zeta potential of −37 mV due to the deprotonated silanol groups on the surface of the
SNPs, while ASNPs (black line) had a surface zeta potential of +27 mV due to the amine
groups on the surface, in accordance with the literature [44]. Figure 1e shows functionalised
amine SNPs (black line) resulted in a shift in absorbance compared to bare SNPs (red line),
since functionalisation with amine groups increases light scattering, as confirmed in the
literature [45]. However, no distinct peaks were visible due the dependence of optical
properties on the size of nanoparticles. Studies have shown SNPs with diameters over
100 nm have a higher extinction efficiency, resulting in weak wavelength dependence,
making it difficult to see small distinct peaks [46].
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relative to trioxane peaks at 0 h and 24 h samples in order to calculate the final conversion 
profiles, using 1H NMR analysis as described in the supplementary information. Samples 
were tested using AAm and AMPS monomers with the redox initiator CAN, to compare 
the impact on the polymerisation through the addition of ASNPs, or SDS. Figure 2a com-
pares the conversion percentage of AAm and AMPS, respectively, with both argon and 

Figure 1. (a) Surface functionalization of silica nanoparticles (SNPs) by APTES to produce amine
functionalised silica nanoparticles (ASNPs); (b) TEM image of bare silica nanoparticles (SNPs); and
(c) amine silica nanoparticles (ASNPs); (d) Zeta potential of SNPs and ASNPs using 5 mg/mL per
sample; and (e) UV-VIS of bare SNPs and ASNPs using 5 mg/mL per sample.

2.2. Polymers Grafts on ASNPs

Both AMPS and AAm conversion profiles were investigated using samples that were
degassed using either argon or GOx. The monomer and polymer peaks were calculated
relative to trioxane peaks at 0 h and 24 h samples in order to calculate the final conversion
profiles, using 1H NMR analysis as described in the supplementary information. Samples
were tested using AAm and AMPS monomers with the redox initiator CAN, to compare the
impact on the polymerisation through the addition of ASNPs, or SDS. Figure 2a compares
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the conversion percentage of AAm and AMPS, respectively, with both argon and GOx
degassing. The results demonstrate that the use of GOx has a higher conversion percentage
compared to argon degassing for all scenarios. GOx has been used previously as a degassing
agent, and polymerisation mediator, to prevent oxygen inhibition of free radicals [14,19]. It
has also been proven that GOx provides both AAm and AMPS with better reaction kinetics
when compared to argon degassing [14].
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Figure 2. Conversion profiles of (a) AAm and (b) AMPS in combination with amine functionalised
silica nanoparticles (ASNP), ASNP/CAN, and ASNP/CAN/SDS, degassed with argon (black) and
GOx (red).

An indication that H2O2, a GOx by-product, results in free radical formation which
impacts the final polymer conversion can be seen by comparing argon and GOx degassed
samples of AAm/ASNP. Argon degassed samples resulted in 1% conversion, whereas
samples degassed with GOx had 58% conversion. This can occur during the formation
of H2O2 and its subsequent in situ degradation back to water where peroxy radicals
may form, potentially initiating the polymerization [47,48]. Therefore, it can be deduced
that H2O2 plays a part in initiating the polymerisation to a limited extent. This was
also evident for AMPS/ASNP in Figure 2b. Monomers were reacted with CAN alone,
resulting in conversion of 85% with argon and 94% with GOx, for AAm. Therefore, it can
be concluded CAN is an effective redox initiator for grafting AAm on the ASNPs. The
results for AMPS/CAN were less notable, with only 57% conversion using argon and
66% conversion with GOx. Conversion percentage decreased with the addition of ASNPs;
however, conversion reached 98% and 100% with the use of SDS for AAm and AMPS,
respectively. The difference between AMPS and AAm conversion numbers under the same
conditions is due to their intrinsic kinetic profiles. In a previous study, the use of amine
functionalised nanoceria (ANC) as a nanoparticle-based redox initiator resulted in over
90% conversion for both AAm and AMPS, using the same nanoparticle concentration in
this work [19]. ANCs, however, have the ability to use their cyclic cerium ion states to form
free radicals on the tertiary amine group, compared to ASNPs that lack these intrinsic redox
properties [19]. In a previous study, it was determined that the kinetic profile of AAm is
more sensitive to oxygen inhibition when compared to AMPS during a photopolymerisation
reaction without degassing [14]. Both AAm and AMPS had 0% conversion at 0.05 wt. %
photoinitiator. The addition of GOx to AAm and AMPS with a photoinitiator concentration
of 0.05 wt. % resulted in 78% and 100% conversion, respectively [14,49]. Here, higher
conversion rates were achieved at the lowest tested photoinitiator concentration. This
provides clear evidence on the impact GOx has on both its ability to eliminate oxygen
inhibition and significantly increase the reaction kinetics of both polymers.
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In the experiments, it was observed that samples degassed with argon resulted in
inhomogeneous, runny, and wet gel structures. On the other hand, samples degassed with
GOx showed textural consistency and more gel-like forms. These results indicate that
argon alone would not be sufficient for synthesising the grafted nanocomposite hydrogels,
while GOx can be used for this purpose; therefore, only GOx was used in the next part of
the study.

Thermal analysis was performed on dried and ground samples to investigate polymer
grafting onto amine silica nanoparticles (ASNP). The mass loss profiles (TGA) in Figure 3a
of AAm-based reactions showed that AAm/ASNP had a minor increase in mass loss
compared to SNPs and ASNPs, indicating very low polymer grafting on the surface of the
nanoparticles. This minor increase was due to the presence of a thin polymer monolayer,
initiated by free radicals on the amine groups of ASNPs caused by the inert conditions
created by GOx and its H2O2 by-products [14,19,50]. On the other hand, AAm/ASNP/CAN
exhibited the largest mass loss, with two sharp DTG peaks at 250 ◦C and 420 ◦C (Figure 3a),
indicating successful polymerisation on the surface of the ASNPs through the nature of the
redox initiator, CAN, under completely inert conditions using GOx. The reaction including
SDS also showed successful polymer grafting, but the presence of a distinctive DTG peak
at 210 ◦C suggested incomplete removal of SDS from the sample. The best combination
was found to be AAm/ASNP/CAN.
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Figure 3. DTG and TGA profiles for (a) AAm and (b) AMPS degassed using GOx with ASNP,
ASNP/CAN and ASNP/CAN/SDS, compared to Bare SNPs.

DTG analysis of AMPS/ASNP showed prominent polymer peaks and a mass loss of
approximately 12.5%, indicating successful polymer grafts on the surface of the nanopar-
ticles (Figure 3b). As with AAm, bare SNPs were unable to initiate PAMPS polymer
formation, and minor mass loss and DTG peaks for AMPS/ASNP samples suggested low
amounts of polymer grafts on the surface, likely due to the H2O2 by-products resulting in
free radicals on the amine groups of ASNPs. The presence of SDS in the sample suggested
successful polymer grafting, but incomplete removal of SDS from the sample even after
several washes (Figure 3b). The best result was found with AMPS/ASNP/CAN, showing
strong DTG polymer peaks and the largest mass loss based on polymer formation, similarly
to AAm.
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FTIR analysis was conducted to confirm the surface modification of ASNPs through
graft polymerisation of PAMPS and PAAm, with GOx as a degassing agent. The results
of the FTIR analysis for the different combinations of PAAm with ASNP, CAN, and SDS
compared to ASNP and PAAm homopolymer are shown in Figure 4a. The main bands
associated with the AAm, and AMPS grafted polymers on the surface of ASNPs can be
found in Tables S1 and S2 in the Supplementary Information [51–54].
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Figure 4. FTIR spectra post graft polymerisation of (a) AAm and (b) AMPS on the surface of amine
silica nanoparticles (ASNP) compared to ASNPs, PAAm and PAMPS, degassed using GOx. Band
indexing A–J shown in Supplementary Information Tables S1 and S2. UV-Vis of (c) AAm and
(d) AMPS in combination with amine functionalised silica nanoparticles (ASNP), ASNP/CAN, and
ASNP/CAN/SDS compared to ASNP.

The FTIR spectrum of AAm/ASNP showed no polymer bands, which is consistent
with the TGA results indicating a low concentration of grafted polymer on the surface. This
is likely due to the absence of an initiator to start the polymerisation between AAm/ASNP.
In contrast, the FTIR spectrum of AAm/ASNP/CAN clearly showed polymer bands that
reflect the PAAm spectra. The presence of bands between 1620 cm−1 and 1659 cm−1

confirms the presence of N-H and C=O bonds from PAAm, while 950 cm−1 and 1050 cm−1

correspond to Si-OH and Si-O-Si, respectively, which represent ASNPs.
The FTIR spectrum of AAm/ASNP/CAN/SDS in Figure 4b also showed these bands,

albeit with less intensity, and an additional twin band between 2850 cm−1 and 2956 cm−1

that represents the C-H stretching found from residual SDS [55]. The inability to remove
SDS from the system despite several wash and centrifuge cycles was confirmed by the TGA
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analysis. The results from the FTIR analysis and TGA suggest that the best combination for
grafting AAm on ASNPs was with CAN alone, as evident from the presence of polymer
bands in the FTIR spectrum.

Figure 4c shows AAm polymer grafts were successfully grafted on ASNPs, with
polymer peaks visible between 190 nm and 250 nm. The AAm/ASNP spectra indicates
low polymer grafting on the ASNPs due to the changes in absorbance compared to ASNPs.
SDS can also be seen between 220–260 nm, due to the difficulty in removing the stabiliser
from the final product. AAm/ASNP/CAN had the strongest polymer peak with a reduced
ASNP peak. This suggests a thick layer of polymer was grafted on the surface of the ASNPs.

AMPS/ASNP absorbance spectra (Figure 4d) revealed that a reaction had taken place
on the nanoparticles. The reduced absorbance for ASNPs in the AMPS/ASNP sample
suggests the nanoparticles were covered in polymer, though the peak at 190 nm was
very subtle. AMPS/ASNP/CAN spectra revealed graft polymerisation was successful.
The addition of SDS also revealed successful polymerisation, with a peak at 220–260 nm
suggesting SDS was still present in the sample. These results indicate that grafting PAMPS
on the surface of silica nanoparticles was successful. These results provide an indication
that the polymerisation technique was successful.

2.3. Nanocomposite Polymer Grafted Silica Nanoparticle Hydrogels (gSNP Gels)

gSNP Gels were successfully synthesised using a two-step sequential thermal graft
polymerisation technique adapted for this study (Figure 5a). PAMPS were grafted on the
surface of ASNPs with CAN as a redox initiator, in the presence of GOx, to form the first
network hydrogel. This was followed by soaking the first network in a monomer solution
of AAm, suspended ASNPs, CAN, and GOx. The second network was formed through a
secondary graft polymerisation under the same conditions. Samples were then swollen in
water at room temperature until a mass plateau was achieved, and subsequently subjected
to compression studies.

gSNP gels were swollen in DI-H2O from a dried state until a plateau in water content
was reached. Figure 5b shows the swelling profile over time for the gSNP Gels, and
the results are summarised in Table 1. The gSNP Gels exhibited fast water up take of
approximately 19% at 1 h, followed by a more gradual and controlled trend to reach an
average of 63.44 ± 1.76% at 240 h. The final swelling value was 274 ± 9.21%. The presence
of ASNPs reduced the free space for water uptake due to tighter cross linking by not
allowing the gels to expand as freely. In addition, ASNPs in both networks take up more
space in the material as opposed to having one network cross linked via nanoparticles.
Ultimately, this resulted in a slower and more controlled swelling profile containing less
water, allowing for a tailorable material compared to previous DNHGs, and nanocomposite
gels that often result in water content of +90% [8,10,19,56]. These values are considered in
the lower range of the water content found in native articular cartilage (65–70%).

Table 1. Swelling and water content for the amine silica nanoparticle hydrogel with PAMPS and
PAAm polymer grafts (GSNP Gel).

Control Gel (No ASNPs/GOx) gSNP Gel

Water Content (%) 96.7% ± 0.4 63.4% ± 1.8
Swelling (%) 2757% ± 157 274% ± 9
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Figure 5. (a) Images of the amine silica nanoparticle hydrogels with PAMPS and PAAm polymer
grafts (gSNP Gels). (b) Swelling profile for the amine silica nanoparticle hydrogel with PAMPS and
PAAm polymer grafts (gSNP Gels), and Control (gels without ASNPs/GOx).

Figure 6 shows the compression curves for gSNP Gels, and Table 2 provides a summary
of the results. An average compressive stress of 13.9 ± 5.5 MPa with fracture strain of
69.6 ± 6.4% was achieved for gSNP Gels, two orders of magnitude greater than control
gels. The values for these hydrogels are comparable to the compressive strength of articular
cartilage, with values ranging between 5 MPa and 20 MPa [57,58]. The compressive strength
of nanocomposite hydrogels ranges from ~100 kPa to 70 MPa [12,59–61]. However, the
results are highly dependent on testing methods and sample size during compression.
Nonetheless, the improved compressive strength relative to control gels as well as other
nanocomposite gels can be attributed to the covalently bonded polymer grafts on the
surface of the ASNPs. The gSNP Gels sustained strains up to 75%, likely due to the internal
structure of material. The polymer-ASNP composite structures are likely to interact and
cross link with each other, leading to an increase in resistance to stress. This will lead to
an increase in the compressive strength and allow the material to resist larger strains, as
witnessed in the strain values in Figure 6. Ultimately, the gSNP Gels here show a seven
fold improvement in maximum compression strength relative to nanocomposite polymer
grafted ANC Gels [19]. The synthesis method used in this work can be used to tailor the
mechanical properties of these hydrogels further by varying the concentration of the two
polymer-ASNP grafted networks. These gSNP Gels are intended for cyclic applications
such as cartilage repair or for bone tissue regeneration.
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Figure 6. (a) Images of a nanocomposite PAMPS and PAAm grafted silica nanoparticle hydrogel
(gSNP Gel) under compression at increasing strains. (b) Compression curves of the gSNP Gel,
compared to a control hydrogel without ASNPs/GOx.

Table 2. Fracture compressive stress and strain values for amine silica nanoparticles hydrogels with
PAMPS and PAAm polymers grafts (gSNP Gel).

Control Gel gSNP Gel

Compressive Fracture Stress (MPa) 0.10 ± 0.06 13.9 ± 5.5
Fracture Strain (%) 45.9 ± 2.1 69.6 ± 6.4

Cross sections of the gSNP Gels were freeze dried and investigated under SEM, shown
in Figure 7. ASNPs were well distributed across the core structure of the hydrogel with
homogenous layers, as shown by the white arrows in Figure 7a,b. The arrangement of
the ASNPs within the hydrogel suggests that the synthesis technique did not hinder even
distribution within the final material. The polymers on the surface of the ASNPs are likely
to interact and cross link with neighbouring polymer-ASNP structures, leading to a more
compact structure and an increase in resistance to stress. This compact ASNP arrangement
and integration into the core structure revealed by the SEM reflects the increase seen in
compressive strength of the material.
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3. Conclusions

A double network inspired nanocomposite hydrogel made of first network PAMPS
and second network PAAm, both grafted on amine functionalised silica nanoparticles in the
presence of GOx, was successfully synthesised in this work. Polymer conversion for both
PAMPs and PAAm was best for samples containing ASNP/CAN/SDS in the presence of
GOx, both achieving 100% conversion. The addition of GOx across all samples resulted in
higher conversion % compared to controls degassed with argon. Ultimately, GOx proved to
enhance the reaction kinetics profiles of both polymers compared to argon, resulting in more
consistent gel-like polymers. GOx also showed an improvement in polymer conversion
in the absence of the redox initiator CAN and allowed for open vessel synthesis due to its
ability to maintain an oxygen free system. This was due to H2O2, a by-product of GOx,
forming peroxy radicals that caused free radical formation on the tertiary amine group
attached to the ASNPs. The grafted polymer networks were then sequentially polymerised
to form a nanocomposite hydrogel with enhanced mechanical properties compared to
a control without grafted ASNPs. A strong hydrogel with compressive fracture stress
of 13.9 MPa at 69.6% strain and 63.4% water content was synthesised in an open vessel
system with GOx. This compressive strength and water content are suitable for bone
tissue engineering, as it exhibits mechanical properties comparable to soft tissues and
articular cartilage. The tailorability of this hydrogel, achieved through the unique synthesis
technique and the incorporation of GOx and ASNPs, opens up new possibilities for various
applications in biomaterials. Future studies are needed to investigate the biological response
of the nanocomposite hydrogels developed in this work. These hydrogels offer a feasible
strategy to obtain tough scaffolds with enhanced mechanical properties, cell affinity, and
osteoconductivity. They can also be loaded with bioactive molecules, such as growth factors
or stem cells, to fabricate multifunctional hydrogels with the potential to direct bonding of
the scaffold to the host bone and stimulate new bone formation.

4. Materials and Methods

Reagents were purchased from Sigma-Aldrich (Burlington, MA, USA) and used as
received, unless stated otherwise: acrylamide (AAm; ≥99%) and 2-acrylamido-2-methyl-
1-propanesulfonic acid (AMPS; 99 %); N, N′-methylenebisacrylamide (MBIS; 99%); pho-
toinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959; 98%),
1, 3, 5 –trioxane (≥99%); (3-aminopropyl), ammonium hydroxide (28–30% NH4OH ba-
sis), tetraethyl orthosilcate (TEOS; 98%), triethoxysilane (APTES; ≥98%), deuterium oxide
(D2O; 99.9 atom % D), cerium (IV) ammonium nitrate (CAN; ≥99.99% trace metals basis),
sodium dodecyl sulphate (SDS; ≥98.5%). No additional processing and/or purifications
were performed. D-glucose (G) and glucose oxidase (GOx; from aspergillus niger as a
lyophilized powder) were purchased from Sigma-Aldrich (Burlington, MA, USA) and
stored in phosphate buffer saline (PBS) aliquots at −20 ◦C when received.

Amine functionalized silica nanoparticle (ASNP) synthesis, the procedure for polymer
conversion studies of argon degassing and Gox, and the characterisation techniques used in
this work can be found in the supplementary information. A schematic representation of ASNP
synthesis can also be found in the Supplementary Information Figure S1. TEM images of the
polymer-ASNPs can be found in the Supplementary Information Figure S2 [14,47,62–65].

4.1. Polymer Grafted Silica Nanoparticle Hydrogels (gSNP Gels) Synthesis

The first network was formed by dispersing 150 mg of ASNPs in 5 mL of H2O and
sonicating the mixture until it was fully dispersed. Then 4.5 g AMPS was titrated to 5.4 pH
using NaOH (0.25 M), to a final concentration of 0.24 M AMPS. ASNPs were then added
to the AMPS monomer solution. Then 1 wt. % MBIS and 200 nM GOx/G [14,47] were
added to the monomer/ASNP solution, followed by 0.7 g CAN, and mixed for 5 min. The
solution was then distributed into aliquots of 2 mL in polystyrene moulds and placed in a
sonication bath set to 40 ◦C to ensure homogenous ASNPs dispersion in the mixture. The
optimum temperature for a GOx catalysed D-glucose oxidation is 40 ◦C at pH 5.5, with
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denaturisation occurring at 60 ◦C [66,67]; and 40 ◦C being the temperature at which CAN
becomes active to initiate the redox polymerisation [68]. Once the solutions have gelled,
the moulds were placed in an oven at 40 ◦C for 24 h followed by a further 6 h at 60 ◦C to
denature GOx.

The hydrogels were removed from the moulds and soaked in a monomer solution of
2.54 M AAm containing 150 mg ASNP, 0.1 wt. % MBIS, 0.7 g CAN, and 200 nM GOx/G.
Once the hydrogels were swollen, they were placed in moulds and put into a 40 ◦C oven
to form the second network. The final hydrogels are referred to as gSNP gels. The gSNP
gels were then dried at 60 ◦C and, at their dry state, placed in water to swell for a week.
Figure 8 shows a schematic representation of the hydrogel synthesis route described above.
A comparison control hydrogel was produced using the same concentrations of AMPS
(first network) and AAm (second network) along with MBIS as a crosslinker, by means of a
sequential FRP process, but without the presence of ASNPs and GOx.
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4.2. Sample Nomenclature

Each sample is named based on the chemicals used in its polymerization. For instance,
if AMPS is polymerized using CAN and SDS on the surface of ASNPs, the sample will
be named as AMPS/ASNP/CAN/SDS. If AAm is polymerized on ASNPs without any
initiator or stabilizer, the sample will be named as AAm/ASNP.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/gels9060486/s1, Figure S1: Schematic of amine surface functinonalisation
of silica nanoparticles, and graft polymerisation of AMPS and AAm on silica nanoparticles; Table S1:
Summary of FTIR bands for AMPS grafted polymers on the surface of amine silica nanoparticles; Table S2:
Summary of FTIR bands for AAm grafted polymers on the surface of amine silica nanoparticles. Figure S2:
TEM images of polymer-ASNPs.
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