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Abstract: In this study, our aim was to estimate the adsorption potential of three families of aerogels:
nanocellulose (NC), chitosan (CS), and graphene (G) oxide-based aerogels. The emphasized efficiency
to seek here concerns oil and organic contaminant removal. In order to achieve this goal, principal
component analysis (PCA) was used as a data mining tool. PCA showed hidden patterns that
were not possible to seek by the bi-dimensional conventional perspective. In fact, higher total
variance was scored in this study compared with previous findings (an increase of nearly 15%).
Different approaches and data pre-treatments have provided different findings for PCA. When
the whole dataset was taken into consideration, PCA was able to reveal the discrepancy between
nanocellulose-based aerogel from one part and chitosan-based and graphene-based aerogels from
another part. In order to overcome the bias yielded by the outliers and to probably increase the
degree of representativeness, a separation of individuals was adopted. This approach allowed an
increase in the total variance of the PCA approach from 64.02% (for the whole dataset) to 69.42%
(outliers excluded dataset) and 79.82% (outliers only dataset). This reveals the effectiveness of the
followed approach and the high bias yielded from the outliers.

Keywords: aerogel; machine learning; oil removal; principal component analysis; sustainability;
unsupervised learning

1. Introduction

Water scarcity is a growing concern worldwide, affecting many regions and popu-
lations. According to the United Nations, more than 2 billion people live in countries
experiencing high water stress, and this number is expected to increase in the coming years
due to population growth, climate change, and other factors [1]. Water scarcity can have
a significant impact on human health, agriculture, and economic development. In many
areas, people have to travel long distances to access safe drinking water, which can lead to
health problems [1]. To address water scarcity, there are many efforts underway to improve
water management and conservation practices. This includes initiatives to promote more
efficient water use in agriculture, industry, and households, as well as investments in
infrastructure to improve water storage, distribution, and water treatment techniques [2].

There are several novel water treatment techniques that have been developed to
address water scarcity and improve water quality. Membrane filtration is a technique that
involves using membranes to filter out impurities and contaminants from water [3]. It can
be used for desalination, removal of microorganisms and pollutants such as pesticides
and pharmaceuticals [3]. Electrocoagulation involves passing an electric current through
contaminated water, which causes the contaminants to coagulate and settle down. This
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technique is effective in removing a range of contaminants, including heavy metals and
organic compounds [4]. Membrane distillation involves using a hydrophobic membrane to
separate water from contaminants through the process of evaporation and condensation.
This technique is particularly effective for removing contaminants that have a high boiling
point [5]. Biosorption is a technique that uses living or non-living biomass to remove
contaminants from water [6]. It can be effective in removing a wide range of contaminants
from water-rich inorganic matter contaminants [6].

Aerogels have potential applications in water treatment due to their unique properties,
such as high surface area, low density, and high porosity [2,7,8]. One potential use of aero-
gels in water treatment is as a filtration medium. The high surface area of aerogels allows
them to trap and remove impurities from water [2,7,8]. Aerogels can be used as filter media
to remove heavy metals, organic compounds, and other contaminants from water [9,10].
Oil–water separation using aerogels has been intensively studied and evaluated [10]. An-
other potential application of aerogels in water treatment is as a sorbent material, as it
can absorb large amounts of contaminants [7]. Additionally, it can act as a catalyst for the
oxidation or reduction of contaminants, giving aerogels the capacity to break down or-
ganic compounds in wastewater [11]. Hence, the unique properties of aerogels make them
promising materials for water treatment applications [2,7,8]. However, further research is
needed to explore their potential applications and optimize their performance in different
water treatment scenarios. One way to seek potential uses for these types of membranes
is by applying data analysis on the dataset encompassing physico-chemical properties,
adsorption parameters, and even manufacturing conditions and trade-offs [12,13]. One of
the most suited data analysis techniques is “Principal Component Analysis” (PCA).

PCA is statistical technique used to reduce the dimensionality of a large dataset by
identifying patterns and correlations among variables. In other words, it aims to identify
the underlying factors that explain the most variance in the data [14]. The basic idea behind
PCA is to transform a large dataset into a smaller one by projecting the original data onto a
new set of axes, called principal components PCs, that capture most of the variability in the
data. The first PC is the direction in which the data varies the most, while the second PC is
the direction that captures the most remaining variability, and so on [14]. PCs are actually
orthogonal in relation to each other; this represents the geometrical interpretation of no
correlation between PCs [14]. PCA is widely used in various fields, such as geology [15,16],
biomass characterization, and valorization [17]. For aerogels, our previous studies applied
PCA for the sake of revealing hidden patterns between the physical and chemical properties
and adsorption parameters [12,13]. The machine learning approach found its importance
in evaluating several water treatment processes, including the efficiency of nanofiltration
membranes and the fabrication of sustainable materials [18–20].

In this study, we have attempted to apply PCA for the dataset of nanocellulose (NC),
chitosan (CS), and graphene oxide (G)-based aerogels for the sake of identifying their
efficiency towards the removal of oil and organic contaminants from water. PCA allows
us to unveil hidden patterns that could not be shown by the bi-dimensional perspective.
This will raise two questions, can the accordance/discrepancy of physical and chemical
phenomena be explained by PCA? Are there any hidden inquiries that could be shown by
PCA and can be explained by chemical and physical intuition?

2. Results and Discussion

PCA analysis was conducted and plotted based on previously published data (Table 1)
from the study of Ahankari and Paul [2].
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Table 1. Nanocellulose (NC), chitosan (CS), and graphene (G) oxide-based aerogels in oil removal;
physico-chemical properties and adsorption parameters (adapted from Paul and Ahankari [2], copy-
right (2023), with permission from Elsevier).

NC-Based
Aerogels

Aerogel
Composition

Physico-Chemical Properties Adsorption Parameters

RefDensity “d”
(mg/cm3)

Porosity “ε”
(%)

Water Contact
Angle “θ” (◦)

BET Surface
Area (m2/g)

Adsorption
Capacity “AC”

(mg/g)

Nanocellulose (NC)-based Aerogels

NC1 rGO/MWCNTs-
NH2/NC 5.8 - 114.6 176.7 161.7 [21]

NC2 NCA/OA/Fe3O4 9.2 - 84.5 397.5 56.3 [22]
NC3 NC/NCS/rGO 9.3 99 115.3 80.4 171.8 [23]
NC4 MNCAs 9 97 152 841 81 [24]
NC5 Si-CNF/BTCA 6.05 99.6 151 - 151.5 [25]
NC6 Fe3O4/NC 16.7 98.8 146 - 176 [26]
NC7 CNCs/PVA/TEOS 17 98.4 154.9 76 118.5 [27]
NC8 MCPGA 17.95 98.8 142 - 78 [28]
NC9 P-CNS 10.65 99.15 151 362.7 162.5 [29]

NC10 NC/ 5.1 99 - 124 108 [30]
NC11 CNCA 16 99 130 - 41.5 [31]
NC12 KNFs 2.7 99.8 150.5 15.85 223 [32]
NC13 HB 7.6 99.5 135 39 107.5 [33]

Chitosan (CS)-based Aerogels

CS1 silylated CS 27.1 96.8 152.3 20.6 46.5 [34]

Graphene Oxide (G)-based Aerogels

G1 SGA 14.4 96.9 153 18.5 115 [35]
G2 MCNS/NGA 12 99.5 117.9 787.9 362 [36]

Figure 1 presents the PCA results targeting the previously published investigations
of Paul and Ahankari [2]. The individual populations encompass several aerogel types,
mostly NC-based aerogels, one CS-based, and two G-based aerogels. The first two PCs
exhibited 64.02% of the total variance (42.18% for PC1 and 21.84% for PC2; Figure 1a).
Interestingly, higher variance in the case of oil removal was obtained in comparison to
the dataset investigated for the case of ion and dye removal [12,13]. This indicates a
higher scope of applicability of the adopted method for the sake of revealing the hidden
patterns and the certain correlation between physico-chemical properties from one side and
adsorption parameters from another side, in the case of oil removal. The aforementioned
findings may indicate the presence of some other properties influencing the activity of
the investigated aerogels towards oil removal, yet to a lower extent than the case of ion
and dye removal [12,13]. For organic molecules, the stipulation of molecular polarity and
capacity to produce hydrogen bonds should be taken into consideration, for the sake of
better seeking its influence, in regard to the molecular interaction of pollutants with the
investigated type of matrices [37].

Density, porosity, and adsorption capacity showed the highest contribution towards
PC1, accounting for 28.151%, 31.248%, and 24.28%, respectively (Figure 1b). BET and
water contact angle showed a minor contribution towards PC1. As for PC2, the major
contribution was scored for BET, accounting for 73% of the total contribution for this
axis. Following the orthogonality (which is the geometrical interpretation for the lack
of correlation) between PC1 and PC2, the aforementioned findings indicate the strong
correlation/influence of the density and porosity as physico-chemical properties towards
adsorption capacity. On the other hand, these trends indicate the minor influence of these
properties on the adsorption mechanism of oils, represented here by the BET adsorption
isotherm. The latter statement makes sense since porosity and density are more likely
mechanical properties, which are not likely to influence the electronic/polarity features
of the investigated aerogels. In other words, density and porosity influence oil’s removal
process at the macroscopic/mesoscopic scale. In order to better understand the microscopic
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behavior and adsorption mechanisms, a more sophisticated dataset should be taken into
consideration. On the other hand, enlarging the dataset will possibly create a bias in the
trends, and several unexplainable features could arise.
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Figure 1. (a) PCA biplot representation of all datasets for the oil removal results (data were obtained
from the previous investigations of Paul and Ahankari [2]). Small grey bullets present the samples
of the population (CS-, G-, and NC-based aerogels). Big red bullets present the factors influencing
the samples (physico-chemical properties and adsorption parameters). (b) % contribution of the
investigated variables towards PC1 (black bars) and PC2 (white bars).

For the individuals, three different clusters were observed (grey, blue, and yellow;
Figure 1a). Interestingly, most of the investigated samples were located in the middle of
the bi-plot (shown in the grey cluster). These trends could arise from several possibilities:
(1) the skewing effect of most influencing variables (CS1, G1, G2, NC4, NC12, and NC13, in
our case). This could yield some bias in the different trends of the other samples. (2) The
low influence of the other samples (samples of the grey cluster). This could be due to the
fact that these variables are more likely similar to each other than the samples of the blue
and yellow cluster, and follow certain “conventional” oil decontamination trends, which
were missing in the excluded samples. In order to confirm or deny these two hypotheses,
two separate PCA investigations were conducted: one for the whole dataset with the
exclusion of the samples with the major influence (Figure 2) and another for exclusively
describing these samples (Figure 3). Nonetheless, several patterns can be explained in
Figure 1, even though a certain bias exists. The blue cluster arranges aerogels CS1, G1, and
NC7 and shows a high positive correlation concerning density and water contact angle.
This probably indicates that these types of aerogels are more likely to be applied in the
case of higher-density membranes, and more water contact angles are to be implemented.
These conditions are applied in the case of highly corrosive media. For the yellow cluster,
including NC2, NC4, and G2 aerogels, a high positive correlation along BET was shown.
Interestingly, the latter parameter was the major contributor of the second PC, indicating
that the aerogels of this cluster possess the same status as BET in the sense that they are not
dramatically influenced by density and porosity as physical properties and are also more
likely independent of other physical and adsorption parameters. The grey cluster gathered
most of the investigated samples. It is quite interesting that exclusively NC-based aerogels
were gathered in this cluster (Figure 1a). The different samples were located in the middle
of the PCA bi-plot and showed no proximity to any of the investigated variables. This
indicates the equal distributed effect of the variables on the different NC aerogels under
consideration.
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Figure 2. (a) PCA biplot representation of the reduced dataset for the oil removal results (data
were obtained from the previous investigations of Paul and Ahankari [2]; CS1, G1, G2, NC4, NC12,
and NC13 were excluded). Small grey bullets present the samples of the population (CS-, G-, and
NC-based aerogels). Big red bullets present the factors influencing the samples (physico-chemical
properties and adsorption parameters). (b) % contribution of the investigated variables towards PC1
(black bars) and PC2 (white bars).
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Figure 3. (a) PCA biplot representation of the excluded dataset from Figure 2 (data were obtained
from the previous investigations of Paul and Ahankari [2]; CS1, G1, G2, NC4, NC12, and NC13
were exclusively included). Small grey bullets present the samples of the population (CS-, G-, and
NC-based aerogels). Big red bullets present the factors influencing the samples (physico-chemical
properties and adsorption parameters). (b) % contribution of the investigated variables towards PC1
(black bars) and PC2 (white bars).

Figure 2 presents the PCA results targeting the previously published investigations of
Paul and Ahankari [2], excluding the factors presenting the highest variance (CS1, G1, G2,
NC4, NC12, and NC13). The first two PCs exhibited 69.42% of the total variance (38.41% for
PC1 and 31.02% for PC2; Figure 2a). Interestingly, moderately higher variance was obtained
in comparison with the all-dataset approach. This indicates the efficiency of excluding
outliers, as they contribute to a sort of bias for the dataset. This increase in variance reveals
better decision-making for the different trends of this PCA’s bi-plot. Nonetheless, more
physico-chemical propertiesneed to be taken into account for the sake of revealing the full
picture in regard to the differences between the investigated aerogels. On the other hand, it
is worth mentioning that the difference in variance between PC1 and PC2 was less than the
one existing between the first two PCs of the whole-dataset approach (Figure 1).

For the variables, only the density and porosity showed the highest contribution
towards PC1, accounting for 37.81% and 34.70%, respectively (Figure 2b). BET and water
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contact angle showed moderate contribution towards both PCs. As for PC2, the major
contribution was scored for adsorption capacity, accounting for 47.69% of the total contri-
bution for this axis. The aforementioned findings indicate a minor correlation/influence
of the density and porosity as physico-chemical properties towards adsorption capacity.
Interestingly, opposite findings were obtained in the case of the whole-dataset approach.
This reveals the interest and strength of applying separation of individuals in order to
eliminate any possible discrepancy due to their high weightage. Since higher variance was
yielded in this case, more reliability can be given to its trends, rather than one of the whole
datasets being considered (Figures 1 and 2). For the individuals, two clusters were obtained
(blue and yellow clusters). The blue cluster arranged aerogels NC1, NC3, NC5, NC9, and
NC10, showing a high positive correlation between porosity and adsorption capacity. This
probably indicates that these types of aerogels are more likely to be applied in cases where
a high porosity is required, and higher purity requirements of water are envisaged since a
higher adsorption capacity is required. The yellow cluster included NC6, NC7, NC8, and
NC11 aerogels and showed a moderate to high positive correlation concerning density,
indicating that clustered aerogels can be applied in such conditions where a high density of
treating material is required.

Figure 3 presents the PCA results exclusively targeting aerogels CS1, G1, G2, NC4,
NC12, and NC13, which were excluded from the previous investigation (Figure 2). The
first two PCs exhibited 79.82% of the total variance (56.82% for PC1 and 22.99% for PC2;
Figure 3a). This shows the highest total variance among the three different investigations,
indicating the highest efficiency of the approach in hand. Therefore, the first hypothesis
targeting the skewing effect of the outliers is more likely to be the reason for the bias yielded
in the PCA of Figure 1.

Concerning the variables, the contributions towards PC1 were almost equally dis-
tributed between porosity, water contact angle, and adsorption capacity, accounting for
25.92%, 24.76%, and 28.80%, respectively (Figure 3b). As for PC2, the major contribution
was scored for BET surface area, accounting for 49.10% of the total contribution for this axis.
The aforementioned findings indicate a high influence of porosity and water contact angle,
as physico-chemical properties, on the adsorption capacity of the investigated aerogels.
On the other hand, a minor influence can be noticed for these properties towards the BET
surface area. For the individuals, two clusters were obtained (blue and yellow clusters).
The blue cluster contained aerogels NC12 and NC13 and showed a high positive correlation
for porosity. For the yellow cluster, it included G1 and CS1 and showed a high positive
correlation regarding density and water contact angle. Interestingly, the followed approach
allowed us to separate NC-based aerogels from one side and CS-and G-based aerogels from
another side (Figure 3a).

For the individuals in all three adopted approaches, it is worth mentioning that each
approach provided a distinctive pattern of distribution. This indicates that PCA is strictly
dependent on the factors and variables being engaged. In other words, if one row of the
dataset is removed, a drastic shift in the different patterns will be noticed. Hence, great
attention should be taken into consideration when selecting the individuals/factors to be
acquired. This should be executed based on the solid knowledge of the user towards the
physical and chemical phenomena undergone. PCA works on removing the correlation
of a dataset by creating the new uncorrelated variables (PCs). Therefore, the variables
should influence one another. Herein, the investigated variables are dependent since they
are all factors for estimating the adsorption capacity and mechanism. The significance
of the adopted method relies upon the reveal of hidden patterns that could show some
intercorrelation between two variables that are usually considered unrelated or hard to
grasp a connection between, based on the “physical” and “chemical” intuitions.

3. Conclusions

In this study, we attempted to apply the so-called “Principal Component Analysis”
(PCA) method for the sake of enhancing our understanding towards the efficiency of mostly
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nanocellulose, along with chitosan and graphene oxide-based aerogels, for oil and organic
pollutants removal. The application of PCA has given a higher representativeness for oil
removal compared with the previous findings of dye and ion removal [12,13]. This has
been shown by a higher total variance yielded by the PCA of this study. Even though
several outliers were yielded when the whole dataset was taken into consideration, the
PCA approach was able to decipher the discrepancy between nanocellulose-based aerogel
from one side and chitosan-based and graphene-based aerogels from another side. In
addition, the whole dataset approach was able to reveal the strong correlation/influence of
the density and porosity as physico-chemical properties towards the adsorption capacity
of oils. On the other hand, it showed the minor influence of these properties towards the
adsorption mechanism of oils. In order to overcome the bias yielded by the outliers and to
probably increase the degree of representativeness of the investigated dataset, separation
of individuals of the dataset was adopted. This approach allowed an increase in the total
variance of the PCA approach from 64.02% (for the whole dataset) to 69.42% (outliers
excluded dataset) and 79.82% (outliers only dataset). This shows the effectiveness of the
followed approach and the high bias yielded from the outliers.

4. Methodology
4.1. Data Collection and Pre-Treatment

Physical and chemical features of oil removal’s efficiency were compiled from the
published findings of Paul and Ahankari [2]. The list of the various investigated NC-, CS-,
and G-based aerogels is shown in Table 1, along with information on their performance
potential, adsorption parameters, and physical and chemical properties.

Each investigated variable’s data component has a different weight. To remove any
bias caused by the difference of magnitude, a normalization technique similar to that used
by Younes et al. [17,38] was implemented as follows:

Yst =
(Value − Mean)

Standard Deviation
, (1)

where “Yst” presents the standardized dataset values.
In this study, the missing data were estimated using a built-in option that replaces any

missed value with the “Mode”, following each of the investigated physico-chemical and
adsorption properties.

4.2. Principal Component Analysis (PCA)

PCA seeks hidden layers between physical and chemical properties on one side
and adsorption parameters on the other. If this occurs, it allows for better interpretation
and understanding of various factors that influence the applicability of a specific aerogel
membrane, in this case, for oil removal.

PCA can provide valuable insights at multiple stages of the water treatment process,
from manufacturing methods and experimental conditions to the removal effectiveness
of selected membranes. It provides information that can be used to improve the overall
efficiency of the water-treatment process. In this study, we used PCA to investigate the
influence of eight factors on 24 aerogel samples (Table 1). As an unsupervised machine-
learning technique, PCA limits the dimensionality of datasets; this serves to increase data
visualization and to seek concealed trends via correlations, either positive or negative. The
principal components (PCs) are represented by these new correlations.

PCs present new uncorrelated variables that are compiled by the combination of the
different variables. They present orthogonal axes (meaning that they are independent
of each other). PCs are ordered in the sense that the first PC (PC1) captures the highest
representativeness of the data (highest variance), followed by the second (PC2), capturing
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the highest variance, and so on. A unit-weighting vector (Uj) and the original data matrix
M with m × n dimensions are used to present the jth PC matrix (Pci). [6,39–41]:

Pci = UT
j M =

i=0

∑ Uji Mi. (2)

In Equation (2), the loading coefficient is represented by U, where M is the data vector
of size n. In Equation (3) below, the variance matrix M(Var(M)), which is obtained through
the projection of M to U, should be maximized, following:

Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU, (3)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
. (4)

Var(M) can be expressed in the following Equation (5) as 1
n MMT and is the same as

the covariance matrix of M(cov(M)):

Var(M) = UTcov(M)U. (5)

By performing the Lagrange multiplier method, the Lagrangian function can be
defined as per the following:

L = UT , (6)

L = UTcov(M)U − δ
(

UTU − 1
)

. (7)

As the weighting vector is a unit vector, “UTU − 1” is considered equal to zero in
Equation (7). Therefore, by equating the derivative of the Lagrangian function (L) with
respect to U, the maximum value of var(M) can be calculated following:

dL
dU

= 0, (8)

cov(M)U − δU = (cov(M)− δI)U = 0, (9)

where

δ: eigenvalue of cov(M);
U: eigenvector of cov(M).

From an application point of view of PCA, the higher percentage contribution of a
variable in a PC indicates the highest efficiency and its greater influence on this PC. Since,
in a PCA study, the first two PCs are the most important (having the highest variance), the
factors of the original data influencing them the most are the primordial factors, which
should be closely regarded and optimized.
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