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Abstract: Natural polysaccharides are highly attractive biopolymers recommended for medical
applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives
are also suitable for additive manufacturing, a process in which various customized geometries
of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely
used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable
hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer
network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on
the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent
3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the
resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability
of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels
displayed excellent biocompatibility and could be employed for biomedical purposes, according
to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite
materials are recommended for use in regenerative medicine.

Keywords: salecan; silica nanoparticles; 3D printing

1. Introduction

For obtaining three-dimensional (3D) objects from a computer design, 3D printing
was created more than 30 years ago. A quick and affordable design cycle is made possible
by this layer-by-layer method for creating customized biomaterials [1,2]. Many polymers
have been employed to create materials used in pharmaceutical and medical fields using
three-dimensional printing technology [3]. Moreover, multiple materials can be combined
in a single structure using multi-material 3D printing [4]. With the development of 3D
printing technology, it is now possible to reconstruct tissues using active components and a
growing variety of materials that have strong and stable mechanical properties, and good
biocompatibility [5,6]. It is interesting how the development of functional hydrogels opens
up several opportunities for incorporating hydrophilic networks into 3D-printed scaffolds
that are similar to the extracellular matrix [7].
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Hydrogels are three-dimensional polymeric structures that can absorb large amounts
of water without disintegrating or losing their physical integrity [8,9]. Hydrogels have
drawn a lot of interest as prospective biomaterials for medical applications such as drug de-
livery, tissue engineering, cell culture scaffolds, wound dressings, and filtration/separation
techniques due to their high water content and inherent mechanical strength [10,11]. Hydro-
gels can be made from synthetic or natural polymers using techniques that include physical
crosslinking, chemical gelation, or self-assembly [8,12–14]. Natural polymer-based hydro-
gels, particularly those made of polysaccharides, have seen increased use in recent years
because of their outstanding biocompatibility, bioactivity, biodegradability, hydrophilicity,
and low toxicity [9,15,16]. In previous research works, polysaccharides such as starch,
dextran, cellulose, and their derivatives have been used to develop polysaccharide-based
hydrogels [17,18]. Moreover, polysaccharides feature active groups that can be function-
alized by utilizing a variety of methods in order to improve their mechanical properties
and stability; furthermore, they can be produced from renewable sources [19]. Alginate,
chitosan, cellulose, k-carrageenan, pectin, and other polysaccharides are frequently used in
the manufacture of composite hydrogels [20–24].

Salecan is a new water-soluble glucan (natural polysaccharide), produced by the strain
Agrobacterium sp. ZX09, which has recently been identified and commercialized [25–27]. Its
backbone features a distinctive design “→ 3)-β-D-Glcp-(1→ 3-[β-D-Glcp-(1→ 3)-β-D-Glcp-
(1→ 3)]3-α-D-Glcp-(1→ 3)-α-D-Glcp-(1→”, groups that are all connected by α-(1–3) and
β-(1–3) glycosidic connections [28]. Salecan, which differs significantly from the other β-
glucans, offers a variety of benefits including biocompatibility, great immune boosting, high
solubility, antioxidation properties, and biodegradability. The medical, pharmaceutical,
cosmetic, and food sectors all greatly value these qualities [29–31]. One of the most
important characteristics of salecan is the rheological property, which is incredibly valuable
in our current inquiry. For drug delivery purposes, our research team has developed
polymer nanocomposites containing salecan [32]. We recently investigated the possibility
of synthesizing exclusively salecan green crosslinked materials, as well as the first use of
salecan in additive manufacturing [25].

Organic-inorganic nanocomposite particles have attracted a lot of attention recently
in research areas and industry. The combined and, in some cases, synergistic effects of
the organic and inorganic components in these hybrid materials make them useful for a
variety of applications, including catalysis, coatings, photonics, and biomedicine [33,34].
To create organic-inorganic nanocomposite materials, several inorganic particles, including
silica, Laponite clay, magnetite, zinc oxide, titanium oxide, and graphene oxide, have been
used [33,35]

The silicate minerals that make up the majority of the silica in the Earth’s crust are
also present in plants and grains [36,37]. Due to the presence of silanol groups (Si-OH),
silica nanoparticles (SiO2) have good biocompatibility, homogeneous pore size, adjustable
particle size, a large surface area, and are easily modifiable [38]. Furthermore, the pro-
liferation and differentiation of cell cultures can all be aided by the addition of silica
nanoparticles [39]. Based on these features, the inorganic silica skeleton is more stable
than conventional degradable biomaterials in the presence of temperature changes, organic
solvents, and acidic environments [40]. The production of silica nanoparticles has increased,
making them the second most common nanomaterial produced globally [41]. Function-
alized silica nanoparticles, present free OH groups on their surface, and these groups are
highly affine to the COO–groups found in biopolymers such as sodium alginate, gelatin,
agar, etc., forming hydrogen bonds [39]. For example, Roopavath et al. prepared a 3D
printable alginate/gelatin/SiO2 ink with increased viscosity that presented a potential for
bone regeneration and nanomedicine [39]. Moreover, using a salecan graft copolymer and
Fe3O4@SiO2 nanoparticles as the drug carrier, Hu et al. created a pH-sensitive magnetic
composite hydrogel [17].

In the present work, a novel 3D-printed nanocomposite hydrogel was synthesized
and characterized. The main objective of this study was to introduce silicon dioxide
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nanoparticles in the polymer network of a microbial polysaccharide (salecan) in order to
obtain new 3D printable nanocomposite hydrogels. Thus, we have followed enhanced
printing fidelity by varying the amount of nanofiller in the polysaccharide formulation.
As far as we know, our study is the first report investigating an ink based on salecan with
entrapped silica nanoparticles developed for additive manufacturing with potential for
biomedical applications.

2. Results and Discussion
2.1. Rheological Behavior

All of the samples displayed normal filaments and kept the 3D-printed structure they
were originally created with depending on the composition. As was seen both during
and after the 3D printing process, the 3D printed shape demonstrated good stability and
maintained its design. Even though they can be printed up to 10 layers thick, the neat
hydrogel sample S0 and S1 showed collapsed layers in contrast to the nanocomposite
structures made from the printing inks S2 and S3.

To evaluate the printability of the newly formulated inks and the influence of silica
nanoparticles amount over the salecan, the shear viscosity was investigated. Figure 1 shows
the variation of viscosity with a shear rate for S0, S1, S2, and S3. The bicomponent samples
forming the printing inks offer specific rheological characteristics. The shear viscosity
decreases with the applied shear rate for all samples, which suggests a non-Newtonian
pseudoplastic fluid with a shear-thinning character. This rheological characteristic is typical
of polysaccharide materials and is linked to their vast hydrodynamic size, which comes
from the grouping of linear and stiff macromolecules, which results in high viscosities and
pseudoplasticity [25,42]. Furthermore, the salecan hydrogels’ viscosity is reduced from
105 Pa·s to 100 Pa·s with an increased shear rate, displaying shear-thinning behavior and
suggesting the feasibility of injecting salecan hydrogel-based inks [25].
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As intended, the viscosity of the silica—salecan composites slightly increased with the
increasing silica concentration at a constant polysaccharide concentration. The difference
between the studied samples is the viscosity value, which was the highest for S3 and
the lowest for S0, while S1 and S2 presented intermediate values. The slightly increased
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viscosity conferred by the inclusion of silica nanoparticles is beneficial for the extrusion of
hydrogel and for producing 3D structures with precise geometry [43].

2.2. FT-IR Analyses

To understand the influence of silica nanoparticle content on the structural properties
of the newly obtained salecan/silica composite, we investigated the compositional behav-
iors of designed hydrogels by using the FT-IR technique. The FT-IR spectra of the newly
obtained biomaterials based on salecan and silica nanoparticles are given in Figure 2.
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FT-IR spectroscopy showed the specific peak of salecan at around 3300 cm−1 due
to its abundant OH groups [17]. Other peaks appear at 2800 and 1013 cm−1, which are
attributed to CH2 and C–OH stretching frequencies in the glucopyranose ring from the
salecan structure, respectively [25,30]. Moreover, stretching vibration of the C=O peak
from the citric acid structure appears on the FT-IR curve at around 1700 cm−1 [44,45]. The
FTIR curve of silica nanoparticles exhibits a peak at 1049 cm−1, which is ascribed to the
Si-O–Si bond from the silicon dioxide inorganic network, with no OH-specific peaks in the
3300 cm−1 area.

In the case of the produced nanocomposites, we discovered that the aforementioned
peaks were slightly changed and diminished as the silica content in the polysaccharide
matrix increased. The peak assigned to Si–O at 1049 cm−1 overlaps with the peak attributed
to C–OH from salecan at 1013 cm−1. The resulting peaks of nanocomposites are more
of a combination of the two peaks with a gradual shift to higher wavenumbers (1023
cm−1). Unlike other investigations which used functionalized silica nanoparticles [17,39],
the present study used amorphous SiO2 nanoparticles which are only physically confined
in biopolymeric matrices and do not participate in the crosslinking processes.
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2.3. Swelling Behavior

The hydrogel’s ability to swell in contact with fluids is a crucial characteristic for
scaffolds used in tissue engineering applications since it has a significant impact on the
regeneration of the new tissue and can present an important influence on the mechanical
properties and the degradation rate [14,46]. The water uptake of the new 3D-printed
composite hydrogels was thoroughly assessed for that aim. The swelling behavior for
the studied samples was evaluated for 48 h using a simulated fluid with pH 5.5, 7.4, and
11. Figure 3 presents the values of swelling degree (SD) and illustrates how salecan and
SiO2 content affect the water absorption capacity. The maximum amount of water was
absorbed by the S0 sample (sample without silica nanoparticles) which presented the best
hydrophilicity at pH 7.4.

Gels 2023, 9, x FOR PEER REVIEW 5 of 20 
 

 

Unlike other investigations which used functionalized silica nanoparticles [17,39], the pre-
sent study used amorphous SiO2 nanoparticles which are only physically confined in bi-
opolymeric matrices and do not participate in the crosslinking processes. 

2.3. Swelling Behavior 
The hydrogel’s ability to swell in contact with fluids is a crucial characteristic for 

scaffolds used in tissue engineering applications since it has a significant impact on the 
regeneration of the new tissue and can present an important influence on the mechanical 
properties and the degradation rate [14,46]. The water uptake of the new 3D-printed com-
posite hydrogels was thoroughly assessed for that aim. The swelling behavior for the studied 
samples was evaluated for 48 h using a simulated fluid with pH 5.5, 7.4, and 11. Figure 3 pre-
sents the values of swelling degree (SD) and illustrates how salecan and SiO2 content affect 
the water absorption capacity. The maximum amount of water was absorbed by the S0 
sample (sample without silica nanoparticles) which presented the best hydrophilicity at 
pH 7.4. 

 

 

 
Figure 3. Cont.



Gels 2023, 9, 425 6 of 19
Gels 2023, 9, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 3. (A) Equilibrium swelling behavior in different pH media of the 3D printed samples. Sta-
tistical analysis (A): The influence of different pH media over the samples swelling degree; (B–D): 
The influence of composition for the samples kept in the same pH media ((B)-pH 5, (C)-pH 7.4, (D)-
pH 11: The resulted values consist of average values with additional standard errors. Statistical 
significance: **** p < 0.0001. ONE WAY ANOVA TEST. 

The inclusion of silica nanoparticles in the polymeric matrix leads to the limitation of 
the hydrogel swelling behavior in different pH media as a consequence of the replacement 
of biopolymer with silica nanoparticles. Moreover, with the exception of S0, whose SD 
value is maximum at pH 7.4, the swelling degree was higher with the increase of the pH 
for all the samples because more COO– groups are forming inside the hydrogels (from 
the citric acid structure) [25,47].  

All of the 3D structures that were printed have the potential to quickly absorb fluids 
in various pH media in about one hour. The produced 3D printed composites consist of 
durable biopolymer networks, evidenced by the fact that all the swelled samples retained 
their stability in wet settings after 24 h, the crosslinking procedure being successful in the 
presence of the nanofiller. Moreover, after one month, minimal degradation of less than 
3% was found for samples preserved in acidic media, of ~10% for neutral pH, while the 
degradation reached its peak for samples preserved in the basic medium after only 30 h, 
regardless of sample type. This behavior is governed by the polysaccharide matrix, with 
a distinct behavior observed in cases where salecan crosslinked with citric acid was ob-
tained at various concentrations of reactants [25].  

Because hydrogel behavior is pH-dependent, this novel family of materials can there-
fore be used in any application that requires higher stability in an acidic environment and 
gradual disintegration over time in environments with greater pH’s.  

2.4. Thermal Properties 
To confirm that the inclusion of the silica nanoparticles can improve the thermal sta-

bility of new 3D printed composites, further TGA investigation was performed. Figure 4 
presents the TGA curves of new 3D printed composites tested in nitrogen conditions with 
a heating rate of 10 °C/min. 

Figure 3. (A) Equilibrium swelling behavior in different pH media of the 3D printed samples.
Statistical analysis (A): The influence of different pH media over the samples swelling degree; (B–D):
The influence of composition for the samples kept in the same pH media ((B)-pH 5, (C)-pH 7.4,
(D)-pH 11: The resulted values consist of average values with additional standard errors. Statistical
significance: **** p < 0.0001. ONE WAY ANOVA TEST.

The inclusion of silica nanoparticles in the polymeric matrix leads to the limitation of
the hydrogel swelling behavior in different pH media as a consequence of the replacement
of biopolymer with silica nanoparticles. Moreover, with the exception of S0, whose SD
value is maximum at pH 7.4, the swelling degree was higher with the increase of the pH
for all the samples because more COO– groups are forming inside the hydrogels (from the
citric acid structure) [25,47].

All of the 3D structures that were printed have the potential to quickly absorb fluids
in various pH media in about one hour. The produced 3D printed composites consist of
durable biopolymer networks, evidenced by the fact that all the swelled samples retained
their stability in wet settings after 24 h, the crosslinking procedure being successful in the
presence of the nanofiller. Moreover, after one month, minimal degradation of less than
3% was found for samples preserved in acidic media, of ~10% for neutral pH, while the
degradation reached its peak for samples preserved in the basic medium after only 30 h,
regardless of sample type. This behavior is governed by the polysaccharide matrix, with a
distinct behavior observed in cases where salecan crosslinked with citric acid was obtained
at various concentrations of reactants [25].

Because hydrogel behavior is pH-dependent, this novel family of materials can there-
fore be used in any application that requires higher stability in an acidic environment and
gradual disintegration over time in environments with greater pH’s.

2.4. Thermal Properties

To confirm that the inclusion of the silica nanoparticles can improve the thermal
stability of new 3D printed composites, further TGA investigation was performed. Figure 4
presents the TGA curves of new 3D printed composites tested in nitrogen conditions with
a heating rate of 10 ◦C/min.

Thermogravimetric parameters of the analyzed samples are presented in Table 1.

Table 1. Thermogravimetric of the samples.

Samples
Step 1 Step 2 Step 3

T, ◦C Weight
Loss, % T, ◦C Weight

Loss, % T, ◦C Weight
Loss, %

S0

80–200

16.81

200–320

57.49

320–700

39.86
S1 11.95 22.07 34.35
S2 10.84 22.31 26.72
S3 9.29 18.48 26.10
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All the samples exhibited three different steps of decomposition. The first step ranging
between 80 to 200 ◦C with a weight loss of around 10–17% was attributed to the removal of
adsorbed water and slightly volatile substances [48]. The second step ranged in temper-
ature from 200 to 320 ◦C and presented a weight loss of about 19–58% representing the
cleavage of side chains [30]. The third decomposition stage correlated with dehydration of
carbohydrate chains, which was presented between 320 and 700 ◦C, respectively, showed a
weight loss between 26–40% [17,30]. As can be observed in Table 2, the weight loss for all
the steps decreases with the addition of the silica nanoparticles, so, the sample with the
highest residual mass was S3.

Table 2. Elastic modulus calculated from stress-strain curves.

Sample
Elastic Modulus (KPa)

1–6 KPa STDV R2 20–25 KPa STDV R2 25–35 KPa STDV R2

S0 6.57 ±0.66 0.9906 12.74 ±0.44 0.9990 13.46 ±0.10 0.9971

S1 15.35 ±2.10 0.9979 24.37 ±0.98 0.9988 25.90 ±0.18 0.9977

S2 7.32 ±1.29 0.9913 27.38 ±1.45 0.9998 31.09 ±1.36 0.9993

S3 9.42 ±2.36 0.9988 27.47 ±1.50 0.9977 32.14 ±1.88 0.9984

2.5. Mechanical Properties of the Crosslinked Materials in Wet Conditions

The mechanical properties can be observed in Figure 5.
The sweeps were carried out to determine the storage modulus and loss modulus.

It was observed that the storage modulus (G′) of all samples was greater than the loss
modulus (G”), indicating a crosslinked state for all of the samples analyzed. With a
frequency range of 0.1 to 10 Hz, the change in G′ was practically constant and still greater
than that of G”, indicating that hydrogels have elastic solid characteristics and excellent
stability. Generally, the storage modulus increased as SiO2 loadings increased. This
suggested that the inclusion of silica nanofiller increased the stiffness of the salecan matrix
and effectively boosted the elastic characteristics of the hydrogel nanocomposites due to the
rigid inorganic nanoparticles impeding the mobility and deformability of the biopolymeric
chains. This phenomenon was observed in other research studies that investigated the
influence of silica nanoparticles on the mechanical properties of hydrogels [49–51].
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A stress-strain test is an effective instrument for measuring how material changes in
response to different loading situations. Stresses of ~26 KPa (according to a static force
of ~6.5 N) have been applied for all samples, thus, the obtained hydrogels may satisfy
the requirements of soft tissues [52,53]. The swollen cylindrical hydrogels exhibited a
linear increase of stress reaching ~40–85% strain till achieving a constant compression. The
crosslinked hydrogels with silica loading had a stiffer behavior that was better able to with-
stand stress till maximum compression. The addition of high loads of silica nanoparticles
resulted in a considerable improvement in the compressive strength of the composite wet
samples compared to the salecan neat sample. The origin of this phenomenon could be the
decreased mobility of the biopolymer macromolecules in the presence of the inorganic filler.
Another probable reason is that the absorption capacity of crosslinked hydrogels changes
depending on the sample composition, with the presence of additional water molecules
in the biopolymeric network impairing mechanical behavior. As depicted in Figure 5, the
pure salecan sample retained more water, while the samples loaded with silica nanofiller
had a lower swelling degree.
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It is important to note that the samples recovered quickly following the imposed
mechanical stress showing an elastic behavior, the water ejected under stress circumstances
being quickly reabsorbed. The elastic modulus of hydrogels was determined using stress-
strain curves, and the three most linear stress-strain regimes were considered [54,55]. The
results are presented in Table 2.

The elastic modulus of the produced hydrogels ranged between 6.5 and 32 KPa,
revealing their elastic property suited for soft tissue engineering [55]. The elastic modulus
rose in the presence of silica nanoparticles across the ranges investigated, showing an
increase in the stiffness of the nanocomposites. Moreover, the elastic modulus generally
increased as the concentration of inorganic filler increased, with higher stress being more
pronounced. The fact that the first interval deviates from the norm is intriguing, and this
is very probably related to the distribution of silica particles within the hydrogel sample.
Under great stress, the increased amount of silica nanoparticles are likely to restrict the
movement of the biopolymer networks, resulting in the expected reliance on the amount of
silica added to the system, which is consistent with other studies [56–58].

Thus, the inclusion of silicon dioxide nanoparticles into salecan crosslinked hydrogels
can improve the mechanical behavior of the resulting hydrogel nanocomposites due to
possible physical interaction between inorganic nanoparticles and salecan biopolymer
chains. The salecan hydrogel’s mechanical stability in wet conditions can therefore be easily
modified by adding silica nanoparticles to suit different applications such as soft tissue
engineering or wound dressings.

2.6. Morphological Evaluation

SEM analysis was used to examine the hydrogel’s porous microarchitecture. In Figure 6
the microstructure aspect of new 3D printed scaffolds can be observed.

The SEM images of the novel 3D printed composite reveal porous scaffolds, with an
architecture strongly dependent on the composition of the hydrogels as visible in Figure 6.
Furthermore, all the samples presented interconnected pores without any phase separation
between the polymer matrix and silica nanoparticles. The neat salecan sample presented the
spongiest structure with larger pores than salecan/SiO2 composite materials. The addition
of silica nanoparticles to the polymer matrix causes shrinkage of the pores, creating a
structure with more pores of smaller sizes. The network structure of the pores is crucial
when aiming for regenerative medicine applications since it helps to guide and promote
the creation of new tissue [59]. The same effect was obtained by Hu et al. [17] in their
research with an increase in Fe3O4@SiO2 content; the average pore size was diminished. It
is possible that the hydroxyl groups on nanoparticle surfaces can establish hydrogen bonds
with the carboxyl and hydroxyl groups from the biopolymer/polymer chains, leading
to the development of more crosslinking points as nanoparticle content increased, with
a reduction in the average pore size [17,60]. Furthermore, the differences presented in
SEM images suggest that in the presents of a higher content of silica nanoparticles, the 3D
printed composites maintained their profile better. The roundness of open pores could be
used to quantify the printing accuracy of 3D forms. Using SEM images and the H. Wadell
equation, the average roundness of the open pores of the scaffolds was estimated [61].
R = 1 is obtained for a perfectly round object, but irregular shapes have values less than 1.
Thus, when the macropores of 3D printed form approach a rectangular shape, R values
tend to 0 while R values approaching 1 indicate that the macropores are nearly circular. The
computed value of the S0 sample was ~0.58, whilst the nanocomposite samples loaded with
silica nanoparticles roundness value ranged between 0.5–0.3 (Figure 6B). These differences
imply that in the presence of silica nanoparticles, 3D-printed objects kept their shape
better when printed. S3 had the lowest R values, indicating that the macropores are
close to a rectangular shape, with the 3D printed shape matching the designed 3D model
the best. This fact reinforces the observations made throughout the 3D-printing process,
as well as the evaluation of the stability of the printed constructions produced when
nanoparticles were used. These observations correlated well with the rheological behavior
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of nanocomposite inks, which showed that the silica-salecan composites’ viscosity slightly
increased commensurate with their silica content.
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Figure 7 presents the TEM images of the nanocomposite sample S3, which have a
higher concentration of silica nanoparticles. From the TEM images for sample S3, nanomet-
ric agglomerates can be observed due to the presence of spherical silica particles.

Furthermore, the TEM images revealed that the silica nanoparticles used for the
development of the new 3D printed composites presented nanometer dimensions with an
apparent average particle size between 10–30 nm.

2.7. Antimicrobial Activity

A key characteristic of many hydrogels utilized as scaffolds for regenerative medicine
is their antibacterial activity [62]. All 3D printed scaffolds were tested against two gram-
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positive bacteria, Staphylococcus aureus and Escherichia coli (gram-negative bacteria). The
antibacterial activity of every one of the obtained 3D printed salecan-based hydrogels was
assessed (Figure 8).
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(A). Images with the seeded samples; (B). Inhibition zone diameters for the samples seeded with
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Statistical significance: ns p < 0.5; ** p < 0.005, **** p < 0.0001. ONE WAY ANOVA TEST.

It can be observed from Figure 8 that every sample showed antibacterial activity
against the two strains that were put to the test. Due to the samples’ citric acid content,
which is known to have an antibacterial effect, Staphylococcus aureus and Escherichia coli
were inhibited in a detectable zone [62,63]. According to their chemical makeup, citric
acid-derived polymers were shown to suppress bacterial proliferation to various degrees.
Because of the leakage of unreacted citric acid molecules present in the tested samples,
citrate-based polymers’ inherent antibacterial characteristics allow them to impede bacterial
development [64–66].

All of the samples had bacterial inhibition diameters for any of the microorganisms
examined, according to the results presented in Figure 8.

Thus, all the samples presented good antimicrobial activity against Staphylococcus
aureus and Escherichia coli and the presence of silica nanoparticles does not alter the antimi-
crobial behavior of the green crosslinked polysaccharide.

2.8. Biological Assessment of the Crosslinked 3D Printed Polysaccharide Constructs

One of the most fundamental things to take into account when choosing materials
for biomedical purposes is cytotoxicity. The influence of salecan-based hydrogels on cells’
viability was established by in vitro methods ((Live/Dead, MTT (3-[4,5-dimethylthiazol-2-
yl]-2,5 diphenyl tetrazolium bromide) and LDH (lactate dehydrogenase) tests) assessed on
HeLa cells.

Using Live/Dead staining, the cell viability of HeLa cells, cultivated in the salecan-
based hydrogels, was evaluated. After 24 h of incubation, the green fluorescence, presented
in Figure 9, showed that the majority of the cells embedded in the polysaccharide hydrogels
were still alive. Furthermore, the MTT test confirmed the good biocompatibility of the
new 3D printed polysaccharide constructs. Additionally, no significant difference in the
cytotoxicity results between the salecan hydrogels and the negative control sample was
observed from the LDH test, demonstrating the non-toxicity of these 3D printed hydrogels
to HeLa cells.

The results of the MTT, LDH, and Live/Dead tests showed that the salecan-based
hydrogels had great biocompatibility and can be used for biomedical applications. The
outcomes are in line with those of prior research in which salecan-containing hydrogels
showed promising biological characteristics [31,67,68].
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3. Conclusions

The synthesis of nanocomposite hydrogels with appropriate rheology for the produc-
tion of precise-shaped 3D constructions was accomplished. Green-crosslinked biopolymer
nanosilica materials were created by adding varying quantities of silica nanoparticles to a
polysaccharide hydrogel.

According to our findings, the hydrogel’s pore size, swelling, and mechanical proper-
ties under wet circumstances can all be easily modified by varying the quantity of silica
nanoparticles in the composition used for hydrogel 3D printing. Moreover, increased
printing ink viscosity was obtained by adding silica nanoparticles to the salecan biopoly-
mer matrix, which led to the creation of 3D constructions with improved shape fidelity.
MTT, LDH, and Live/Dead test outcomes demonstrated the salecan-based hydrogels’ good
biocompatibility and potential for usage in biomedical applications.

Due to the adaptability of the internal and external architecture, unique multi-functional
hydrogels containing bioactive ingredients may be developed with particular demands
and a regulated degradation profile that corresponds to the targeted tissue functionality.
These investigations are presently ongoing.

Therefore, our hydrogel might be used as an easy-to-use and adaptable hydrogel for
the creation of customized 3D printed constructs with a range of uses.

4. Materials and Methods
4.1. Materials and Synthesis

Suzhou Chemicals (Suzhou, China) provided the microbial polysaccharide known as
Salecan (>90% purity), and SC Remed Prodimpex SRL (Pantelimon, Romania) provided
the citric acid (>99.5% purity). Sigma-Aldrich (Steinheim, Germany) supplied the silica
nanoparticles (amorphous silicon dioxide, 99.8%, 12 nm average size). Using HCl 37%
and NaOH (>99.3% purity) from SC Chimreactiv SRL, Romania, we created simulated



Gels 2023, 9, 425 14 of 19

biological fluids with various pH values (5.5, 7.4, and 11) in our laboratory and Na2HPO4
(>99.9% purity) from Reactivul, Voinesti, Romania.

The new formulations were prepared according to the composition from Table 3 using
an adapted preparation process [62].

Table 3. Composition of the obtained composites.

Sample Salecan [g] Citric Acid Solution 5% [mL] Silica Nanoparticles [g]

S0 1.125 15 -
S1 1.125 15 0.281
S2 1.125 15 0.562
S3 1.125 15 0.843

Briefly, in order to obtain the new nanocomposite based on salecan, different con-
centrations of silica nanoparticles were dispersed in citric acid solution using magnetic
stirring (600 rpm, 90 min, 22–25 ◦C using Arex heating magnetic stirrer, Velp Scientifica,
Usmate Velate, Italy) and sonication treatment (5 min, 20% amplitude, 20 khz frequency,
ice bath, using High Intensity Ultrasonic Processor, CPX 750, CV33, COLE PARMER, Cam-
bridgeshire, UK); salecan was then added in the silica dispersion under mechanical stirring
thus obtaining the hydrogel ink. A part of the composition was used for molding and the
other part was used for 3D printing. All obtained samples were freeze-dried and then
exposed to thermal treatment. The schematic synthesis steps can be observed in Figure 10.
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Figure 10. Schematic representation of the formation and characterization of the new polysaccharide-
based nanocomposites.

Four inks were developed in order to construct porous biocompatible scaffolds that
could support cell attachment and proliferation because the main objective of this research
study was to create a new nanocomposite printing ink that could be used in tissue engineer-
ing. A 3D bioprinter from RegenHU Ltd., Villaz-St-Pierre, Switzerland, was used to print
the nanocomposite ink samples. Room temperature (25–30 ◦C) was used for the printing
procedure. The experiments were conducted using a direct dispensing printhead and a
5 mL syringe with an attached cylindrical nozzle that has a 0.41 mm diameter at various
pressures between 190 and 350 kPa. Up to 10 layers of each mixture were printed. The 3D
printed hydrogel structures underwent the previously indicated processes of lyophilization
and heat treatment after the additive manufacturing process. The constructions were
washed to remove all of the unreacted polysaccharides, and a previously known tech-
nique was used to quantify the degree of crosslinking between the polysaccharide and
citric acid [8,25,27]. The crosslinking percentage was found to be ~95% for all samples
regardless of composition. This demonstrated that the biopolymer crosslinking process
was not impacted by the presence of silica nanoparticles, a highly crosslinked structure
being synthesized.
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4.2. Methods
4.2.1. Rheological Behavior

The shear viscosity vs. shear rate behavior was estimated using a Kinexus Pro Rheome-
ter (Malvern, UK). The temperature of 25 ◦C was controlled with a Julabo CF41 cryo-
compact circulator. In parallel plate geometry, the samples were put (10 mm diameter) with
a gap of 0.5 mm. The shear viscosity was measured at an applied shear rate between 0.001
and 1000 s−1. The results were represented logarithmically.

4.2.2. Fourier Transform Infrared Spectrometry (FT-IR)

The samples were structurally evaluated using Vertex 70 Bruker FTIR spectrometer
(Billerica, MA, USA). All the FT-IR analyses were achieved in the 4000–600 cm−1 wave-
length scale. The grounded samples were used for qualitative FTIR analysis in ATR mode.

4.2.3. Swelling Behavior

The swelling degree of the obtained 3D printed composites was analyzed by incu-
bation in simulated biological fluids having different pH values (pH = 5.5; 7.4; 11) and a
temperature of 37 ◦C. After a predicted time, the samples were removed from fluids, and
filter paper was used to remove any surface-adsorbed water. The increase in weight (w −
w0) from the initial weight (w0) represented the degree of swelling.

4.2.4. Thermo Gravimetric Analysis (TGA)

With a NETZSCH TG 209 F1 Libra instrument (Selb, Germany) (controlled atmosphere
utilizing a nitrogen flow rate of around 20 mL/min, scanning from 25 to 700 ◦C and a
heating degree of 10 ◦C/min), the thermogravimetric analysis of 3D printed nanocomposite
was evaluated in triplicate. The samples utilized for all measurements ranged in mass from
3.5 to 5 mg.

4.2.5. Scanning Electron Microscopy (SEM)

The internal structure and morphology of the 3D printed nanocomposites were ex-
amined using the scanning electron microscope ESEM-FEI Quanta 200 (Eindhoven, The
Netherlands). All the scaffolds were studied without any coating.

Wadell’s Equation (1) was used to calculate the roundness of open pores (R). R is
therefore equal to the average radius of curvature of the four corners of the 3D construct
open pores to the radius of the greatest inscribed circle of the analyzed pore, as specified in
Equation (1):

R =

(
1
n∑n

i=1 ri
)

/rmax (1)

where ri = radius of the corner curvature, rmax = radius of the greatest inscribed circle,
n—number of corners (n = 4). The R-value for every 3D construct is the estimated average
of the open pores shown in the SEM picture. R is greater than 0 for all other objects and
equals 1 for perfectly spherical objects [61,69].

4.2.6. Transmission Electron Microscopy (TEM)

The freeze-dried 3D printed composites were examined using transmission electron
microscopy (TEM). On a TECNAI F20 G2 TWIN Cryo-TEM (FEI, Hillsboro, OR, USA), all
of the samples were examined in BF-TEM (Bright Field Transmission Electron Microscopy)
mode at an accelerating voltage of 200 kV.

4.2.7. Mechanical Tests

The resulting hydrogel samples’ mechanical behavior was assessed using a DMA
Q800 TA Instruments (New Castle, DE, USA). The analyses were conducted at 37 ◦C
in compression mode using cylindrical samples with a 15 mm diameter and ~8 mm
thickness. All of the equilibrium swollen composites were compressed, with a ramp force of
0.2 N/min to 6.5 N/min till a constant strain plateau was registered.
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Elastic modulus was calculated from stress-strain curves using the following equation
E = σ/ε, where compressive stress is denoted as σ (N/m2) and ε represents the related
strain. Three linear regions of stress-strain curves were considered to calculate the elastic
modulus, namely: 1–6, 20–25, and 25–35% strain compressions.

Dynamic frequency sweeps were carried out over a frequency range of 0.1–10 Hz with
a continuous strain of 0.1% (in the linear viscoelastic area) at 25 ◦C in order to record the
storage (G′) and loss (G”) moduli of the water-swollen samples at equilibrium.

4.2.8. Antimicrobial Activity

Two standard strains from the ICPI Institute’s Microbiology Department collection—
Escherichia coli ATCC 11229, a Gram-negative bacteria strain, and Staphylococcus aureus
ATCC 25923, a Gram-positive bacterium strain—were used to determine the antibacterial
activity for the 3D printed nanocomposites. Using a modified spot diffusion approach,
the antibacterial properties were qualitatively screened. Our prior research study in-
cluded a full description of this method’s procedure [70]. Following 24–48 h of microbial
cultures developed on Muller Hinton agar (MHA), bacterial and yeast suspensions of
(1–5) × 108 µcf/mL (corresponding with 0.5 McFarland standard density) were obtained.
These suspensions were put in Petri dishes, left at room temperature to ensure equal dif-
fusion of the compound in the medium, and then incubated with 3D printed composites
at 37 ◦C for 24–48 h. The samples’ inhibitory zone diameters were evaluated in triplicate
after 24 h.

4.2.9. Biological Assessment of the 3D Printed Salecan-Based Hydrogels

The biocompatibility of the materials was tested on HeLa cells. Cells were cultivated
at a density of 105 cells/ well in Dulbecco’s Modified Eagle Medium with 10% fetal bovine
serum. The materials were UV sterilized and added on top of the cells for 24 h. Cytotoxic-
ity was measured using the LDH Cytotoxicity kit (Sigma) following the manufacturer’s
instructions. Absorbance was read at λ = 490 nm using a NanoQuant Infinite M200 Pro
instrument. The viability of the cells was analyzed using the Live/Dead assay (cat. No.
L3224). Imaging was performed at λ = 494/517 (live cells) and at λ = 517/617 (dead cells)
using a Zeiss fluorescence microscope.

Cell proliferation was quantified using the CyQUANT™ MTT Cell Viability Assay
(Thermos Scientific, Zeiss Oberkochen, Baden-Wurttenberg, Germany) following the manu-
facturer’s instructions.

4.2.10. Statistical Analyses

The data are presented as mean standard deviation. A one-way ANOVA was used
to assess the significance of differences. If the p-value was less than 0.05, the significance
was evaluated.
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