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Abstract: Bioactive fatty acids possess several benefits for human health; however, these molecules
show a reduced oxidative stability and consequently reduced bioavailability. This work aimed to
develop novel bigels as a strategy to protect bioactive fatty acids present in three different vegetable
oils with nutritional attributes (coconut oil, avocado oil, and pomegranate oil) during passage through
the gastrointestinal tract (GIT). Bigels were prepared using monoglycerides-vegetable oil oleogel and
carboxymethyl cellulose hydrogel. These bigels were analyzed in terms of structure and rheological
characteristics. According to the rheological properties, bigels exhibited a solid-like behavior since G’
was higher than G”. The results showed that the proportion of oleogel was essential to the viscosity
of the final formulation as an increase in this fraction was responsible for an increase in viscosity. The
fatty acids profile was evaluated before and after simulated GIT. The bigels protected the fatty acids
against degradation; in the case of coconut oil, the reduction of key fatty acids was 3 times lower; for
avocado oil, 2 times lower; and for pomegranate oil, 1.7 times lower. These results suggest that bigels
can be used as part of an important strategy for bioactive fatty acid delivery for food applications.

Keywords: release properties; carboxymethylcellulose; bioactive compounds; rheology; monoglycerides

1. Introduction

Bioactive lipids (such as essential fatty acids, sterols, tocopherols, carotenoids, and fat-
soluble vitamins) provide many health benefits when consumed in appropriate amounts.
They may act as antioxidants, as immunomodulators, and can improve bone health, eye and
brain function, and reduce coronary diseases [1]. Unfortunately, most of these compounds
are not synthesized in the human body, and they must be obtained through diet. However,
in regular diets, the levels of these bioactive lipids are low. Consequently, many people
do not ingest sufficient levels. Moreover, their tendency to oxidize during processing
and storage in conjunction with their poor stability and low absorption characteristics
within the human gut are also responsible for their poor levels in the general population’s
diet [2,3].

Considering these facts, the food industry is seeking new methods to fortify foods
with more stable and bioavailable forms of these bioactive lipids, particularly fatty acids.
In this context, bigels appear to present interesting strategy, because they combine the
characteristics of organogels and hydrogels, which make them capable of delivering both
hydrophilic and lipophilic bioactive compounds [4]. Technically, bigels are semi-solid
formulations obtained mainly through high-speed mixing of organogels and hydrogels at
specific temperatures [5–7]. In addition to their unique thermodynamic behavior, they also
allow for custom tuning of bigels based on the viscoelasticity and the variety of materials
that can be used to formulate them. The use of these gels can provide relevant opportunities
for the development of nutritionally enriched foods. These systems have been previously
studied for their ability to release controlled active compounds such as omega-3 fatty acids,
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CoQ10, β-carotene, and lycopene and thus show potential for the delivery of bioactive fatty
acids [8–11].

The incorporation of bioactive fatty acid sources in functional foods faces several
challenges due to the high susceptibility of fatty acids to oxidation, which causes rancidity
(off-flavors), consumer rejection, and a decrease in nutritional value [12]. In this context, the
present work aims to develop and characterize bigel properties containing three different
vegetable oils (coconut, avocado, and pomegranate) and evaluate their capacity to deliver
their main bioactive fatty acids. These vegetable oils possess distinct lipid compositions.
Coconut oil is rich in medium-chain fatty acids, which play a relevant role in obesity
management due to their impact on thermogenesis; avocado oil is rich in oleic acids, which
show interesting anti-inflammatory potential; and pomegranate oil is the major source of
conjugated linolenic acids, with high potential in obesity prevention, due to their capacity
to modulate adiponectin and leptin secretion. The use of three different lipid compositions
enables more consolidated knowledge and validated robustness of the bigel’s potential as a
protective strategy for lipid delivery.

2. Results and Discussion
2.1. Optimization of Bigel Production

To investigate the impact of gelling agents Tween 80 and geleol on oil binding capacity,
an experimental design was applied. The results obtained (Table 1) showed that the
produced bigels had an oil binding capacity ranging between 92.39% and 98.66% for
coconut oil, 72.64% and 96.67% for avocado oil, and 74.76% and 97.74% for pomegranate
oil. The fit model p values are related to the importance of gelling agents in oil binding
capacity. For coconut oil, Tween 80 had a higher p-value (0.001) than geleol (0.000), which
means that a higher percentage of oil binding capacity can be obtained using a higher
quantity of Tween 80. In the case of avocado oil, both gelling agents contributed equally to
the oil binding capacity as both presented the same p-value. Regarding the pomegranate
oil, high percentages of oil binding capacity can be achieved when increasing the Tween
80 quantity (Figure 1C). The mathematical models obtained for each response surface
were used to perform a multi-objective optimization. The goal of the optimization was to
determine the best ratio of Tween 80 and geleol to maximize the oil binding capacity of
each edible oil tested. Regarding coconut oil, the model predicted a 99.16% oil binding
capacity with a 95% confidence interval (that can vary between 96.94 and 101.39) using
0.87 g of Tween 80 and 0.90 g of geleol. In the case of avocado oil, 97.30% of oil binding
capacity can be achieved with 95% confidence (varying between 91.75 and 102.85) using
0.10 g of each gelling agent (1:1). Finally, for pomegranate oil, the maximum oil binding
capacity (96.70%) can be obtained using 0.56 g of Tween 80 and 0.13 g of geleol, and the
values of oil binding capacity can vary between 93.28 and 100.13 with 95% of the confidence
interval. Interestingly, different quantities of Tween 80 and geleol were required to reach
maximum oil binding capacity (the highest amounts of each were required in the case of
coconut oil—almost 1 g of each—and the lowest amounts of each were required in the case
of avocado oil) as well as different proportion ratios. While small ratios were reported for
coconut oil and avocado oil (almost 1:1 and 1:1, respectively), in the case of pomegranate oil,
the proportion of Tween 80 was four-fold higher than geleol. Small ratios were associated
with a faster release whereas large ratios sometimes led to a more controlled release of
delivered compounds [13]. Validation of the predictive models was performed in triplicate
for each oil. The experimental oil binding capacity values were within the limits established
in the confidence intervals. Thus, the optimized bigels showed 99.06 ± 0.56% of oil binding
capacity for coconut oil, 93.61 ± 0.33 for avocado oil, and 95.57 ± 1.38% for pomegranate
oil. In the literature, there are no data using this bigel structure for delivery of this type
of fatty acid. The available data include the use of coconut oil or pomegranate oils as part
of the organogel fraction in order to enhance the delivery of lipophilic molecules such as
curcuminoids or as a structure agent for fat replacers [14–16].
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Table 1. Experimental design for Geleol and Tween 80 levels and the results obtained for oil binding
capacity concerning the three oils (CO-coconut oil, AO-avocado oil, and PO-pomegranate oil).

Run Order Pt Type Blocks Geleol Tween 80 OBC CO OBC AO OBC PO

1 0 2 0.50 0.50 97.24 88.37 91.79
2 0 2 0.50 0.50 97.35 88.35 91.71
3 −1 2 0.90 0.50 98.59 88.12 84.56
4 −1 2 0.10 0.50 93.02 95.57 94.07
5 −1 2 0.50 0.90 98.66 96.67 97.24
6 0 2 0.50 0.50 97.15 88.31 91.67
7 −1 2 0.50 0.10 92.39 82.84 86.11
8 −1 2 0.50 0.90 98.66 96.67 97.24
9 0 2 0.50 0.50 97.23 88.36 91.69
10 −1 2 0.10 0.50 93.02 95.57 94.07
11 −1 2 0.50 0.10 92.39 82.84 86.11
12 −1 2 0.90 0.50 98.59 88.12 84.56
13 0 2 0.50 0.50 97.25 88.32 91.73
14 0 2 0.50 0.50 97.26 88.38 91.78
15 0 1 0.50 0.50 97.22 88.40 97.74
16 1 1 0.78 0.78 96.85 85.42 81.82
17 1 1 0.78 0.22 94.53 72.64 74.76
18 1 1 0.22 0.78 92.89 87.69 96.58
19 0 1 0.50 0.50 97.21 88.37 91.69
20 1 1 0.22 0.22 95.19 93.04 96.74
21 1 1 0.22 0.78 92.89 87.69 96.58
22 0 1 0.50 0.50 97.23 88.39 91.78
23 0 1 0.50 0.50 97.27 88.41 91.62
24 0 1 0.50 0.50 97.24 88.27 91.77
25 0 1 0.50 0.50 97.24 88.35 91.79
26 1 1 0.22 0.22 95.19 93.04 96.74
27 1 1 0.78 0.22 94.53 72.64 74.76
28 1 1 0.78 0.78 96.85 85.42 81.82
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avocado oil, and (C)-pomegranate oil). 

  

Figure 1. Response surfaces for oil-binding capacity (OBC) optimization ((A)-coconut oil, (B)-avocado
oil, and (C)-pomegranate oil).

2.2. Structural Characterization of Bigels

The FTIR spectra of bigels were analyzed to assess the interactions between the
oleogel and the hydrogel within the bigel system. As shown in Figure 2, a broad band at
3750–3000 cm−1 was observed for all bigels and could be associated with the presence of
O–H stretching vibrations participating in hydrogen bonds within CMC and the heads
of the acyl groups present in the oleogel [10,17]. The absorption peaks between 2928 and
2932 cm−1 represented the stretching vibration of C-H and HC=CH bonds and correspond
to the presence of unsaturated and saturated fatty acyl chains characteristic of each of
the vegetable oils under study [10]. The higher intensity of these peaks in coconut oil
bigel spectrum can be due to the high concentration of geleol used in its formulation. In
this formulation, another peak characteristic of the stretching vibration of C-H bonds in
saturated fatty acyl chains was observed at 1468 cm−1 or 1470 cm−1 in coconut bigel and
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geleol spectra, respectively. The absorption peaks observed at 1746 cm−1 in the coconut
oil bigel spectrum, and at 1750 or 1752 cm−1 in the pomegranate and avocado oil spectra,
respectively, indicated the presence of the C=O stretching vibration of the ester group in
vegetable oil glycerides [14,18,19]. The differences found between the coconut oil bigel
and the pomegranate and avocado oil bigels can be related to the high amount of geleol
used in the former for its preparation, as mentioned above. In addition, this may also be
related to the high amount of oil retained in the bigel. Such influence of the concentration
and proportion of bigel components on their FTIR spectra have been shown for other
bigel systems, for example, for fish-oil-based [20] and sunflower-based [21] bigel systems.
The band between 1660 and 1650 cm−1 was present in all bigel spectra regarding the
stretching vibration of the carboxyl group (COO-) of CMC [17]. The bands between 1300
and 1000 cm−1 observed in the coconut and pomegranate bigel spectra can be associated
with the C-O stretching vibration in the ester group [14,18,19]. According to these results,
there appear to be no interactions between the oils and polymers as the main absorption
peaks remained.
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2.3. Rheological Properties

The results (Figure 3) showed that the produced bigels presented differing rheological
profiles, with coconut oil bigels presenting higher elastic modulus (G’), viscous modulus
(G”), and complex viscosity (η*) compared to the bigels produced with avocado and
pomegranate oils. This can be related to the amount of geleol used in the coconut oil
bigel preparation (9 times higher than the amount used in the other formulations). When
comparing the avocado oil and the pomegranate oil bigels, the results showed that the
former had slightly higher values for all parameters than the latter. This result can be
explained by the higher Tween 80 content present in the pomegranate oil bigel. According
to these results, a positive relationship between the increase in gelators and the increase
in viscosity is apparent. Moreover, an increase in the oleogel fraction led to an increase
in viscosity, with the same trend being reported by other authors [4,9]. In all bigels, the
viscosity decreased with the frequency increase. The prevalence of G’ relative to G” is
an indicator of the gel strength. G’ and G” do not intercept (no point of G’ is equal to
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G”) at the studied frequencies, which may suggest that the bigel does not show gel-to-sol
transformation. This fact can indicate the presence of stronger internal forces in the bigel,
which represent a solid-like behavior for this matrix [6,22].
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For the viscometry measurements results (Figure 4), coconut oil bigel showed a dif-
ferent behavior in comparison to the others as it presented up to 4.7 s−1 increases in the
instantaneous viscosity (η’), after which point a decrease was observed. With the increase
in the shear rate, the η’ decreased. In contrast, the increase in shear rate increased the η’ of
avocado and pomegranate oil bigels. This difference in behavior of coconut oil bigel can
be attributed to the high oleogel fraction. A previous work using polymer fish oil bigels
demonstrated that an increase in the oleogel fraction resulted in a decrease in the apparent
viscosity [8].
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2.4. In Vitro GIT Survival of Bioactive Fatty Acids within Bigels

In vitro digestion was used to study the potential of produced bigels to reduce the
degradation of bioactive fatty acids during passage through the gastrointestinal tract (GIT).
The fatty acids profile of the bigels and respective oils before and after GIT is presented in
Table 2.

Significant differences (p < 0.05) were obtained for all tested samples. In the case of
coconut oil, the fatty acid content was reduced by 87.9% after GIT (this percentage was
much lower when coconut oil was delivered as a bigel (27.7%)). Regarding avocado oil,
there was a degradation of 86.7% of fatty acid content during GIT. As verified for coconut
oil, the use of bigel led to a lower degradation percentage of 44.2%. The polyunsaturated
nature of pomegranate oil makes it more susceptible to oxidation, as can be seen from
the 96.3% reduction in total fatty acid content. The formulated pomegranate oil bigel
reduced this percentage to 56.6%. According to the fatty acids profile results, the release
percentages of the main bioactive fatty acids were calculated. As shown in Figure 5B,
for coconut oil, the main bioactive fatty acids release percentages were higher in bigel
formulation. Around 75% of lauric acid C12 (the main bioactive fatty acid in coconut oil)
reached the intestine, a value which was 25 times higher than the value obtained for oil
after digestion (3.48 ± 0.33%). The health benefits of coconut oil are related to its high
quantities of medium-chain fatty acids (C8, C10, and C12) [23], and it was proven that
the incorporation in the bigel enabled the protection of the fatty acids since there was an
increase in the fraction that reached the intestine.
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Table 2. Fatty acids profile of bigel and plain vegetable oil samples upon digestion via in vitro simulated gastrointestinal tract.

Avocado Bigel Avocado Oil Coconut Bigel Coconut Oil Pomegranate Bigel Pomegranate Oil

Fatty Acid Sample Digested Sample Digested Sample Digested Sample Digested Sample Digested Sample Digested

C6 - - - - 0.95 ± 0.08 a 0.56 ± 0.00 b 0.17 ± 0.00 a 0.06 ± 0.02 b - - - -

C8 - - - - 16.39 ± 1.69 a 10.71 ± 0.10 b 2.26 ± 0.01 a 2.43 ± 0.49 b - - - -

C10 - - - - 15.52 ± 1.77 a 11.02 ± 0.33 b 2.26 ± 0.01 a 1.30 ± 0.06 b - - - -

C12 - - - - 161.12 ± 19.87 a 119.45 ± 8.91 b 23.62 ± 0.08 a 0.92 ± 0.18 b - - - -

C14 0.18 ± 0.12 a 0.08 ± 0.02 a 0.13 ± 0.00 n.d. 79.71 ± 10.05 a 5.15 ± 0.00 b 11.50 ± 0.04 a 0.68 ± 0.09 b - - - -

C16 41.28 ± 9.63 a 23.96 ± 7.99 a 64.50 ± 1.12 a 9.30 ± 3.61 b 93.49 ± 15.74 a 59.63 ± 7.52 b 5.33 ± 0.02 a 0.36 ± 0.04 b 19.87 ± 4.75 a 10.76 ± 5.03 a 6.44 ± 0.22 a 1.16 ± 0.11 b

C16:1 c7 0.21 ± 0.04 a 0.16 ± 0.05 a 0.32 ± 0.01 a 0.11 ± 0.04 b - - - - - - - -

C16:1 c9 8.94 ± 2.23 a 5.22 ± 1.82 a 14.95 ± 0.26 a 1.75 ± 0.58 b - - - - - - - -

C17 0.12 ± 0.02 a 0.09 ± 0.03 a 0.18 ± 0.00 a 0.13 ± 0.06 a - - - - - - - -

C17:1 c10 0.22 ± 0.05 a 0.12 ± 0.04 a 0.35 ± 0.00 a 0.09 ± 0.01 b - - - - - - - -

C18 9.49 ± 2.03 a 6.69 ± 2.18 a 7.89 ± 0.13 a 2.64 ± 1.17 b 86.26 ± 24.41 a 0.08 ± 0.01 b 2.34 ± 0.01 a 0.17 ± 0.02 b 19.65 ± 5.19 a 9.80 ± 4.78 a 5.18 ± 0.18 a 0.77 ± 0.07 b

C18.1 t12 - - - - - - - - 0.28 ± 0.06 a 0.20 ± 0.11 a 0.12 ± 0.00 a 0.11 ± 0.01 b

C18:1 c9 132.01 ± 29.55 a 70.27 ± 24.59 b 227.40 ± 3.96 a 27.13 ± 3.43 b 53.29 ± 2.82 a 0.53 ± 0.31 b 3.42 ± 0.01 a 0.24 ± 0.02 b 36.62 ± 6.98 a 18.39 ± 9.29 b 12.60 ± 0.43 a 0.10 ± 0.0 b

C18:1 c11 9.89 ± 2.15 a 5.26 ± 1.87 a 16.77 ± 0.29 a 1.87 ± 0.70 b - - - - 1.65 ± 0.31 a 0.67 ± 0.28 b 0.93 ± 0.03 a n.d.

C18:1 c6 - - - - - - - - 0.89 ± 0.16 a 0.34 ± 0.15 b 0.63 ± 0.02 a n.d.

C18:2 t9 c12 0.19 ± 0.04 a 0.12 ± 0.04 a 0.29 ± 0.00 a 0.07 ± 0.00 b - - - - - - - -

C18:2 26.47 ± 6.67 a 15.95 ± 5.52 a 44.16 ± 0.77 a 7.03 ± 2.74 b 3.93 ± 0.48 a 2.46 ± 0.22 b 0.54 ± 0.00 a 0.06 ± 0.01 b 19.83 ± 3.52 a 8.06 ± 3.26 b 12.37 ± 0.43 a 0.06 ± 0.0 b

γC18:3 0.98 ± 0.25 a 0.65 ± 0.19 a 1.58 ± 0.03 a 0.24 ± 0.08 b - - - - 0.08 ± 0.03 a 0.03 ± 0.00 a 1.13 ± 0.04 a 0.0.6 ± 0.01 b

C20:1 0.79 ± 0.09 a 0.38 ± 0.11 b 1.39 ± 0.02 a 0.13 ± 0.05 b - - - - - - - -

C18:3 0.56 ± 0.05 a 0.27 ± 0.09 b 0.93 ± 0.02 a 0.14 ± 0.07 b - - - - 2.91 ± 0.58 a 0.07 ± 0.03 b 1.68 ± 0.06 a 0.08 ± 0.01 b

C22:1 - - - - - - - - 0.50 ± 0.13 n.d. 0.04 ± 0.00 a n.d.

C18:3 c9 t11 c13 - - - - - - - - 220.25 ± 37.40 a 92.26 ± 41.31 b 140.77 ± 4.86 a 3.03 ± 0.78 b

C18:3 c9 t11 t13 - - - - - - - - 7.27 ± 1.01 a 3.17 ± 1.29 b 4.35 ± 0.15 a 0.18 ± 0.15 b

C18:3 t9 t11 c13 - - - - - - - - 0.78 ± 0.26 a 0.63 ± 0.32 a 1.96 ± 0.07 a 0.14 ± 0.12 b

C18: 3 t9 t11 t13 - - - - - - - - 3.61 ± 0.77 a 0.64 ± 0.32 b 0.49 ± 0.02 a 0.09 ± 0.01 b

C20:3 0.27 ± 0.03 a 0.11 ± 0.03 b 0.47 ± 0.00 a 0.13 ± 0.01 a - - - - - - - -

C20:5 0.18 ± 0.00 a 0.12 ± 0.07 a 0.29 ± 0.00 n.d. - - - - - - - -

C24 0.20 ± 0.03 a 0.08 ± 0.03 a 0.36 ± 0.00 n.d. - - - - - - - -

∑Fatty acids 231.99 ± 53.93 a 129.51 ± 44.67 b 381.96 ± 6.63 a 50.77 ± 12.53 b 510.67 ± 3.92 a 209.59 ± 16.16 b 51.45 ± 0.18 a 6.19 ± 0.71 b 334.48 ± 61.23 a 145.10 ± 66.20 b 188.68 ± 6.51 a 6.95 ± 3.42 b

∑SFAs 51.27 ± 11.76 a 30.89 ± 10.23 a 73.06 ± 1.27 a 12.07 ± 4.84 b 453.44 ± 6.70 a 20.59 ± 16.88 b 47.48 ± 0.17 a 5.88 ± 0.73 b 39.82 ± 10.02 a 20.63 ± 9.84 a 11.62 ± 0.40 a 1.93 ± 0.18 b
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Table 2. Cont.

Avocado Bigel Avocado Oil Coconut Bigel Coconut Oil Pomegranate Bigel Pomegranate Oil

Fatty Acid Sample Digested Sample Digested Sample Digested Sample Digested Sample Digested Sample Digested

∑MUFAs 152.20 ± 34.17 a 81.48 ± 28.52 b 261.17 ± 4.54 a 31.07 ± 4.81 b 53.85 ± 2.58 a 0.53 ± 0.31 b 3.42 ± 0.01 a 0.24 ± 0.03 b 39.94 ± 7.64 a 19.60 ± 9.83 a 14.31 ± 0.45 a 0.21 ± 0.01 b

∑PUFAs 26.65 ± 6.97 a 17.21 ± 5.94 a 47.72 ± 0.82 a 7.61 ± 2.88 b 3.93 ± 0.21 a 2.46 ± 0.27 a 0.54 ± 0.01 a 0.07 ± 0.01 b 254.72 ± 4.57 a 104.07 ± 46.52 b 162.75 ± 5.61 a 4.80 ± 3.61 b

Results are expressed in mg/g and are the means of three determinations ± standard deviation. Values with different letters in the same line (for each oil) are significantly different, as
determined by the one-way ANOVA test (p < 0.05). n.d. = not detected.
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Regarding the formulation with avocado oil, a positive effect of the bigel was also
observed (Figure 5A). Oleic acid (C18:1 c9) is the main fatty acid present in this oil, and it is
responsible for its main putative potential health benefits [24]. In the formulation of bigels,
their release percentage reached 50%. This percentage was 4 times higher than the value
obtained for pure avocado oil after digestion (12%). Other important fatty acids in avocado
oil are linoleic (C18:2 c9c12) and linolenic acids (C18:3) whose release percentages in bigels
were 2 and 3 times higher, respectively, when compared to avocado oil.

Pomegranate oil is an important source of polyunsaturated fatty acids, particularly
conjugated linolenic fatty acids (CLNAs), which have several beneficial effects on hu-
man health; however, this compound has reduced stability [25,26]. The incorporation of
pomegranate oil into bigels led to a reduction in CLNA degradation during the GIT passage
when compared to the pure oil after digestion (Figure 5C). About 40% of punicic acid-C18:3
c9t11c13 (the main bioactive CLNA present in this oil) reached the intestine. In contrast,
only 2% of this pure oil fatty acid reached the intestine after digestion. In addition, higher
release percentages were also observed for other important CLNAs (α-eleostearic acid
C18:3 c9t11t13, catalpic acid C18:3 t9t11c13, and β-eleostearic acid C18:3 t9t11t13).

The evolution of the release of the main bioactive fatty acid from each oil during
digestion (Figure 6) verified that the release increased after the gastric phase in the bigel
formulations. On the other hand, in free-form oils, the release remained similar between the
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gastric and intestinal phases. In all digestion phases, the amount of the main bioactive fatty
acids of each oil remained higher in bigel formulations compared to the correspondent oil.
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According to these results, bigels can be a valuable strategy to protect different bioac-
tive fatty acids during passage through the GIT. Although there are no similar studies using
bigels as protective delivery systems for such oils, several studies point to the positive
effect of bigels as delivery systems for lipophilic compounds such as lycopene, β-carotene,
vitamin E, and Coenzyme Q10, given their composition and unique structure [9–11,13].
For example, in the case of lycopene, a bigel produced with high acyl gellan gum and
glycerol monostearate (GMS)-beeswax based oleogel enhanced the release of lycopene in
the intestine. Moreover, the high ratios of oleogel can retard the lycopene release, which can
be an advantage for delivery of fat-soluble nutraceuticals, extending their residence time in
the body [10]. Regarding β-carotene, it was incorporated in a bigel based on κ-carrageenan
hydrogel and monoglyceride oleogels to improve their stability during GIT passage. The
authors concluded that the bigel modulated the release of β-carotene since minor release
percentages were observed in simulated gastric fluid, and the release ratios increased in the
simulated intestinal fluid [9].

3. Conclusions

Bigels can be a valuable delivery system for different classes of bioactive fatty acids
with high nutritional value. In the current study, a bigel delivery system was used for the
first time for delivery of bioactive fatty acids from coconut, avocado, and pomegranate
oils. The oils structured in bigels showed high GIT release percentages when compared
to pure oils, which can enhance their biological potential and allow for targeted deliv-
ery in the intestine. Moreover, the high release percentages were also traduced in the
enhanced amount of essential fatty acids after GIT. At this point, it is important to under-
stand the bioactivity of the loaded bigels in the intestine in order to provide a blueprint
for the future development of bioactive lipids delivery and protection structures. The
rheological characteristics of produced bigels can be easily modulated by alterations in the
organogel/hydrogel ratio, presenting different opportunities to protect and deliver lipids
in food industry applications.

4. Materials and Methods
4.1. Materials and Reagents

Geleol was kindly donated by Gatefossé (Saint-Priest, France). Avocado oil was pro-
vided by Fula (Algés, Portugal), pomegranate oil was obtained from All Organic Treasure
(Wiggensbach, Germany), and coconut oil, from Origens Bio (Arruda dos Vinhos, Portugal).
Carboxymethylcellulose was obtained from Merck (St. Louis, MO, USA). Tritridecanoin
and punicic, catalpic, α and β- eleostearic acids standards were obtained from Larodan
(Solna, Sweden); HPLC grade methanol, hexane, and dimethylformamide (DMF) were
obtained from VWR (Radnor, PA, USA); and sodium methoxide was procured from Acros
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Organics (Morris Plains, NJ, USA). The standards Supelco 37 and CRM-164, Tween 80, and
sulfuric acid were obtained from Sigma (St. Louis, MO, USA).

4.2. Experimental Design, Modelling, and Optimization

In this work, a response surface methodology was used to evaluate the effect of gelling
agents on the oil binding capacity of bigels containing bioactive oils. The selected factors
were the amount of geleol and Tween 80. The experimental design was based on a central
composite design with two factors with two levels (coded as −1 and 1) composed of 8 cube
points and 6 center points in the cube. The design was performed using Minitab software.
Table 1 shows factors and levels of each studied variable and the analyzed response (oil
binding capacity). All the experiments were performed randomly. Data were fitted with a
quadratic regression. An ANOVA for the response surface quadratic model was used to
determine the statistical significance of the model factors. To determine the best oil binding
capacity (OBC), a multi-objective optimization procedure based on the desirability function
was applied using the same statistics software.

4.3. Bigel Preparation

Geleol was melted at 60 ◦C using a hotplate before being mixed with pre-heated (to
60 ◦C) Tween 80 (0.9 g/0.86 g for coconut oil, 0.1 g/0.1 g for avocado oil, and 0.12 g/0.56 g
for pomegranate oil). Carboxymethylcellulose (2% w/v) was added under continuous
mixing (2 min). After this step, 5 g of vegetable oil were added, and the mixture was
homogenized (1 min at 18,000 rpm) in an ultra-turrax (IKA T 25 digital, Janke and Kunkel
IKA-Labortechnik, Germany) and then sonicated (Sonics Vibra-Cell™ VCX 130) at 60%
amplitude for 1 min. Following this, the bigels were cooled and stored at room temperature
until use.

4.4. Oil Binding Capacity

Oil binding capacity was determined as follows. A total of 1 g of bigel was placed in
pre-weighed centrifuge microtubes and weighed (m1). The tubes were then centrifuged
at 4 ◦C and 15,000 rpm for 20 min, and the excess oil was decanted. The total mass of the
tube with the remaining bigel (m2) was weighed. The oil binding capacity was calculated
according to the following equation:

OBC % =

[
1 − (m1 − m2)

m1

]
× 100. (1)

Surface optimization was used to select the best ratio of geleol/Tween 80 for an
enhanced OBC. The optimized formulations were used in the following analysis.

4.5. ATR-FTIR Spectra

Fourier transform infrared (FTIR) was performed using a Spectrum 100 FTIR Spec-
trometer (Perkin Elmer, Waltham, MA, USA) equipped with the attenuated total reflectance
(ATR) mode. The spectra were recorded from 4000 to 500 cm−1 at a resolution of 4 cm−1,
and an average of 32 scans was reported. These spectra were subtracted from the back-
ground spectrum.

4.6. Rheological Measurements

Analyses were performed to determine the rheological behavior of the samples.
Measurements were conducted on a Gemini Advanced Rheometer (Bohlin Instruments,
Cirencester, UK) coupled with a Peltier unit for temperature control, using a stainless-steel
cone-and-plate geometry probe CP (40 mm diameter, 4◦ angle). Samples were placed on
a sampling plate, and analysis was performed, using a 1000 µm gap for coconut oil bigel
and 150 µm for avocado and pomegranate oil bigels. Elastic and viscous moduli (G’ and
G”, respectively) and complex viscosity (η*) were determined as a function of frequency,
which varied between 0.1 and 100 Hz, using a strain of 0.1%, which was previously de-
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termined to be within the linear viscoelastic region (LVER). Viscometry measurements
(shear rate = 0.001 to 100 s−1) using a 150 µm gap were conducted to study the shear
behavior of the bigel samples. All samples were analyzed in triplicate.

4.7. In Vitro Gastrointestinal Tract Simulation

In vitro digestion was performed according to the INFOGEST method [27], using
5 g of bigels or pure edible oils. To screen the impact of gastrointestinal tract (GIT) on
fatty acids release, 0.5 mL aliquots of the sample were collected in all GIT phases, and the
fatty acids profile was determined. The in vitro digestion was performed in triplicate for
each sample.

4.8. Bigels Fatty Acids Profile

The bigels’ (150 mg of sample or 500 µL of digested sample) and correspondent oils’ (15
mg) fatty acid profile was evaluated via gas chromatography (GC) after transesterification
according to the method described by Machado et al. 2022 [28]. GC analyses were per-
formed in a gas chromatograph Agilent 8860 (Agilent, Santa Clara, CA, USA) with a flame
ionization detector (FID), using a BPX70 capillary column (60 m × 0.25 mm × 0.25 µm;
SGE Europe Ltd., Paris, France). The following operating conditions were employed. In-
jector (split 25:1) and FID temperatures were 250 ◦C and 275 ◦C, respectively. Hydrogen
(carrier gas) was used at a flow rate of 1 mL/min (20.5 psi). The oven temperature program
started at 60 ◦C (held for 5 min), raised 15 ◦C/min to 165 ◦C (held for 1 min), and finally
2 ◦C/min to 225 ◦C (held for 2 min). Supelco 37 and individual standards from CLNA
were used for the identification of fatty acids. The GC analysis was performed in triplicate.

4.9. Statistical Analysis

All results are presented as mean ± standard deviation. The data normality was
assessed using the Shapiro–Wilk test. Statistical significances between samples were tested
at a 0.05 significance level using a one-way analysis of variance (ANOVA) followed by a
multiple comparisons test (Tukey) using Minitab software (version 17, LCC, USA).
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