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Abstract: Frequent oil spills have caused serious consequences to the ecosystem and environment.
Therefore, in order to reduce and eliminate the impact of oil spills on biology and the environment,
oil spill remediation materials must be considered. As a kind of cheap and biodegradable natural
organic cellulose oil-absorbing material, straw has an important practical significance in the treatment
of oil spills. In order to improve the ability of rice straw to absorb crude oil, rice straw was first
treated with acid and was then modified with sodium dodecyl sulfate (SDS) through a simple charge
effect. Finally, the performance of oil absorption was tested and evaluated. The results illustrate
that the oil absorption performance was greatly improved under the conditions of 10% H2SO4, for a
90 min reaction at 90 ◦C, under 2% SDS, and reacted for 120 min at 20 ◦C, and the rate of adsorption
for rice straw to crude oil was raised by 3.33 g/g (0.83 to 4.16). Then, the rice stalks before and
after the modification were characterized. Contact angle analysis shows that the modified rice stalks
display better hydrophobic–lipophilic properties than unmodified rice stalks. The rice straw was
characterized by XRD and TGA, and the surface structure of the rice straw was characterized by FTIR
and SEM, which explain the mechanism of surface-modified rice straws with SDS to improve their
oil absorption capacity.

Keywords: rice straw; acid treatment; surface modification; oil absorption

1. Introduction

Currently, the frequency of marine oil spills is increasing under the increasing fre-
quency of marine transportation and oil and gas extraction activities [1,2]. There are
several typical events such as the Gulf of Mexico [3], the Saronic Gulf incident [4], the
North American Atlantic [5], and the Santorini [6]. These oil spills have caused serious
consequences to our marine ecosystem and ecological environment. Therefore, oil spill
remediation materials and technologies have been attracting much attention so as to reduce
and eliminate the influence of oil spills on our biology and environment. Nowadays, the
materials and technologies that are commonly used in oil spill remediation are mainly di-
vided into four different types: (1) chemical methods (dispersants and curing agents), (2) in
situ combustion, (3) bioremediation, and (4) mechanical recycling (oil boom, oil skimming
boom, and adsorbent) [7,8]. Among them, adsorbent materials are more attractive for oil
spill cleaning because they can collect and completely remove the oil from the surface of
the water without adversely affecting the environment.

There are a few hydrophobic and lipophilic adsorbents [9–14], including magnetic
particles [15–17], textile [18–21], and modified commercial sponges [22–24], which have
been applied for oil adsorption. At present, materials with high oil absorption are generally
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industrially synthesized as high oil-absorbing resin materials [25]. However, such materials
not only have high production costs and cannot be used for secondary use and biodegrada-
tion, but they are likely to cause environmental pollution. However, rice straw, as a cheap
and biodegradable natural organic cellulose oil-absorbing material, is an abundant cellu-
losic product from the production of farming in many countries, and it has great practical
significance to be prepared as an oil spill absorbent [17,26]. It is not only a valid approach
to take full advantage of our resources, but it is also a good way to settle pollution issues
from the sources. Nevertheless, the absorption ability of oil and the hydrophobic properties
of organic plant fibers are poor. Thus, chemical modification methods are indispensable for
enhancing their adsorption capacity for crude oil [27–29].

Therefore, in this paper, the crop waste of rice straw with unique advantages of being
low in price, non-toxic, harmless, and non-polluting was used to solve the above problems.
Our objective in this study was to increase the oil adsorption capacity and acquire a highly
efficient and modified straw oil-absorbing material via a simple, easy-to-operate, and
low-investment method. However, the oil absorption rate of natural absorbent material
rice straw is not ideal. Thus, in order to improve the oil absorption rate and obtain a
modified straw oil-absorbing material with high efficiency, the rice straw was physically
processed with cutting into pellets pretreatment and was modified by surface modification
with composite ion surfactant treatment after wetting with acid.

2. Results and Discussion
2.1. Mechanism of Composite Surface Modification

The schematic diagram of modification is showed in Figure 1. Firstly, the straw was
pretreated with acid, and the acid cellulose and lignin formed by cellulose and lignin on
the surface of the rice straws reacted with acid, which made the cellulose and lignin have
strong electron withdrawing properties and produce unstable cations on the surface of the
fiber [30,31].
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Figure 1. Mechanism of composite surface modification.

For the modification of anionic surfactants, the reaction focuses on the adsorption
of anion and cation. The raw materials should be washed to neutrality with pure water
after the acid treatment, because the surfactant easily loses activity and precipitates out in
the acid medium. Then, the negatively charged part of the anionic surfactant binds to the
surface of the positively charged cellulose and lignin to increase the oil absorption after the
anionic surfactant.

2.2. Influence of Modification Conditions on Oil Absorption
2.2.1. Effect of Acid Modification Conditions

Firstly, the influence of different acids was explored under the concentration of 10%,
reacting for 90 min, at 80 ◦C. The effect of the acid type was examined. Figure 2a exhibits that
the effect on the rice straw was different because of different levels of acidity. Among them,
H2SO4 had the strongest acidity and the highest oil absorption rate, and the oil absorption
rate reached 4.16 g/g. Therefore, H2SO4 was the optimal choice for acid treatment.
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Figure 2. (a) Effect of acid type under the concentration of 10%, and reacting for 90 min at 80 °C. (b) 
Effect of H2SO4 concentration under reacting for 90 min at 80 °C. (c) Effect of acid treatment 

Figure 2. (a) Effect of acid type under the concentration of 10%, and reacting for 90 min at 80 ◦C.
(b) Effect of H2SO4 concentration under reacting for 90 min at 80 ◦C. (c) Effect of acid treatment
temperature under the concentration of 10% H2SO4 and reacting for 90 min. (d) Effect of acid
treatment time under the concentration of 10% at 80 ◦C.

Then, the influence of H2SO4 was investigated at the concentration of 0 to 14% after
reacting for 90 min at 80 ◦C. The result indicated that the oil absorption rate increased as
the concentration of H2SO4 increased, as can be seen in Figure 2b. The oil absorption rate
is the highest when the concentration of H2SO4 reaches 10%. The overall oil absorption
rate increases from 3.00 g/g to 3.56 g/g as the H2SO4 concentration increases from 0 to
10%. It is ascribed that the reaction will be easy to carry out when the more cations are
produced by reacting with the cellulose and lignin on the surface of the rice straw as the
H2SO4 concentration increases. Therefore, 10% H2SO4 was optimal.

In Figure 2c, the influence of the temperature for alkali treatment on the oil adsorp-
tion ability was investigated with 10% H2SO4, and it reacted for 90 min. The effect of
the acid treatment temperature on the oil absorption ability was investigated. Figure 2
highlights how the oil absorption rate increased from 3.40 to 3.79 g/g when the temper-
ature for acid treatment was <80 ◦C. However, the oil absorption rate did not increase
obviously, and it tends to be stable when it is >80 ◦C. This is because the oil absorption has
reached saturation when the temperature is at 80 ◦C. Therefore, 80 ◦C was the optimal acid
treatment temperature.

To optimize the H2SO4 reaction time, the influence of different timings was investi-
gated under the condition of 10% at 80 ◦C. Figure 2d demonstrates that the oil absorption
rate increased from 3.10 g/g to 3.78 g/g as the duration of the alkali treatment changed
from 0 to 90 min. Moreover, the oil absorption rate decreased significantly from 3.78 g/g to
3.55 g/g when the time was >90 min. This is attributed to the rapid adsorption equilibrium,
and so, the oil absorption rate continued to increase when the time changes from 0 to
90 min, whereas the adsorption balance will break and the absorption rate will reduce
when the time is >90 min. Therefore, 90 min was selected as the length of acid treatment.

2.2.2. Effect of Anionic Surfactant Modification Conditions

In order to determine an anionic surfactant with the highest oil absorption efficiency,
we studied the influence of the quaternary ammonium cationic surfactant on the oil ad-
sorption at a concentration of 2% and reacting for 120 min at 20 ◦C. The effect of the anionic
surfactant type was also investigated. As shown in Figure 3, the influence of the different
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anionic surfactants on rice straw was different, and the oil absorption rate of the surface
modification with sodium dodecyl sulfate (SDS) was higher than the others. The oil ab-
sorption rate of SDS was 4.16 g/g, for sodium dodecyl carboxylate (SDC) it was 3.60 g/g,
for sodium dodecylbenzene sulfonate (SDBS) it was 3.86 g/g, for sodium Lauryl stearate
(SLS) it was 2.90 g/g, and for sodium lauryl fat (SLF) it was 2.85 g/g.
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Figure 3. (a) Effect of anionic surfactant type under the concentration of 2% and reacting for 120 min
at 20 ◦C. (b) Effect of SDS concentration under 2 ◦C and reacting for 120 min. (c) Effect of surface
modification temperature under 2% CTAC and reacting for 120 min. (d) Effect of surface modification
time under the concentration of 2% at 20 ◦C.

The concentration of SDS was investigated at 20 ◦C and reacting for 120 min by
varying the concentration from 1% to 5%. The effect of SDS was examined by changing the
concentration (1–5%). The oil absorption rate increased rapidly from 2.80 g/g to the highest
value of 3.71 g/g when the concentration of the SDS increased from 1% to 2% (Figure 3b).
The main reason for this is attributed to the fact that the oil absorption reached saturation
when the concentration was 2%. However, the resolution emerged when the concentration
continued to increase, which greatly reduced the oil absorption rate. Thus, a concentration
of 2% is optimal for SDS.

Then, the modification temperature of SDS was investigated at 2% CTAC (cetyltrimethy-
lammonium chloride) and reacting for 120 min. As shown in Figure 3c, the highest oil
absorption rate can be reached at 3.71 g/g when the temperature is 20 ◦C. The oil absorption
rate reduces from 3.71 g/g to 3.03 g/g as the temperature rises. This is because that anionic
surfactants tend to cause inactivation at high temperatures, and so the reaction is prone
to be carried out at low temperatures. Therefore, 20 ◦C was the optimal temperature for
surface modification.

Finally, the influence modification time for SDS was studied under the conditions of
2% and at 20 ◦C. Figure 3d illustrates that the absorption rate obviously increased (3.00 g/g
to 4.16 g/g) as the surface modification time varied from 0 to 120 min, whereas the oil
absorption rate decreased from 4.16 g/g to 4.00 g/g when the time exceeded 120 min.
This is due to the ion movement of the anionic surfactant being the most violent after the
reaction of 120 min, and the crude oil will be resolved. Thus, 120 min was the optimal time
for surface modification.
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2.2.3. Characterization of Rice Straw

Figure 4 exhibits the contact angle between the modified and unmodified rice straws
with pure water. Figure 4a illustrates the high hydrophilicity of the unmodified rice straw.
Figure 4b indicates that the high hydrophobicity but low hydrophilicity of the rice straw
after modification and the contact angle with pure water increased from 5.14◦ to 71.60◦,
which demonstrates that the modified rice straw has hydrophobic characteristic [32–34].
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Then, the unmodified and modified rice straws were characterized using an FT-
IR spectrometer. As shown in Figure 5, no obviously different peaks existed between
the unmodified and modified rice straw. However, the intensity of the C–H band at
2800–2900 cm−1 increased [35]. This is because of the charge effect of the cationic lignin
and cellulose on the surface of the rice stalks and anionic surfactants under the action of
sulfuric acid.
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The XRD patterns of unmodified and modified rice straw in Figure 6 exhibit cellulose
Iβ characteristic peaks at around 2θ of 21.5◦, representing the d 200 crystallographic planes
of the monoclinic lattice structure [36,37]. Moreover, the crystallinity after treatment is
weaker than before the treatment, which is due to the intermolecular and intramolecular
bonds of cellulose that were destroyed by the modification, leading to decreases in the
crystallinity [38].
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Finally, to investigate the morphology and microstructure of rice straw before and 
after modification, they were characterized with SEM. Figure 8 exhibited the tubular struc-
tures of unmodified (a1) and modified (b1) rice straw. Figure 8(b2,b3) obviously shows 
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In order to determine their thermal natures, the unmodified rice straw and modified
rice straw were subjected to derivative TGA in an N2 atmosphere. Figure 7 illustrates
the thermograms of native rice straw and modified straw samples. The TGA curves
demonstrate an obvious decrease from 30 ◦C to 100 ◦C due to a loss of moisture. After
that, the unmodified straw starts to decompose at 181 ◦C; however, the modified straw
sample starts to decompose at 238 ◦C. At 50% weight loss, the decomposition temperature
occurs at 327 ◦C for the nature rice straw and at 338 ◦C for the modified straw sample. This
increasing trend of the decomposition temperature illustrates that the thermal stability of
the modified rice straw is higher than that of the unmodified rice straw [39].
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Finally, to investigate the morphology and microstructure of rice straw before and after
modification, they were characterized with SEM. Figure 8 exhibited the tubular structures
of unmodified (a1) and modified (b1) rice straw. Figure 8b2,b3 obviously shows the porous
and loose web structure of the modified rice surface fibers. By comparing Figure 8a3,b3,
we can conclude that the surface area of the rice straw increased, which enhanced the
hydrophobic properties [40] and supports previous contact angle measurement.
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3. Conclusions

The adsorption capacity of crude oil was evaluated through specific oil adsorption
experiments. The optimized and determined preparation conditions were as follows: 10%
H2SO4 reacted for 90 min at 80 ◦C, and 2% SDS reacted for 120 min at 20 ◦C, and the
adsorption rate of the rice straw of crude oil increased from 0.83 g/g to 4.16 g/g. The
reason for the increased crude oil sorption ability of the modified material was explained
by the theoretical level of the size of the contact angle and the principle of wettability. The
characterization methods of XRD, FTIR, SEM, contact angle measurement, and thermo-
gravimetric analysis (TGA) further proved that the modified rice straw had hydrophobic
characteristics. This study uses modified straw as a cheap and biodegradable natural
organic cellulose oil-absorbing material. It is not only an effective way to make full use of
resources, but it is also an effective measure to solve the pollution problem from the source.
However, its application scenario needs to be further expanded.

4. Materials and Methods
4.1. Materials

The oil was supplied by Chang 2 reservoir of Yanchang Oilfield, and properties of
which are shown in Table 1. SDS, SDC, SDBS, SLS, SLF, and other reagents were purchased
with analytical grade. Rice straw was collected from farmland around Jingmen City,
Hubei Province.

Table 1. The physical parameters of oil from Yanchang oil field.

µ30

/(mPa·s)
Pour Point

t/◦C
ρ20

/(g·cm−3)
Resins
W/%

Asphaltenes
W/%

Aromatic
Hydrocarbons

W/%

Saturated
Hydrocarbons

W/%

36.9 18.5 0.886 12.1 6.8 25.2 55.9
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4.2. Preparation of Rice Straw
4.2.1. Pretreatment of Rice Straw

The rice stalks were pretreated before modification, the pretreatment process was
shown in Figure 9, and the specific treatments are as follows: the rice straw was cut into
pieces 1–2 cm, and they were soaked in deionized water for 2 h, then they were washed
once by distilled water and following this, they were placed into an oven at 65 ◦C at a
constant weight [41].
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4.2.2. Modification of Rice Straw

Firstly, the rice straw was treated by acid. A total of 50 mL acid was poured into the
beaker with oven-dried straw, then beaker was put in the water bath at 80 ◦C. Reaction was
terminated after 90 min by pouring the acid and washing it with pure water until the straw
became neutral. Samples were then dried in an oven at 65 ◦C for 24 h.

Then, the dried rice straw was modified with 50 mL anionic surfactant solution, and
the beaker was put in the water bath at 20 ◦C. Samples were then dried in an oven at 65 ◦C
for one day. The modification process of rice straw is shown in Figure 10.
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4.3. Determination of Oil Adsorption Rate

The dried straw was placed into a homemade small iron cage of ~30 mesh, and then it
was put into a 250 mL beaker with 150 mL of oil at 40 ◦C. They were taken out after 1.5 h to
drip oil for 40 min. Finally, the straw was weighed and three readings were made on every
sample to check repeatability and to obtain an average value. The oil adsorption rate was
calculated as follows:

Q =
m2–m1

m1–m0
(1)

where Q is the oil absorption rate (g/g); m0 is the quality of the empty net (g); m1 is the
total mass of the net and the oil-absorbing material before oil absorption (g); and m2 is
the total mass (g) of the net and the oil-absorbing material after oil absorption. The oil
absorption of the blank net was subtracted when calculating the final oil absorption.

4.4. Characterization of Rice Straw

In order to determine the change in the contact angle between the rice straw with
pure water before and after the modification, rice straw was analyzed using contact angle
measurement instrument (JC2000DS, Beijing Shangdetong Technology Co., Ltd., Shanghai,
China). Infrared spectrum of rice straw, untreated and treated, was analyzed using an
FT-IR spectrometer(Thermo Fisher Technology (China) Co., Ltd. Shanghai, China). All IR
measurements using the KBr pellet technique (1 mg of a sample homogenized with 200 mg
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KBr) were performed on Fourier infrared spectrometer at room temperature ranging from
400 to 4000 cm−1, and each sample was scanned 32 times with a resolution of 0.4 cm−1,
which was then recorded.

The phase composition and purity of the catalyst were analyzed by powder X-ray
diffraction (JDX-3530, Shimadzu Enterprise Management (China) Co., Ltd., Beijing, China)
on an XRD-6000 diffractometer with Cu Kα radiation at 40kV voltage and 15mA cur-
rent. Thermogravimetric analysis (TGA) was carried out using a TGA/SDTA851 (Nanjing
Huicheng Instrument Co., Ltd., Nanjing, China) instrument over the temperature range
of 25–700 ◦C with a heating rate of 10 ◦C/min. The measurements were carried out in N2
atmosphere with a flow rate of 20 mL/min using alumina crucibles.
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