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Abstract: In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the
forefront of research in wound healing and the prevention of medical device contamination. Anti-
infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to
antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocom-
patibility do not always meet the demands of biomedical applications. As a result, the development
of double-network hydrogels could be a solution to these issues. This review discusses the most
recent techniques for creating double-network chitosan-based hydrogels with improved structural
and functional properties. The applications of these hydrogels are also discussed in terms of tissue
recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces
for pharmaceutical and medical applications.
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1. Introduction

Hydrogels have received special attention due to their promising properties, such as
softness, endowment, and high capacity to hold water [1,2]. The hydrophilic functional
groups in the polymer’s backbone allow it to retain water, whereas crosslinks between
network catena prevent it from dissolving [3,4]. Hydrogels can be created through either a
physical or a chemical crosslinking process. Based on these two fundamental advances,
there are numerous preparation paths for obtaining hydrogel structures. Physical crosslink-
ers primarily consist of host–guest complexes, hydrophobic–hydrophobic, electrostatic,
ionic, precipitation, and stereo complex coactions, followed by the development of polymer
networks [5–8]. Physically crosslinked hydrogels have significant advantages in diverse bi-
ological applications because they lack chemical crosslinkers, which could potentially cause
unforeseeable and harmful side effects to the tissues. They are also more biocompatible.
However, their reversible construction, low mechanics, and stability severely limited their
range of applications [9–12]. The mechanical stability of physical crosslinking-produced
hydrogels decreases as conditions change, such as temperature or pH [13–15].

In contrast to physical crosslinkers, chemical crosslinkers are created by covalently
joining polymer chains. The network obtained is the result of highly efficient synthetic
techniques such as free radical polymerization, click chemistry, Schiff’s base reaction, and
photopolymerization [16,17]. Because of the irreversible connections between polymeric
chains, chemically crosslinking hydrogels have stable constructions and superior mechanics,
making them suitable for the tissue engineering sector. Chitosan-based hydrogels are
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promising biomaterials with a wide range of applications such as tissue engineering,
carriers for the controlled delivery of drugs, and even genes, with the goal of increasing
the drug concentration at a specific application site and coating layers to prevent biofilm
formation on medical devices and surfaces in clinical and industrial environments. Chitosan
is one of the valuable natural polymers used for biological applications due to its chemical
properties and inherent antimicrobial activity. Moreover, chitosan is easily obtained by
deacetylation of chitin from different sources such as crustaceans, fungi, and insects, which
ensures an acceptable price for the obtained products [18]. The subsequent physical
and chemical functionalizing of chitosan or development of multi-network structures
confer improved mechanical and biological properties to the novel polymer structure and
multiple applications. They have a three-dimensional and porous framework creating
a biocompatible extracellular matrix for the attachment and proliferation of the cells.
Crosslinking at chitosan polymers is required to improve chitosan’s properties for drug
delivery, such as stability and endurance. Different types of chitosan-based hydrogel
networks exist depending on how the chitosan is prepared and crosslinked [19,20].

When chitosan is combined with other biomaterials that are either synthesized via
covalent and non-covalent linkages or obtained from natural sources, a variety of multi-
functional hydrogels are formed.

Chitosan is a natural biopolymer, a non-toxic biodegradable compound derived from
chitin via deacetylation under alkaline conditions [21–23]. This carbohydrate has a straight-
chain chemical structure that includes -(1,4)-linked 2-amino-2-deoxy-D-glucopyranose
and 2-acetamino-2-deoxy-D-glucopyranose. Chitosan’s properties are conferred by three
included functional groups: an amino group and two hydroxyl groups (primary and
secondary), which are inserted at positions C-2, C-3, and C-6, respectively [24,25]. Thus,
chitosan is more chemically reactive in comparison with chitin.

Chitosan can be synthesized homogeneously [26] or heterogeneously [27–29] obtained
through a series of N-deacetylation reactions beginning with chitin. Its properties and
molecular weight differ depending on the source. Chitosan is a more soluble deacetylation
product than chitin [30]. Chitin and chitosan are antibacterial, antioxidant, antifungal, and
prebiotic compounds with minor side effects characterized by their versatility, abundance,
plasticity, biodegradability, biocompatibility, and non-toxicity [31–37]. All of this gives
them a distinct advantage as biotechnology compounds.

Furthermore, chitosan depolymerization generates bioactive substances with antibacte-
rial properties. It is renewable, non-toxic and biodegradable and has excellent antimicrobial
properties, an excellent film-forming capability, and excellent chelation and absorption
properties. As a result, chitosan has a wide range of applications such as biomedical
engineering, bioremediation, hydraulic engineering, food industry [38], biotechnology,
cosmetics, textile and paper industries, as well as agriculture [24,39–42]. Chitosan is a
naturally occurring polymer with excellent biocompatibility and biodegradability that is
already widely used in biomedical applications [43,44].

Chitosan is a promising material for biomedical applications due to a variety of
properties. Chitosan is currently used in drug and gene delivery, enzyme confinement,
surface modification, wound healing, dialysis membranes, and bone regeneration [45–50].
Much research has been conducted in order to emphasize that chitosan has antibacterial,
antifungal, antitumor, immunoadjuvant, anticholesteremic, and antithrombogenic features
and the ability to increase the re-epithelization and acceleration of wound healing [51–55].

Double-network (DN) hydrogels are the most promising biomaterials for modern
medicine, having both a high water content and high mechanical properties. The structural
characteristic of DN hydrogels is the special network structure consisting of two components:
the minor component, which is represented by crosslinked polyelectrolytes that form the
rigid skeleton, and the major component, which comprises poorly crosslinked neutral
polymers with ductile characteristics [56]. Due to the large range of chemical compounds
and methods used to develop such biomaterials, in this article, we highlight the current state
of the evolving methods for preparing double or multi-network chitosan-based hydrogels in
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order to enhance their mechanical and conductive properties and harvest their antibacterial
and antibiofouling properties for various pharmaceutical and medical applications.

2. Chemical Changes for Chitosan Functionalization

Chitin is a natural polysaccharide from the shells of various taxonomic groups such
as turtles, crustaceans, and insects [57–59], or is the result of a fungal fermentation pro-
cess [60–62]. Chitosan is a derivative of chitin, and it is gathered with minerals such as
calcium carbonate, proteins, and residual pigments. To obtain pure chitin, the raw source
is demineralized with acid and then proteins are removed with alkali (Figure 1). Dem-
ineralization and deproteination can also be accomplished using enzymatic, chemical, and
fermentation methods [18,62]. Chitin and chitosan can both be produced using traditional
methods (Figure 1).
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Figure 1. Chitosan extraction methods from crustaceans.

Alternative processing techniques reduce processing times and the amount of alkali
required to deacetylate chitin. Examples include sequential alkali treatments, saturated
steam flash treatment, thermomechanical processes in a cascade reactor run at low alkalinity,
dielectric heating, and intermittent water washing. Enzymatic deacetylation has been
demonstrated in specific fungi and bacteria [63]. Another study also describes a microwave
technique for converting chitin nanowhiskers into chitosan nanoscaffolds [34].

Chitosan is composed of (1–4)-linked D-glucosamine with irregularly positioned N-
acetylglucosamine groups, depending on the degree of polymer deacetylation. Alkaline
hydrolysis is commonly used to perform repeated deacetylation [64].

The components of chitin and chitosan contain an amino group that facilitates the
chemical modification of these polymers. As a result, chitin and chitosan have proven to
be useful and excellent materials for different applications as biomaterials in the pharma-
ceutical, medical, chemical, cosmetical, agricultural, and sustainability sectors. Numerous
studies have been conducted regarding the properties, variations, and applications of these
polymers [25,65].

Chitosan contains three essential functional groups: an amino group (-NH2 at C-2), a
primary hydroxyl group (-OH at C-6), and a secondary hydroxyl group (OH at C-3) [66,67].
These active groups allow the chemical modification of the chitosan chain [68]. Such
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processes are carried out by substituting or reacting with active hydroxyl or amino groups
within the chitosan molecule [69]. These groups form intermolecular hydrogen bonds
without interfering with polymerization, allowing for the modification of chitosan chains
that are copolymerized by crosslinking with other polymers. This results in a variety of
composite scaffolds that are appealing candidates for bone repair and reconstruction.

Chitosan has some important properties, including a low-cost source, easy processing,
rapid and complete biodegradability, antibacterial activity, nonantigenicity, high conduc-
tivity, high porosity with the proper pore size distribution, controlled drug delivery, and
biocompatibility with most human tissues, that make chitosan very attractive for many
applications [70–73]. The physicochemical properties of chitosan can be improved through
chemical derivatization.

Chitosan-based hydrogels have been made functional by encapsulating bioactive com-
pounds and delivery to the target sites at appropriate doses and for the desired durations.
Bioactive agents, proteins, amino and nucleic acids, and drugs can all be encapsulated in
chitosan-based reactive hydrogels to create intelligent delivery systems and bone regen-
eration. There are numerous widely used methods for modifying the chemical and thus
physical properties of chitosan (such as carboxymethylation, phosphorylation, sulphation,
quaternization, esterification, grafting, or crosslinking) (Figure 1).

a. Crosslinking. Chitosan can be used in a variety of ways, including composites, hy-
drogels, membranes, and chitosan nanoparticles. The disadvantages of some of these
biomaterials include cytotoxicity, degradability, and low mechanical properties. These
issues can be overcome by crosslinking or stabilizing such materials. Crosslinking
is a widely used method for modifying this substance’s physical and chemical prop-
erties [74]. Several studies have shown that chitosan molecules can be linked with
a wide range of other compounds [74–76]. Carbodiimide-mediated crosslinking of
chitosan nanoparticles and collagen increases collagenase resistance and thus reduces
its biodegradability [77]. Crosslinking with citric acid produced dopamine-modified
chitosan hydrogels for use in neural tissue engineering. Dopamine’s high density
of crosslinking points allowed the hydrogel to have a rigid structure and significant
mechanical strength through crosslinking [78]. The properties conferred by chitosan
crosslinking result in frames with reduced degradability, immunogenicity, and toxic-
ity, in addition to biocompatibility. As a result, chitosan is suitable for regenerative
medicine and a valuable bioresource for tissue engineering [79].

b. Carboxymethylation is a widely used chemical synthesis method. The chitosan deriva-
tive under the most scrutiny is carboxymethylchitosan, an amphoteric polymer whose
solubility is determined by the pH. Chitosan carboxymethylation reactions can occur
on the amino and hydroxyl groups, yielding N-, O-, or N,O-carboxymethylchitosan
(Figure 2) [80–82]. Through a reductive alkylation at the amino group at C-2, glyoxylic
acid can be used to obtain N-carboxymethylchitosan, while monochloroacetic acid can
be used to obtain O-carboxymethylchitosan. As a result, amphoteric ether derivatives
are formed [80,82,83]. N,O-carboxymethylchitosan is formed by the simultaneous
addition of carboxymethyl groups to the amino and hydroxyl loci of the glucosamine
part. This reaction was carried out in isopropanol at 50 ◦C by mixing chitosan with
sodium hydroxide and monochloroacetic acid, and the scheme of this process was
improved in such a way that the solubility of this compound in water was significantly
increased [82,84].

Chitosan carboxymethylated by-products are water-soluble and have antibacterial,
antimutagenic, and antioxidant properties [82,85–87]. Because of their rheological prop-
erties, O-carboxymethylchitosan and N,O-carboxymethylchitosan are valuable viscosity
inducers, as well as amphoteric electrolytes with antitumoralproperties. These derivatives
have hemostatic activity and are suitable for filtration membrane construction [82,88,89].
Carboxymethylated chitosan can be used to create hydrogels with appropriate adhesion
and pH-dependent swelling behavior [87,89]. All of the above attributes make chitosan
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derivatives suitable for applications such as pharmaceutics, wound care, cosmetics, tissue
engineering, biomedicine, metal absorption appliances, and food storage [80,82,90].

c. Quaternary ammonium chitosan derivatives. Another major class of chitosan deriva-
tives is quaternary ammonium salts. In alkaline solutions containing methyl io-
dide, the amino groups of chitosan can be quaternized to varying degrees. N-
methylpyrrolidinone represents the first step of the reaction [91]. Following that,
the reaction proceeds with chloroacetyl chloride in dimethysulfoxide as reagents,
followed by pyridine or amino-pyridine in a third reaction step [92].
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Chitosan quaternary derivatives are soluble in neutral and weakly alkaline solutions,
and they have antioxidant and antifungal properties as well as low toxicity [80,92,93].
Furthermore, because these polymers have better absorption and mucoadhesion than
chitosan, they are suitable for gene- and drug-delivery applications [80,91,94].

The excellent properties of quaternized chitosan-based multiple complexes have
facilitated the testing of a variety of current applications, including virus adsorption [95],
wound cure [96], and antimicrobial treatment [97,98].

Quaternized chitosans have excellent mechanical properties that regulate bioadhesion,
mucoadhesion, and biodegradation, making them effective antibacterial compounds. When
tested on human fibroblasts, they were found to be safe for use as joining tissues, and bio-
compatibility studies in rats revealed no negative effects when implanted subcutaneously.
As a result, it has been established that the dual quaternary chitosan/chitosan fiber is a
suitable bioactive material for tissue reconstruction, wound healing, and drug delivery
schemes [99].

Attempts to create networks from chitosan quaternary salts were only successful
when two components were used: polymers such as poly(vinyl alcohol) [100], poly(lactic
acid) [101], or polyvinylpyrrolidone [97] plus adjuvants such as graphene [94]. This study
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shows that quaternized chitosan-based nanofibers are promising biomaterials and has
prompted additional research to improve their design.

d. Phosphorylated chitosan. There are numerous methods for producing phosphorylated
chitosan derivatives. Chitosan can be phosphorylated with phosphorous pentoxide
or orthophosphoric acid via thermal treatment, depending on the applications. Fur-
thermore, phosphorylated chitosan can be efficiently produced via the reaction of
phosphorus pentoxide and methanesulfonic acid [58,102,103]. Increased hydroxyl
phosphorylation on chitosan at carbon 3 and carbon 6 improves the bacterial cell
wall. Chitosan can be mono- or disubstituted, depending on the chemical reaction
(Figure 2) [91].

Water-soluble phosphorylated chitosan has several wound-healing properties, includ-
ing hemostatic properties, metal chelating bonding, antioxidant, anti-inflammatory, and
osteoinductive properties, as well as angiogenic and bactericidal influence [104–106]. Be-
cause it avoids drug release in the acidic region of the stomach, this chitosan derivative can
also be used for the oral administration of drugs [91,105]. In diabetic rats, phosphorylated
chitosan accelerates wound healing [106].

e. Alkylated chitosans are important polysaccharide amphiphilic polymers that can
be produced through a variety of chemical reactions. The most common is the
chitosan reaction with acyl chlorides and anhydrides [91]. Chitosan can be acylated
in pyridine/chloroform or methanesulfonic acid with decanoyl chloride or hexanoyl
chloride to produce N,O-acyl chitosans [81,91]. Another method of acylation of
chitosan involves the use of p-nitrobenzoic acid, myristic acid, or hydrochloric acid in
an acetone–water complex [107]. The N-acylation of chitosan with acetic anhydride
can regenerate chitin [108]. Chitosan acylation results in chelation, aggregation, and
the formation of polymers with biological functionality [89,107]. O-acyl chitosan
was developed as a biodegradable coating material, and N,O-acyl chitosan shows
antifungal activity in relation to the length of the acyl chain [91,109].

f. Sulfated chitosan. Several methods exist for producing sulfated chitosan, including
the use of sulfuric acid or chlorosulfonic acid. It can be carried out in various con-
ditions and reaction media such as tetrahydrofuran, dimethylformamide, or formic
acid, or it can be microwave irradiated [91]. Depending on the sulfation reaction con-
ditions, S-chitin is mono-, di-, or tri-substituted and is frequently N,O-disubstituted
(Figure 2) [110,111].

Sulfated chitosans, or chitosans with a film-forming capacity, are valuable derivatives
due to their biological activities. They have antithrombotic and anticoagulant properties
similar to heparin, as well as antiviral, antibacterial, antioxidant, and enzyme-inhibitory
properties. They are antioxidants with anti-obesity properties due to adipogenesis inhibi-
tion [112–117]. Water-insoluble antitumoral drugs can be solubilized in sulfated chitosan mi-
celles, indicating that this polymer is suitable as a drug carrier in specific systems [112,118].
In addition, sulfated chitosan has high metal absorption properties, making it useful for
metal ion recovery systems [119].

Moreover, numerous additional derivatives have been produced and involved in
several practical sectors, such as thiolated, acetylated, or sulfonamide ones (Figure 3).
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3. Synergistic Action of Chitosan in Combination with Other Active Agents

Chitosan-based hydrogels are formulated in a variety of shapes and contain a wide
range of biomaterials [120], which are widely used for different biomedical applica-
tions [121] due to their non-toxicity, biodegradability, biocompatibility, stimulus responsive-
ness, and antibacterial activity [122]. Yet, one of the most significant drawbacks impacting
chitosan utilization is its low solubility [123] and poor mechanical qualities due to the high
water content [124]. Because of its cationic nature, chitosan can interact electrostatically
with sodium sulfate to generate gel particles [125] and with hydrophobic chemicals to form
amphiphilic particles with self-assembly and encapsulating capabilities [126]. Covalent and
non-covalent chitosan modification was used to improve chitosan-based hydrogels while
avoiding environmental concerns [127]. The use of plasticizers often increases flexibility,
but it is followed by a decrease in biopolymer film strength [128], making concurrently
improving strength and flexibility a crucial task. The development of double-network (DN)
hydrogels could provide a solution to these issues. Consequently, DN hydrogels were
created by incorporating a crosslinking network into a polymer network, which resulted in
better mechanical characteristics, stretchability, and shape recovery [129]. The first network
is usually hard and crosslinked skeletons, and the second network is poorly crosslinked
ductile substances [130]. Consequently, DN hydrogels have two interpenetrating networks,
the first of which is hard and quickly ruptures, and the second of which is soft and duc-
tile, assuring hydrogel stretchability [131]. Because of its inherent antibacterial qualities,
chitosan is one of the most valuable chemicals employed as the initial network, but other
polysaccharides could also be used [132,133].

DN hydrogels are constructed usually by chemically–chemically crosslinking, al-
though hybrid physically–chemically crosslinked DN hydrogels display improved self-
recovery, resistance, and biocompatibility [134–137].

Improved solubility of chitosan-based hydrogels was achieved by the grafting of the
quaternary ammonium group on the chitosan chain (QCS), which also improved the an-
tibacterial properties [138,139]. A glycidyl methacrylate complex QCS (QCSG) was further
developed for wound dressing due to the high versatility of QCS to polymerize with various
materials, creating injectable hydrogels in the wound [140]. In other experiments different
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hydrogels containing glycidyl methacrylate functionalized QCSG, gelatin methacrylate
(GM), and graphene oxide (GO) were prepared for the healing of wounds infected with
MRSA, having improved mechanical, electrical, and photothermal properties [141].

Short chitosan chains were attached to polyacrylamide (PAM) hydrogels to improve
their mechanical characteristics, and these hydrogels were subsequently treated with a
base solution to produce transparent DN hydrogels. The opaque DN hydrogels were
generated by treating these composite hydrogels with saline solution [136]. Furthermore,
the polymerization of the PAM network and polyaniline ensured the formation of DN
hydrogels that respond quickly to low pressure [142]. By combining two types of chitosan
polymers (catechol-modified methacryloyl chitosan and methacryloyl chitosan) and si-
multaneously crosslinking carbon–carbon double bonds and catechol-Fe3+ chelation, a
novel double-crosslinking DN injectable hydrogel with improved adhesion properties and
antibacterial activity was obtained [143].

Crosslinking chitosan-based hydrogels with b-glycerolphosphate disodium salt pen-
tahydrate yielded another functionalization. In vivo, the novel DN hydrogel demonstrated
acceptable outcomes for healing wounds infected with resistant bacteria, but in vitro find-
ings were not sufficient [144].

Another hydrogel dressing for wound healing with a suitable swelling ratio, biocom-
patibility, self-healing, and mechanical qualities was created via non-covalent bonding of
cordycepin and chitosan [145].

By combining quaternized chitosan-g-polyaniline with poly(ethylene glycol)-co-
poly(glycerol sebacate) (PEGS-FA), the antimicrobial activity and cytocompatibility of
chitosan-based hydrogels were improved [146]. Because of its superior biocompatibility
and antibacterial activity against E. coli and Staphylococcus aureus, this copolymer was
employed as an injectable dressing [147].

Crosslinking of konjac glucomannan and CS, as well as the insertion of silver nanopar-
ticles (AgNPs), resulted in a nanocomposite hydrogel dressing with suitable rheological
characteristics and biocompatibility [148]. Chitosan hydrogels loaded with AgNPs were
effective against both Gram + and Gram − bacteria and usually showed reduced toxicity
toward mammalian cells [149]. However, several toxic effects were reported depending on
the method of administration. Oral administration of AgNPs in rats showed Ag distribu-
tion in an order of blood > liver > kidneys [150]. Intravenous administration showed that
AgNPs were first accumulated in the liver and spleen, and then in other organs [151].

The combination of chitosan with GO improves the physicochemical and optical
properties of chitosan-based hydrogels [152]. Due to the synergistic effect of the compo-
nents, a hydrogel produced by crosslinking aminated-GO, chitosan, and cellulose had a
high antimicrobial activity against S. aureus despite the components’ poor antibacterial
capabilities [153]. A non-cytotoxic polymer based on chitosan formulated with methyl-
cellulose was developed and used as a nanofiller and drug carrier [154,155]. Polyvinyl
alcohol (PVA), polyethylene oxide (PEO), polyglycolic acid (PGA), polycaprolactone (PCL),
and polyvinylpyrrolidone (PVP) were combined with CS to create GO-CS nanocomposite
fibrous membranes for wound treatments [156,157]. The GO-coated CS/PLA (poly lactic
acid) nanofibrous scaffolds also showed an increased surface roughness, hydrophilicity,
and antibacterial activity against E. coli and S. aureus, facilitating cell proliferation and
wound healing [158].

A bioinspired dual bionic adhesive chitosan-based hydrogel grafted with methacrylate
(CS-MA), dopamine (DA), and N-hydroxymethyl acrylamide (NMA) with sealant capabili-
ties, hemostatic activity under wet conditions, antibacterial qualities, and biocompatibility
was recently produced. This polymer is a promising biomaterial for hemostasis and wound
healing because it replicates the polysaccharide adhesin of a staphylococcal biofilm and the
3,4-dihydroxy-L-phenylalanine (Dopa) of mussel adhesive protein [159,160].

Another technique for creating multifunctional hydrogels was to modify chitosan
with dodecyl, which acts as an anchor in the cell membrane and provides hemostasis and
tissue adhesion. Furthermore, because of the intrinsic antibacterial activity of chitosan,
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the innovative hydrogel was employed for wound healing [161], which is assisted by
sprayable hydrogels and bilayer dressings based on nanofiber and hydrogel. Some of these
biomaterials for wound healing are also based on gelatin grafting with methacrylate [162].

Chitosan-based DN and triple-network (TN) antimicrobial hydrogels with zwitterionic
sulfopropylbetaine (PDMAPS) as the second network and nonionic poly (2-hydroxyethyl
acrylate) (PHEA) as the final network were produced. Because of their biocompatibility,
nonfouling, and mechanical qualities, these hydrogels can be employed for wound treatment
and other biomedical applications [163]. Another DN crosslinked polysaccharide-based hy-
drogel for skin wound healing was created, which consists of collagen peptide-functionalized
carboxymethyl chitosan and oxidized methacrylate sodium alginate (SA) [164]. Chitosan or
thiolated chitosan functionalization with poly (ethylene glycol) diacrylate (PEGDA) ensured
the development of DN hydrogels with good mechanical and adhesion qualities to promote
skin regeneration [165].

In comparison to covalent crosslinked hydrogels, DN self-healing hydrogels were
created on the chitosan matrix by ionic crosslinking and hydrogel bonding. The reaction
of chitosan with poly(acrylic acid) results in the formation of DN hydrogel via Fef ion
coordination and hydrogen bonds that ensure regeneration when the hydrogel is disrupted,
with the crosslinking points being re-formed based on the hydrogel’s dual network. This
hydrogel also shows superior mechanical and electrical properties [166].

4. Biomedical Applications of DN Chitosan Hydrogels

The chemical structure of chitosan determines its functional qualities and thus its pri-
mary applications. The ratio of the two groups, N-acetyl D-glucosamine and glucosamine,
determines the degree of deacetylation of the biopolymer. The physicochemical and bi-
ological features such as crystallinity, solubility, hydrophilicity, degradation, reactivity,
adsorptive capacity, and cell responsiveness are determined by the molecular weight and
degree of deacetylation [167–170]. N-acetyl glucosamine can create hydrogen bonds and
hydrophobic interactions, which help to stabilize the molecule by providing stiffness and
enhancing its structural features. The amino groups of glucosamine protonate in acidic
circumstances, and the polymer becomes cationic, allowing interactions with a wide range
of molecules. Its positive charge is responsible for its antibacterial and biological activity
via contact with negatively charged cell membranes [65,171]. Furthermore, additional
chemical changes targeting the reactive amino and hydroxyl groups result in a diverse set
of derivatives with enhanced functionality [92].

4.1. Biomedical Applications of DN Chitosan Hydrogels with Antimicrobial and
Antibiofouling Properties

Biofouling of biomaterials is a critical challenge, since protein fouling, microbial
colonization, and biofilm development may impair medical devices and implants, leading
to a failure of intervention or treatment and even to life-threatening complications. Their
preliminary treatment with various antimicrobial agents and antibiotic-eluting coatings
was extensively investigated, although there is a risk of colonization with resistant bacterial
strains. Antibiotic-loaded biomaterials designed for the prolonged release of drugs raise
serious concerns for their weak efficacy and even more, for their possible contribution
to enhancing biofilm formation and selecting resistant mutants [172]. Non-antibiotic
alternatives, such as cationic polymers [173], antimicrobial non-adhesive coatings [174,175],
biomaterial-assisted delivery of bacteriophages [176], antimicrobial peptides [177], and
antimicrobial enzymes [178], have improved the ability to prevent biofouling and even to
treat antibiotic-resistant and recurring infections. Antibacterial biomaterials and delivery
systems of non-antibiotic therapeutics allow targeted delivery at the infection site, reducing
the potential systemic adverse effects [179].

Chitosan, as a polycationic polymer, exhibits inherent antibacterial action through
a variety of mechanisms, as shown in Figure 4: (i) cell membrane disruption caused by
the electrostatic interaction of its positively charged amino groups with the negatively
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charged microbial cell membrane; (ii) interference with microbial metabolism caused
by low-molecular-weight chitosan; (iii) inhibition of microbial growth caused by metal
chelation; and (iv) nutrient and oxygen restriction caused by a polymeric film absorbed on
the cell surface [180].
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It is generally accepted that antibacterial activity of the chitosan and its derivatives
is largely influenced by the molecular weight of chitosan, the degree of deacetylation of
chitosan, the chitosan source, the concentration of chitosan, the pH value, the temperature,
the cell growth phase, the type and concentration of composite materials, and the type
of microorganisms [181]. However, the inherent antimicrobial activity of chitosan is low;
thus, its complexation with different compounds is compulsory to improve its biological
properties [36].

The combined features of multi-network chitosan hydrogels confer several antibiofilm
and antibacterial actions. Antimicrobial activity against bacteria and fungi may be increased
in multi-network chitosan hydrogels. Polyvinyl alcohols, polyacrylamides, zwitterionic
materials, and other synthetic polymers used as a second network improve hydrogel
self-recovery, biocompatibility, biodegradability, antibacterial, and antifouling properties.

DN poly(N-(2-hydroxyethyl)acrylamide)/chitosan hydrogels crosslinked with citrate
or sulphate prepared by Zhang et al. [182] were described as “repelling and killing bacteria”.
The biomaterials displayed anti-protein-adsorption properties, with up to 5% fouling after
soaking in PBS for 0.5 h. L929 cell adhesion was negligible after 7 days and cytotoxicity was
also insignificant. Bacterial adhesion and biofilm formation were inhibited, especially on
DN chitosan hydrogel crosslinked with citrate. Similar antibacterial effects were observed
against Escherichia coli and Staphylococcus aureus [182]. DN and TN chitosan hydrogels with
zwitterionic polymers and polyacrylates also showed limited cell adhesion, cytotoxicity, and
biodegradability. A significant decrease of up to 95.5% in cell adhesion of mouse embryo
fibroblasts NIH 3T3 was observed compared to polystyrene controls. The cytotoxicity
was low and the TN hydrogel had lower cytotoxicity on NIH 3T3 and macrophage cells
than the DN hydrogel. No weight loss at all lysozyme concentrations was observed for
any of the multi-network gels after 160 h. The antimicrobial activity was evaluated using
the inhibition of growth after 24 h. It was 99.4% for E. coli ATCC25922 and 99.96% for
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S. aureus ATCC6538 on DN and 89.7% for E. coli ATCC25922 and 91.6% for S. aureus
ATCC6538 on TN hydrogels [163]. Double noncovalent network chitosan/hyperbranched
polyethylenimine/Fe3+ films exhibited distinct antimicrobial activity against E. coli and
against S. aureus. The inhibition zone diameters varied between 12.38 and 13.07 mm [183].
In conclusion, DN hydrogels are able to inhibit protein fouling and biofilm formation of
both Gram + as well as Gram − bacteria.

4.2. Biomedical Applications of DN Chitosan Hydrogels with Improved Mechanical and
Conductive Properties

Promising candidates for various applications including tissue engineering, implantable
medical devices, wearable electronics, and controlled drug delivery, conductive hydrogels
are able to transform external stimuli into a variation of electrical signals [184]. Living
organisms conduct electricity mostly using ions, while inorganic matter conducts electricity
mostly using electrons. The two systems, natural and synthetic, function through distinct
ionic and electronic circuits that are coupled at human–machine interfaces [185]. The engi-
neering of conductive hydrogels is based on electron conductors and/or ions into hydrogel
matrices [186]. Conductive hydrogels are usually fabricated by adding conductive mate-
rials (graphite, carbon nanotubes), conducting polymers (polyaniline), free ions, or liquid
metals to the biopolymer network. For instance, mussel-inspired composite chitosan-based
hydrogels were prepared for electroactive tissue engineering. Thus, Jing et al. [187] used chi-
tosan/graphene oxide while Liang et al. [188] employed gelatin-grafted dopamine, chitosan,
and polydopamine-coated carbon nanotubes. Guo et al. [189] investigated self-healable
injectable hydrogels based on dextran-graft-aniline tetramer-graft-4-formylbenzoic acid
and N-carboxyethyl chitosan. These conductive biomaterials proved their potential as cell-
delivery vehicles and scaffolds for skeletal muscle repair. PEGylated chitosan grafted with
aniline was developed as a cell-delivery carrier for cardiac cell therapy [190]. Chitosan-based
thermosensitive hydrogels with Au nanoparticles were prepared for applications in cardiac
tissue engineering [191]. Due to their biocompatibility, electron-conductive hydrogels are
widely employed in bioengineering applications. Ion conductive hydrogels may need addi-
tional strategies (such as hydrophobic coating) to limit water permeability, ion diffusibility
and leakage. Moreover, hydrophylic hydrogels cannot easily incorporate conductive hy-
drophobic polymers. However, the main drawbacks of early conductive hydrogels are their
limited elasticity, stretchability, strength, and toughness [192]. Therefore, DN hydrogels
were engineered by introducing a dynamic crosslinking network into a polymer to achieve
conductivity. Because of the intrinsic softness, deformability, biocompatibility, and electrical
properties, they are ideal candidates as flexible biosensors and actuators.

One significant disadvantage of chitosan-based hydrogels, especially those used in
pharmaceutical and medical applications, is their poor strength. The multi-network design
structure is one technique for increasing the hydrogel mechanical characteristics. As
mentioned previously, the term “double-network” hydrogel refers to two interpenetrating
networks with opposing mechanical properties formed by one natural and one synthetic
polymer. The optimal mechanical strength is obtained at a specific ratio of the two networks,
which is controlled by the cross-connecting density [193]. The hard and brittle network
serves as a sacrificial bond to effectively release energy, and the soft and ductile network
preserves the hydrogel integrity during the deformation process [131,194,195]. The difficult
preparation method and fussy performance regulation of DN hydrogels typically limit
their use in many industries [196].

Recent research has shown that the physical and mechanical properties of DN hydro-
gels can be widely customized by manipulating the hydrogel compositions and regulated by
varying the chitosan content. DN chitosan hydrogels with better mechanical characteristics
were successfully produced using a variety of aqueous solutions, polymerization initia-
tors, and conditions (Table 1). Jiang et al. [195], for example, created a chitosan-based DN
hydrogel by dissolving chitosan in an AlCl3·6H2O solution and adding dissolved acrylic
amide, acrylic acid, N,N′-methylenebisacrylamide, and 2-hydroxy-4′-(2-hydoxyethoxy)-
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2-methylpropiophenone. UV polymerization was used to create the hybrid crosslinked
hydrogel. The dynamic ionic interaction between Al3+ and the macromolecular chains re-
sults in properties such as high toughness, stretchability, and excellent form recovery. Using
comparable physically–chemically crosslinking procedures, a number of novel cytocompati-
ble chitosan-based DN and TN hydrogels were also created. Zwitterionic sulfopropylbetaine
was chosen by Zou et al. [163] as the second network, whereas nonionic poly (2-hydroxyethyl
acrylate) was employed as the final network. Besides having outstanding mechanical prop-
erties, multinetwork gels also have good antibacterial, cytocompatible, and antifouling
capabilities, which are important for biological applications such as wound dressing.

Zhang et al. [17] used the “one pot” approach to create an ultra-high-strength poly(N-
(2-hydroxyethyl)acrylamide/chitosan hydrogel in a -ketoglutaric acid solution, which
was then exposed to UV light. Citrate or sulfate ions were used to crosslink the chains
of chitosan. The biomaterial was suggested for use in biomedical procedures such as
the construction of artificial connective tissues, implantable biosensors, and bandages for
wound healing.

Gan et al. [196] used a two-step freezing/thawing and immersion procedure to create
a physically crosslinked poly(vinyl alcohol)-(2-hydroxypropyltrimethyl ammonium chlo-
ride chitosan) DN hydrogel without the use of organic solvents or harmful crosslinking
chemicals. Because of the reversible ionic networks, the hydrogels developed had excellent
elasticity, high strength, strong self-recovery, and anti-fatigue performance. The authors
demonstrated that the structures and mechanics of DN hydrogels could be altered flexi-
bly by varying the immersion period or the concentration of the trisodium nitriloacetate
solution, providing direction for the design and synthesis of environmentally friendly
DN hydrogels. To create a DN hydrogel with numerous hydrogen bonding contacts,
the freezing–heating alternative treatment was applied to a chitosan-poly(vinyl alcohol)
solution, followed by incubation in alkaline conditions. Superior compressive, tensile,
recoverability, and anti-swelling qualities, in combination with cell compatibility, showed
that the hydrogel could promote cell attachment and wound healing, making it suitable for
tissue engineering repair [197].

The integration of mechanical performances with high conductivity to meet the needs
for flexible sensors and other practical applications was also examined. DN electron-
conductive hydrogels with a high fracture energy were designed by generating polypyrrole
nanorods in hydrogel matrices consisting of polyacrylamide and chitosan [198]. A strain
sensor capable of detecting the movement of human joints through electrical signals was
built using a conductive composite hydrogel made of polyaniline, double-bonded modified
chitosan, and acrylamide. This strain sensor is anticipated to be used in wearable health
monitoring and multi-functional robot skin [199]. Further conductive DN hydrogels were
produced by Zeng et al. [200] using in situ polymerization of acrylamide in a carboxymethyl
chitosan aqueous solution, followed by immersion in a ferric chloride solution. The bio-
materials showed acceptable mechanical characteristics, such as adequate tensile strength,
prominent stretchability, and excellent fatigue resistance. These characteristics, along with
their high conductivity, allowed the biomaterials to accurately and repeatedly track the
motions of body joints, such as the finger and wrist, demonstrating their suitability for use
with flexible sensors.

The hydrogels created by Cong et al. [184] had a DN made of dynamically crosslinked
chitosan and a flexible polyacrylamide network with polyaniline doping. These hydro-
gels had high tensile stress, elastic modulus, tensile strength, and tensile strain. Their
impressive antifreezing abilities, ionic and electric conductivity, sensitive sensing, and
excellent UV resistance, in addition to their good flexibility, point to their potential for
use in harsh environments. Recently, a noncovalent crosslinking technique was used
to create novel chitosan/hyperbranched polyethyleneimine and chitosan/hyperbranched
polyethyleneimine/Fe3+ films [183]. After a small amount of iron ions was added, the film’s
tensile strength increased while the strain reduced. The notion of using such films as biosen-
sors for iron detection came from the usage of switches to raise and decrease the fluorescence
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of DN films using hyperbranched polyethyleneimine and Fe3+. Another ionic/electronic
dual conductive hydrogel was produced by Zhang et al. [142] by merging the chemically
crosslinked polyacrylamide and the physically crosslinked carboxymethyl chitosan-grafted-
polyaniline/Ag+ network. For wearable strain sensors and self-powered strain sensors with
potential applications in human health, the DN hydrogel demonstrated great stretchability,
reproducible adhesiveness, high sensitivity, and consistent electrical performance.

Table 1. DN chitosan-based hydrogels with improved mechanical and physical properties and their
proposed applications.

DN Chitosan-Based
Hydrogels

Aqueous Solution,
Polymerization Conditions Hydrogel Properties Proposed Application Ref.

DN: Chitosan/p(acrylic
amide-acrylic acid)-Al3+

AlCl3·6H2O
UV 365 nm, 8 W

Tensile strength 0.54 MPa;
elongation at break 2203.7%

Load-bearing artificial soft
tissues [195]

DN: Chitosan/zwitterionic
sulfopropylbetaine
TN: poly(2-hydroxyethyl
acrylate)

Acetic acid
α-ketoglutaric acid initiator;
N,N′-methylenebisacrylamide
crosslinker;
UV 365 nm, 8 h

DN: Compressive stress
84.7 MPa; tensile stress 292 kPa,
TN: Compressive stress
81.9 MPa; tensile stress 384 kPa

Wound dressing [163]

DN: Chitosan/poly(N-(2-
hydroxyethyl)acrylamide

“One-pot” method with
α-Ketoglutaric acid;
UV 365 nm, 8 h;
Soaked into saturated sodium
citrate or sodium sulfate
solution 20 min

Tensile strength 3.8 MPa; elastic
modulus 0.6 MPa; self-recovery;
fatigue resistance

Artificial connective tissues,
implantable biosensors, and
wound dressings

[182]

DN: 2-Hydroxypropyltrimethyl
ammonium chloride
chitosan/poly(vinyl alcohol)

Trisodium nitriloacetate
Freezing/thawing (−20 ◦C for
12 h/25 ◦C for 12 h) and
immersion (30–330 min)

Tensile stress 4.14 MPa;
compression stress 73.55 MPa;
elongation at break 832%

Tissue scaffolds, environment
areas, and actuators [196]

DN: Chitosan/poly (vinyl
alcohol)

Freezing (−20 ◦C)/heating
(25 ◦C) alternate treatment
(3 cycles);
Incubation in alkaline
KOH/urea solution at 45 ◦C

Compressive stress
60%–230 KPa; tensile stress
152 KPa–360%; recoverability
90.77% after five cycles

Tissue engineering [197]

DN: Chitosan/polyacrylamide/
polypyrrole nanorods

Acqueous solution
UV 365 nm, 2.8 mW/cm2, 5 min
FeCl3 solution at 4 ◦C 12 h

Compressive strength
6.5 MPa;Tensile strength
0.8 MPa; elongation at break
260%; conductivity 0.3 S/m.

Wearable electronic devices,
wound
dressings, sensors, and
electrostimulated drug-release
systems

[198]

DN: Double bond modifed
chitosan/polyaniline and
acrylamide

HCl solution
Immersion in FeCl3 solution,
thermal oxidative
polymerization

Tensile strength 0.3 MPa;
electrical conductivity 6.97 S/m;
strain sensitivity—gauge factor
15.9

Wearable health monitoring
and multi-functional robot skin [199]

DN: Carboxymethyl
chitosan/polyacrylamide

Aqueous solution
Immersion in FeCl3 solution

Tensile strength 440 kPa;
stretchability 715%; toughness
1658 kJ m−3; conductivity
3.1 S/m.

Flexible sensors [200]

DN: Chitosan/polyacrylamide
doped with polyaniline

2, 2′-azobis(2-methyl-
propionamidine)
dihydrochloride—initiator;
50 ◦C 12 hImmersion in
(NH4)2SO4 and HCl

Tensile stress 2.62 MPa; elastic
modulus 253.79 kPa; tensile
strength 2.62 MPa; tensile strain
up to 927%; ionic and electric
conductivity; sensitive sensing;
freezing resistance; UV
resistance

Devices for extreme
environments [184]

DN: chitosan/hyperbranched
polyethylenimine/Fe3+

Acetic acid solution
Iron ions
Thermal crosslinking at 60 ◦C
and drying at 45 ◦C

Tensile stress 42 MPa; tensile
strain up to 72%; UV resistance;
strong fluorescence emission

Biosensors [183]

5. Conclusions and Perspectives

Hydrogels containing chitosan and chitosan derivatives that are crosslinked with phys-
ical or chemical processes are promising biopolymers with remarkable properties. Because
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of their superior biocompatibility and biodegradability, as well as low immunogenicity
and toxicity, chitosan-based formulations for biomedical and other applications have been
developed. DN chitosan hydrogels are emerging biomaterials with improved self-recovery,
resistance, flexibility, biocompatibility, antimicrobial, and antifouling properties due to the
synergistic effect of the components. Chitosan-based hydrogels are formulated in a vari-
ety of shapes using various aqueous solutions, polymerization initiators, and conditions.
The different qualities of multifunctional hydrogels can be customized using a variety of
materials as the second network.

Multi-network chitosan-based hydrogels can be modulated with a wide range of
mechanical and conductive properties and explored as flexible biosensors for human health
monitoring, smart actuators, artificial tissues, wearable displays, drug-delivery systems,
and implants for cell regeneration. Depending on the application, further promising
strategies employ improvement of their performances and the development of engineered
platforms such as three-dimensional biomimetic scaffolds and dynamic scaffold-based
microenvironments. In the context of the antibiotic resistance crisis, engineered biomaterials
such as multi-network chitosan-based hydrogels are demonstrating the potential for a
progressive alternative in the antimicrobial approach.
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