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Abstract: The biomolecule deoxyribonucleic acid (DNA), which acts as the carrier of genetic infor-
mation, is also regarded as a block copolymer for the construction of biomaterials. DNA hydrogels,
composed of three-dimensional networks of DNA chains, have received considerable attention as a
promising biomaterial due to their good biocompatibility and biodegradability. DNA hydrogels with
specific functions can be prepared via assembly of various functional sequences containing DNA
modules. In recent years, DNA hydrogels have been widely used for drug delivery, particularly in
cancer therapy. Benefiting from the sequence programmability and molecular recognition ability
of DNA molecules, DNA hydrogels prepared using functional DNA modules can achieve efficient
loading of anti-cancer drugs and integration of specific DNA sequences with cancer therapeutic
effects, thus achieving targeted drug delivery and controlled drug release, which are conducive to
cancer therapy. In this review, we summarized the assembly strategies for the preparation of DNA
hydrogels on the basis of branched DNA modules, hybrid chain reaction (HCR)-synthesized DNA
networks and rolling circle amplification (RCA)-produced DNA chains, respectively. The application
of DNA hydrogels as drug delivery carriers in cancer therapy has been discussed. Finally, the future
development directions of DNA hydrogels in cancer therapy are prospected.

Keywords: DNA hydrogel; DNA nanotechnology; drug delivery; cancer therapy

1. Introduction

Hydrogels are three-dimensional physical or chemical polymer networks. Hydrogels
are composed of hydrophilic groups and are capable of absorbing and swelling in water
while not soluble in water, which endows hydrogels with the properties of biocompatibility,
viscoelasticity, and certain mechanical strength [1–3]. Due to their excellent properties,
hydrogels have been extensively used in drug delivery and tissue engineering [4–6]. Hydro-
gels can be prepared from various types of polymers, including both natural and synthetic
organic polymers. Natural hydrogels, which mainly consist of polymers, have been exten-
sively studied in the past decades, for example, collagen is one of the most representative
natural hydrogel materials, and has been investigated for use in the reconstruction of skin
and blood vessels [7,8]. In addition, hydrogels originated from natural polymers, such as
fibrin and alginate, have been developed as biocompatible materials for wound healing
and drug delivery in tissue engineering. Nevertheless, most natural polymer hydrogels
lack elasticity and are easy to degrade in vivo, which would restrict their applications as
drug carriers [9,10]. Synthetic polymer-based hydrogels were then developed to enhance
the stability and improve the property of hydrogels, and crosslinking agents were the
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decisive substances to the permeability and hydrophilicity of the hydrogels [11–14]. Poly(2-
hydroxyethyl methacrylate) (HEMA) was the most studied crosslinking agent, as early as
1960, WiChterle and Lim synthesized cross-linked HEMA hydrogels [15]. Later in 1995,
Em Ende and Peppas prepared ionizable pH-sensitive hydrogels using acrylic acid (AA)
and HEMA as original materials, with ethylene glycol dimethacrylate as a crosslinking
agent. They investigated the diffusion of solutes, such as drugs and proteins in the porous
network of hydrogel, as well as the changes in the hydrogel formation under environmental
stimuli [16]. Apart from synthetic polymers introduced above, poly (vinyl alcohol) (PVA)
and poly(ethylene glycol) (PEG) were used to prepare hydrogels as well [17]. Another
widely used and representative organic polymer for the preparation of hydrogel was poly
(N-isopropylacrylamide) (PNIPAM), whose lower critical solution temperature (LCST) was
32 ◦C and could finish phase transition from liquid under LCST to solid hydrogel state
above the LCST [18,19]. The use of PNIPAM as an original material for hydrogel propelled
the development of temperature-responsive hydrogels and made the stimuli-responsive
hydrogels a research hotspot [20]. We recently reported the fabrication of a bioinspired
hydrogel with unique mechanical responsiveness, the hydrogel was developed via the
copolymerization of N-hydroxyethylacrylamide with a dynamic coordination system com-
posed of telluroether (Te) monomer and platinum (Pt) ion. The established responsive
hydrogel exhibited switchable and tunable porous structures and mechanical properties,
which enriched the development of mechanically responsive and deformable materials [21].
In addition to chemically cross-linked hydrogels, supramolecular hydrogels formed via
physical interactions between molecules were also developed rapidly. The assembly of
supramolecular hydrogels is based on multiple weak interactions, which endows the
hydrogels with reversible sol-gel transition ability and excellent stimuli-responsiveness
property [22]. Peptides- and proteins-based hydrogels are a typical class of supramolecular
hydrogels. Tang et al. reported a nanofiber-like hydrogel formed by pentapeptides. The
hydrogel showed adjustable mechanical properties through changing the sequence of
amino acid, pH value of solution, and peptide concentration, demonstrating the promising
applications in cell delivery and tissue engineering [23]. Besides, polysaccharides, nucleic
acids, and synthetic polymers can also be bound together to form supramolecular hydrogels
via hydrogen bonding, hydrophobic interactions, electrostatic interactions, etc. [24–26].

With the development of DNA (Deoxyribonucleic acid) nanotechnology, DNA has
been used as a promising building block for the preparation of abundant two/three di-
mensional biomaterials, among which, DNA hydrogels have been established and widely
studied [27]. DNA hydrogels are DNA-based soft materials composed of polymeric net-
works on the basis of cross-linked DNA chains, which belongs to the category of typical
supramolecular hydrogels [28]. The first DNA hydrogel was designed and prepared by
Nagahara and Matsuda in 1996 [29]. According to the components, DNA hydrogels can
be classified into pure DNA hydrogel and hybrid DNA hydrogel [30]. In addition, DNA
hydrogels also can be classified into macron sized bulk hydrogels and sub-micron sized
nanogels according to their size scale. The precise base pairing principle of DNA molecules
allows for precise sequence programmability, structural controllability and exceptional
molecular recognition ability. These biological properties make DNA an attractive biomate-
rial for the “customization” of DNA-based polymers [31]. DNA has been widely used in
biomedical fields such as disease diagnosis, protein engineering, drug and gene delivery,
disease treatment, cell engineering, etc. [32]. DNA hydrogels keep high water-content and
exhibit excellent biocompatibility, making them suitable biomaterials. Additionally, DNA
modules within the hydrogel possess unique recognition abilities, enabling them to directly
target biomarkers on cell surface. These properties of DNA hydrogels provide significant
advantages in the bioengineering field.

It is imperative that a precise and controllable drug delivery system play an extremely
significant role in cancer treatment [33]. Currently, plenty of drug delivery systems have
been developed for the treatment of cancer. From the first oral controlled release formu-
lation Spansule developed by Smith et al. in 1950 to today’s lipid nanoparticles (LNP)
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for delivery of RNA interference drugs [34], remarkable research achievements have been
acquired in the drug delivery field, and the drug sustained release time reached 24 weeks
from the initial 24 h, which showed the great improvement of drug delivery systems [17].
The early drug delivery systems focused on developing controlled release formulations.
In 1989, the U.S. Food and Drug Administration (FDA) approved the first long-acting in-
jectable formulation Lupron Depot, which was based on poly(lactide-co-glycolide) (PLGA).
PLGA-based formulations exhibited a long history of safety and were widely used over
the past years [35]. However, the absence of characterization of PLGA limited the devel-
opment of PLGA-derived polymers as drug carriers. Later, PEGylated liposomes were
developed to deliver anti-cancer drugs for their lower immunogenic responses. Doxil was
the first approved PEGylated liposomal formulation, which increased uptake of tumor
and decreased drug toxicity of chemotherapeutic doxorubicin (DOX) [36,37]. Nevertheless,
the delivery systems mentioned above had a drawback in common: the process of drug
delivery was difficult to control, and the anti-cancer drugs would damage normal cells
in vivo as well, which would simultaneously diminish the therapy efficiency. Thus, the
problem was controlled drug encapsulation and release. In recent years, the development
of nanotechnology has promoted the progress of drug delivery systems, which were termed
as nanomedicine [1]. As commonly used carriers for drug delivery, nanoparticles such
as polymersomes and micelles possess the ability to encapsulate a variety of drugs with
controllability and the ability to be functionalized, thereby presenting ideal application
prospects in cancer therapy [38,39]. However, these drug delivery carriers mainly consist
of highly toxic organic polymers, which are difficult to degrade in vivo [40]. Therefore, it
is crucial to develop biocompatible and biodegradable materials for drug delivery. With
excellent biocompatibility and well mechanical properties, DNA hydrogels have been
explored as drug delivery systems which can encapsulate and deliver a wide range of
therapeutics, including small molecule drugs such as DOX and nucleotide drugs such as
microRNA (miRNA), as well as biomacromolecules such as proteins, peptides, and stem
cells, to the target sites in vivo. Moreover, as a kind of biomaterial derived from organisms,
DNA could be degraded by nuclease over time [41–43]. Besides, DNA hydrogels have
good biodegradability and thus present minimal toxic side effects to organisms. All these
mentioned properties make DNA hydrogel an outstanding candidate for drug delivery.
Previous studies have reviewed the applications of DNA hydrogels in the biomedical
field, including molecular diagnostics, biosensing, cell culture, cancer therapy, etc. [28,44].
However, to the best of our knowledge, DNA hydrogel-based drug delivery system for
cancer therapy has not been systematically reviewed.

In this review, we focus on the hydrogels which are formed by branched DNA modules,
hybrid chain reaction (HCR)-synthesized DNA networks and rolling circle amplification
(RCA)-produced DNA chains, respectively, and their applications in drug delivery for
cancer therapy. We discuss and summarize their use in various modalities, including
chemotherapy, gene therapy, immunotherapy, photo dynamic/thermal therapy, and coop-
erative therapy. The property of the three construction strategies of DNA hydrogels were
summarized (Table 1). The representative works are summarized to show how to design
DNA sequences to obtain different DNA hydrogels with appealing properties for applica-
tions in drug delivery and cancer therapy. In addition, the advantages and the limitations of
DNA hydrogels are discussed. Finally, we thoroughly discussed the potential applications
and future developments of DNA hydrogels in drug delivery for cancer therapy.
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Table 1. The summary of DNA hydrogels formed via branched DNA modules, hybrid chain reaction
(HCR)-synthesized DNA networks and rolling circle amplification (RCA)-produced DNA chains,
respectively, and their application of drug delivery for cancer therapy.

Type of DNA
Hydrogels Formulation Strategy

Advantages
Strategy

Limitations
Delivered

Drugs
Application in

Cancer Therapy Ref.

Non-enzyme-
mediated
branched
hydrogel

stimuli
responsiveness

(pH,
temperature)

controllable
symmetry;

multivalency;
enzyme-free

high concentration
for preparing

hydrogel

ASOs;
CPG immunotherapy [45,46]

Enzyme-
mediated
branched
hydrogel

strand
extension
(ligase)

controllable
symmetry;

multivalency;
short reaction

time

high concentration
for preparing

hydrogel;
high cost

Camptothecin;
DOX;

transcribed
siRNA

chemotherapy;
chemo-photo

thermal synergistic
therapy

gene therapy

[47,48]

Pure hydrogel
formed by

HCR-
synthesized

networks

linear/clamped
amplification

isothermal
amplification;
enzyme-free;
convenient
operation

high requirements
for sequence

design;
require reaction

carrier (AuNP, cell
membrane, . . . ) for

HCR

DOX;
siRNA

chemo-gene
synergistic therapy;

chemotherapy
[49,50]

Hybrid
hydrogel

formed by
HCR-

synthesized
networks

hybrid with
other or-

ganic/inorganic
material before

HCR
amplification

isothermal
amplification;
enzyme-free;
high stability

high requirements
for sequence

design;
lower initiation

efficiency
influenced by

complex
conformation

siRNA;
DOX

gene therapy;
chemotherapy [51–53]

Pure hydrogel
formed by

RCA-produced
long DNA

chain

physical
crosslinking
after RCA
reaction

isothermal
amplification;

convenient
operation

high requirements
for sequence

(template and
primer) design;

high cost
low stability

DOX;
DNAzyme and
CRISPR/Cas9

system;
siRNA;

CPG

chemotherapy;
gene therapy;

immunotherapy
[54–56]

Hybrid
hydrogel

formed by
RCA-produced

long DNA
chain

hybrid with
other or-

ganic/inorganic
material after

RCA
amplification

isothermal
amplification
high stability

high requirements
for sequence

(template and
primer) design

high cost;
complex operation
for hybridization

SiPcCl2;
DOX;
ASOs

gene-photo thermal
synergistic therapy;

chemo-gene
synergistic therapy

[57,58]

2. The Preparation and Drug Delivery Applications of DNA Hydrogels
2.1. Branched DNA Formed Hydrogel
2.1.1. Branched DNA

Branched DNA is a synthetic structure with at least three DNA strands extending from
each branched point. Distinct from linear DNA and circular DNA, branched DNA has a
more complex topological structure, which can provide more flexible molecular component
primitives for the constructing DNA functional materials [59,60]. With rational molecular
design, branched DNA monomers could form cross-linked hydrogels.

The construction strategies of DNA hydrogel from branched DNA can be divided into
enzyme- and non-enzyme mediated assembly (Figure 1). In 2006, Luo et al. for the first
time constructed hydrogels via efficient ligase-mediated assembly of branched DNA [61].
They designed three types of branched DNA monomers with palindromic complementary
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sticky ends to form DNA hydrogels through the T4 DNA ligase catalyzed DNA ligation. In
2013, Luo and colleagues developed another strategy of enzyme-catalyzed DNA hydrogel.
They used thermostable branched DNA strands as modular primers for polymerase chain
reactions (PCR). During the PCR, these primers were extended and connected to form a
network structure [62].
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Figure 1. The preparation strategies of branched DNA hydrogels: (A) enzyme-mediated assembly.
(B) non-enzyme-mediated assembly.

In 2009, Liu group reported a pH-triggered DNA hydrogels, which was constructed by
the formation of intermolecular i-motif structures without enzyme catalysis [63]. The i-motif
was folded in acidic environment, so the sol-gel transformation could be accomplished by
controlling the pH value of the solution. Afterwards, they created a pure DNA hydrogel
assembled from a Y-scaffold and a linker DNA. The responsive temperature of the DNA
hydrogel could be adjusted by tailoring the sticky ends of the building blocks, and the
restriction sites could be inserted into the linker sequence to achieve the enzyme-mediated
control of sol-gel transition [64]. In 2016, Nishida et al. reported a hydrogel assembled
from Takumi-shaped DNA. The assembly process did not need enzymes, but instead of
the complementary base pairing at the 5′ and 3′ ends of the Takumi [65]. Nevertheless, the
formation of branched DNA-based hydrogel requires high DNA concentration due to the
mono-DNA modules, which increases the preparation cost.

2.1.2. Application in Cancer Therapy

Branched DNA hydrogels showed a great potential in drug delivery and tumor
therapy due to their programmability, controllability, size-tunability, multivalency, and
excellent molecular recognition ability [32]. The sequences of branched DNA strands can
be designed to link with different functional elements, such as functional nucleic acids and
proteins, which endowed branched DNA hydrogels with outstanding targeting and drug
release capabilities.

A variety of therapeutic genes and cytosine-phosphate-guanine (CpG) motifs can
be incorporated into branched DNA monomers. As a result, the prepared DNA hydro-
gels can be applied in gene therapy and immunotherapy of cancer. To construct targeted
gene delivery vectors, Li and coworkers designed two Y-monomers, DNA linkers and
integrated aptamers, disulfide bonds, and therapeutic genes into Y-monomers, so that the
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prepared DNA hydrogels were capable of delivering therapeutic genes to specific target
cells for the treatment of cancer [45]. The self-assembled DNA hydrogels could target
specific tumor cells via aptamers recognition. Furthermore, the disulfide bond endowed
the DNA hydrogels with special stimulus responsiveness. As a reducing agent in the
cytoplasm, reduced glutathione (GSH) could degrade the hydrogels after they are taken up
by tumor cells, thus achieving the selective release of antisense oligonucleotides (ASOs),
ribozymes and other therapeutic genes in the cells. Shao and coworkers developed an
injectable DNA supramolecular hydrogel vaccine (DSHV) system formed from Y-scaffolds
and DNA linkers [46]. CpG motifs served as a linker and was incorporated into Y-scaffolds
DNA, the hydrogel constructed with these monomers could effectively recruit and acti-
vate antigen presenting cells (APC) to produce a variety of cytokines in vitro and in vivo
(Figure 2A). Experiments showed that the DSHV system could stimulated APCs to se-
crete 365 pg/mL Interleukin (IL)-6 and 12 pg/mL IL-12, which was comparable to that
in 5 µg/mL lipopolysaccharide treated groups. Therefore, DSHV showed a remarkable
efficacy in tumor immunotherapy through enhancing immune response (Figure 2B).
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Figure 2. Branched DNA formed hydrogels for cancer therapy: (A) The recruitment and activation
of APCs by the DNA supramolecular hydrogel vaccine (DSHV) system. (B) Different samples
stimulated APCs to produce IL-6 and IL-12. Reproduced with permission. * p < 0.05, *** p < 0.001.
n.s. = not significant. Copyright 2018 [46], the American Chemical Society. (C) DNA hydrogel
incorporated with gold nanorod for cancer drug delivery. Reproduced with permission. Copyright
2015 [48], Royal Society of Chemistry. (D) Schematic illustration of RNA interference (RNAi) caused
by RNAi-exhibiting gel (I-gel) in living cells. Reproduced with permission. Copyright 2018 [47],
Springer Nature.

Therapeutic agents and nanoparticles with antitumor effects can also be incorporated
into branched DNA hydrogels via chemical crosslinking or physical interaction. These drug
delivery systems possess the capability to achieve selective drug release in vivo. Zhang
et al. coupled camptothecin, a natural anticancer drug, to the backbones of phospho-
rothioate DNA [66]. These DNA strands could self-assemble into two types of Y-shaped
building blocks, which were then cross-linked to form injectable drug-containing hydro-
gels. In addition to chemical crosslinking, electrostatic interaction was usually used as
a material loading method as well. In the study conducted by Park group, they utilized
X-shaped DNA to form a highly negatively charged nanogel, which could effectively load
positively charged gold nanorods (AuNRs) through electrostatic attraction, resulting in a
stable AuNRs-loaded DNA hydrogel [48]. The small molecule drug DOX was subsequently
loaded into the material. The gels could release AuNRs and DOX through near-infrared re-
sponse, which was an anti-tumor strategy combined with chemotherapy and photothermal
therapy (PTT) (Figure 2C). The relative tumor volume of mice treated with DOX-AuNRs-
DNA hydrogels was 3.9 times that of the PBS group, showing that DOX-AuNRs-DNA
hydrogels could effectively inhibit the tumor growth. Besides traditional anticancer drugs,
glucose oxidase (GOx) also could be loaded in the branched DNA hydrogel, which could
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deplete glucose and trigger starvation therapy and provide more diversified strategies for
cancer therapy [67].

Different therapeutic drugs can be co-loaded in DNA hydrogels to achieve com-
bined therapy of tumors. Wei et al. designed cruciform DNA (C-DNA) containing a
pH-responsive i-motif structure and a fusion sequence including MUC1 aptamer and CpG
oligodeoxynucleotides (ONDs) [68]. DOX could be inserted into assembled DNA nanogels,
resulting in hybrid materials with precise delivery, powerful immunostimulatory activity,
and chemotherapeutic effects. The DNA tetrahedral nanogels prepared by Tang et al. were
assembled from aptamer-functionalized DNA tetrahedrons as monomers and ASOs as
crosslinking agent [69]. Then DOX was loaded into the hydrogel. DOX and ASOs could
release through the reduction response of GSH to disulfide bonds, which could inhibit
multidrug resistant tumors.

In addition to delivering small molecule drugs, branched DNA hydrogels can also be
used to build systems which could produce RNA and proteins [27], thus providing a plat-
form for the efficient production of anti-tumor nucleic acids and proteins in cells. Song et al.
integrated plasmid DNA in branched X-shaped DNA (X-DNA) formed hydrogel (I-gels).
The plasmids in I-gels could transcribe siRNA, to evaluate the RNA interference (RNAi)
efficiency of I-gels, they examined the green fluorescent protein (GFP) interference effect.
The results showed that I-gels possessed 9.4 times and 2.8 times higher RNAi efficiency
than free plasmids and plasmids-complexed liposomes, respectively (Figure 2D) [47].

2.2. HCR-Synthesized DNA Networks Formed Hydrogel
2.2.1. HCR-Synthesized DNA Networks

HCR is one of isothermal amplification methods without enzyme participation, and
was proposed by Pierce and Dirks in 2004 [70]. The HCR would spontaneously proceed
due to the Gibbs free energy driving force. In the HCR system, hairpins H1 and H2 undergo
an alternating reaction of strand substitution in the presence of a trigger strand initiator,
forming a long double-stranded DNA structure based on the principle of base pairing. At
present, a variety of signal amplification technology based on HCR have been developed.
Wang group prepared supramolecular DNA scaffolds on the surface of cell membranes via
HCR strategy for the protection of mammalian cells, and ultra-sensitive detection methods
of extracellular vehicles (EVs) were developed based on aptamer targeting combined with
HCR amplification technology [71,72]. By designing complementary sequences between
DNA linkers, long DNA strands obtained from HCR can be cross-linked to form DNA
hydrogels, however, the crosslinking efficiency could be affected by the complex confor-
mation and steric hindrance due to the functional motifs which could only be designed at
the end of hairpins. Generally, the initiator strand is designed to anchor on the interface of
carriers such as bio-interface and gold nanoparticle (AuNPs) interface. When hairpins were
introduced, the HCR would be triggered and DNA hydrogel could be formed. In addition,
the initiator could be modified and hybridized with other organic/inorganic polymers to
prepare hybrid HCR-synthesized DNA networks-based hydrogel (Figure 3).
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Figure 3. (A) The schematic of HCR principle. (B) Pure DNA hydrogel formed by HCR-synthesized
networks. (C) Hybrid DNA hydrogel formed by HCR-synthesized networks.

2.2.2. Application in Cancer Therapy

As mentioned before, the key issue of a drug delivery system is to establish biocom-
patible and release-controllable drug carriers. Based on HCR amplification technology,
Na group prepared a core-shell spherical 3D DNA hydrogel for synergistic cancer ther-
apy [49]. The siRNA was used as initiator strand to prepare DNA cores, then hairpins
H1, H2, H3, and H4 were added for polymerization (Figure 4A). The DNA hydrogel core
was encapsulated by a liposome membrane functionalized with catalase and folic acid,
enabling synergistic targeting of catalase and functional folic acid chemotaxis. Compared
with traditional passive or active targeting, the synergistic targeting greatly enhanced the
cellular uptake of targeted cells. Furthermore, ATP and GSH responsiveness were achieved
by ATP aptamers and S-S bonds, respectively. H1 and H3 hybridized with Survivin mRNA
to release siRNA and DOX for synergistic cancer therapy. Pei and coworkers developed
a switch-engineered spherical nucleic acid-templated hydrogel (SNAgel) that achieved
precise control of drug release through dissociation of the DNA shell by ATP triggered
structural transformation of DNA switch (Figure 4B–D) [50]. The DOX could be rapidly
released due to the ATP-triggered conformational change and consequent the dissociation
of SNAgel. In the presence of ATP, about 80% of the loaded DOX was released from
SNAgel. In addition, the author found that the kinetic control of drug release could be
achieved by adjusting the length of toehold sequences. The novel controlled burst release
strategy reduced the drug dose and increased drug efficacy, demonstrating great potential
for precise cancer therapy.
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Figure 4. Pure DNA hydrogel prepared through HCR strategy for cancer therapy. (A) Schematic
of the design and preparation of core-shell spherical 3D DNA hydrogel via HCR for synergistic
cancer therapy. Reproduced with permission. Copyright 2021 [49], the American Chemical Society.
(B) Spherical nucleic acid-templated hydrogel (SNAgel) via HCR strategy for programming control-
lable DOX delivery. (C,D) ATP triggered intracellular burst release of SNAgel. Reproduced with
permission. ** p < 0.01, *** p < 0.001. Copyright 2019 [50], the American Chemical Society.

Hybrid DNA hydrogel could also be prepared via the hybridization between DNA
molecules and other polymers. We recently developed a hybrid DNA nanogel for siRNA
delivery via HCR. In our work, we firstly prepared DNA cross-linked polymeric nano-
framework (DPNF) through precipitation polymerization method. When the designer
harpins DNA H1 and H2 were introduced into the solution, cascade hybridization between
harpins DNA H1 and H2 could be initiated by the DNA cross-linkers in the DPNF and DNA
nanogel could be formed (Figure 5A). The harpin H2 was designed to tether with siRNA
sequences, thus resulting successful loading of siRNA in DNA nanogel along with the
cascade assembly of H1 and H2. The siRNA loaded DNA nanogel could be easily uptaken
by tumor cells and escaped from lysosome to cytoplasm with the mediating of methacry-
lamidophenyl (MAPBA) on the polymer framework. Moreover, the tethered sequences
between siRNA and H2 were designed as ATP aptamer, and when the DNA nanogel-siRNA
reached cytoplasm, the release of siRNA could be specially triggered via ATP. Moreover,
both the in vitro and in vivo experiment showed the significant gene knockdown of PLK1
which was overexpressed in tumor cells [52]. Nanomicelles are colloidal constructures
composed of amphiphilic monomers that usually have a small hydrophobic head and a
long hydrophilic tail [73]. The nanomicelles could also encapsulate hydrophobic drugs to
improve the imaging and diagnostic sensitivity. We discovered that DNA hybrid micelle
nanogel could be successfully achieved by using cascade clamped hybridization chain reac-
tion (C-HCR) technology, thus effectively realizing the loading and delivery of siRNA. The
core of the nanomicelle was co-assembled with tellurium/Mn(II) containing amphipathic
molecules and cholesterol-modified DNA, and the DNA was exposed on the outside of the
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micelle. In the presence of the micelle, the designer hairpins H1 and H2 would be initiated
to assemble inside the micelle via C-HCR strategy, in which process the siRNA tethered
on H2 could be assembled in the formed DNA network on the outside of the micelles
(Figure 5B). The tellurium/Mn(II) containing amphipathic molecules in the core could
catalyze Fenton-like reaction of hydrogen peroxide to produce hydroxyl radicals, which
could combine with the siRNA generated gene regulation to inhibit the progression of
cancer. The DNA hybrid nanogel achieved synergistic chemical and gene regulation based
on C-HCR process, which provided a novel strategy for cancer therapy and illustrated that
the C-HCR strategy could apply to drug delivery systems [51]. In addition, Willner and
his colleagues prepared a pH-responsive DNA-acrylamide hybrid hydrogel microcapsules
via assembly of DNA on poly(allylamine hydrochloride) (PAH)-CaCO3 nanoparticles, and
thereby achieved efficient loading and controlled release of the chemotherapeutic drug
DOX [53]. The initiating DNA chain was adsorbed on the DOX-loaded PAH-CaCO3, and
when hairpins H1 and H2 were introduced, the HCR reaction was then triggered on the
surface of PAH-coated CaCO3 to form a coating layer. Then the PAH-CaCO3 core was
dissolved by adding ethylenediaminetetraacetic acid (EDTA) to form DOX-loaded DNA
microcapsule drug delivery system. The formation and dissolution of this microcapsule
could be achieved through pH-responsiveness based on the formation of i-motif structure
under acidic conditions, which would reduce the stiffness of the microcapsule hydrogel
layer to enhance its fluidity, thus realizing the release of DOX (Figure 5C). The cytotoxicity
assay demonstrated high cytotoxicity of pH-responsive hydrogel microcapsule towards
MDA-MB-231 cells, which exhibited ca.35% death rate after a five-day interval (Figure 5D).
The strategy demonstrated the good biocompatibility and efficient drug loading and de-
livery capability of the DNA hydrogel-based drug delivery system, which presented the
unique advantages of stimuli-responsive DNA structures in certain conditions.
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Figure 5. Hybrid DNA hydrogel prepared through HCR strategy for cancer therapy. (A) Schematic of
the preparation and drug release of hybrid DNA nanogel. Reproduced with permission. Copyright
2021 [52], Nature Portfolio. (B) The principle of hybrid DNA nanogel based on C-HCR-synthesized
networks. Reproduced with permission. Copyright 2021 [51], Wiley-VCH Verlag GmbH. (C) The
schematic of pH-responsive hybrid DNA hydrogel for the DOX release. (D) Cytotoxicity assay of
the pH-responsive hydrogel loaded with DOX into MCF-10A cells and MDA-MB-231 malignant
breast cancer cells. *** p < 0.001. Reproduced with permission. Copyright 2017 [53], Royal Society
Chemistry.
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2.3. RCA-Produced DNA Chain-Based Hydrogel
2.3.1. RCA-Produced DNA Chain

Besides branched DNA modules assembly and HCR-synthesized DNA networks
crosslinking, another universal assembly strategy for the preparation of DNA hydrogel
is rolling circle amplification (RCA). RCA is an isothermal enzyme-based amplification
method to synthesize ultralong DNA strands, with template strand, primer, and phi29
enzyme as the main components. The entire amplification process involves three steps:
annealing to form circle DNA template, T4 ligase connection and phi29 enzyme-based am-
plification. RCA amplification method has been extensively used in cell engineering fields
such as the capture of cells, detection of miRNA and the delivery of small molecules [74].
Zhang et al. used artificial DNA base to fabricate DNA nanoflowers (DNFs) using RCA
technology, they incorporated a ferrocene base inside the DNFs to manipulate the size
of DNFs and endowed DNFs with self-degradability via Fenton’s reaction, thus achiev-
ing the improvement of the therapeutic efficacy [75]. Through physically intertwining
of two complementary long DNA strands, or hybridization of RCA product with other
organic/inorganic materials, RCA chain-based DNA hydrogel could be formed (Figure 6).
This DNA hydrogel is easy to synthesize because of the simple reaction process, wherein
the template and primer sequences require rational and accurate design.

Gels 2023, 9, x FOR PEER REVIEW 11 of 18 
 

 

malignant breast cancer cells. ***p < 0.001. Reproduced with permission. Copyright 2017 [53], Royal 

Society Chemistry. 

2.3. RCA-Produced DNA Chain-Based Hydrogel 

2.3.1. RCA-Produced DNA Chain 

Besides branched DNA modules assembly and HCR-synthesized DNA networks 

crosslinking, another universal assembly strategy for the preparation of DNA hydrogel is 

rolling circle amplification (RCA). RCA is an isothermal enzyme-based amplification 

method to synthesize ultralong DNA strands, with template strand, primer, and phi29 

enzyme as the main components. The entire amplification process involves three steps: 

annealing to form circle DNA template, T4 ligase connection and phi29 enzyme-based 

amplification. RCA amplification method has been extensively used in cell engineering 

fields such as the capture of cells, detection of miRNA and the delivery of small molecules 

[74]. Zhang et al. used artificial DNA base to fabricate DNA nanoflowers (DNFs) using 

RCA technology, they incorporated a ferrocene base inside the DNFs to manipulate the 

size of DNFs and endowed DNFs with self-degradability via Fenton’s reaction, thus 

achieving the improvement of the therapeutic efficacy [75]. Through physically intertwin-

ing of two complementary long DNA strands, or hybridization of RCA product with other 

organic/inorganic materials, RCA chain-based DNA hydrogel could be formed (Figure 6). 

This DNA hydrogel is easy to synthesize because of the simple reaction process, wherein 

the template and primer sequences require rational and accurate design. 

 

Figure 6. (A) The schematic of RCA principle. (B) Pure hydrogel formed through self-assembly of 

RCA-produced long DNA chain. (C) Hybrid hydrogel formed through hybridization of DNA chain 

and organic/inorganic polymer. 

2.3.2. Application in Cancer Therapy 

Benefitting from the designable property of RCA template sequence, different thera-

peutic agents could be loaded and delivered. In addition to chemotherapeutic drugs and 

small molecule nucleic acid drugs, functional sequences such as CPG and ASO sequences 

could be designed and amplified via RCA as well, providing more treatment options for 

cancer therapy. Here in this section, RCA-produced long DNA chain-based DNA hydro-

gel for chemotherapy, gene therapy, immunotherapy, photo dynamic/thermal therapy, 

and cooperative therapy are summarized. 

Gu and coworkers prepared a biodegradable DNA nanogel based on RCA technol-

ogy for the tumor chemotherapy, the DNA nanogel consisted of DNA nanoclew (NCl) 

formed from long single RCA strand and acid-responsive nanocapsules (Nca) containing 

DNase 1 [54]. NCl was designed with more G-C base pairs for enhancing the loading ca-

pacity of DOX. The author demonstrated the endocytosis pathway of the DNA nanogel 

and when the DNA nanogel was taken up by cancer cells MCF-7 through folic acid (FA) 

mediated endocytosis, the Nca polymer shell would be degraded under the lysosome 

antisense oligonucleotide 

(ASO)
DNA aptamer CPG oligonucleotide DNAzyme

DNA ligaseprimer

template

Phi 29

dNTPs

A)

z

DNA chain 1

DNA chain 2

B) C)

Self-assembly
hybridization

DNA chain 

organic/inorganic 

polymer

pure hydrogel formed through 

self-assembly of RCA-

produced long DNA chain

hybrid hydrogel formed 

through hybridization of 

DNA chain and polymer
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2.3.2. Application in Cancer Therapy

Benefitting from the designable property of RCA template sequence, different thera-
peutic agents could be loaded and delivered. In addition to chemotherapeutic drugs and
small molecule nucleic acid drugs, functional sequences such as CPG and ASO sequences
could be designed and amplified via RCA as well, providing more treatment options for
cancer therapy. Here in this section, RCA-produced long DNA chain-based DNA hydrogel
for chemotherapy, gene therapy, immunotherapy, photo dynamic/thermal therapy, and
cooperative therapy are summarized.

Gu and coworkers prepared a biodegradable DNA nanogel based on RCA technology
for the tumor chemotherapy, the DNA nanogel consisted of DNA nanoclew (NCl) formed
from long single RCA strand and acid-responsive nanocapsules (Nca) containing DNase
1 [54]. NCl was designed with more G-C base pairs for enhancing the loading capacity of
DOX. The author demonstrated the endocytosis pathway of the DNA nanogel and when
the DNA nanogel was taken up by cancer cells MCF-7 through folic acid (FA) mediated
endocytosis, the Nca polymer shell would be degraded under the lysosome acidic microen-
vironment of lysosomes. Then, the released Dnase 1 would accelerate the degradation of
NCl, resulting in the quick release of the encapsulated DOX within 30 min, thus enhancing
the release efficiency. Gene therapy has attracted much attention since the burst develop-
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ment of drug delivery systems and nucleic acid drugs [76]. We recently developed a hybrid
DNA nanogel which enabled co-delivery of DNAzyme and CRISPR/Cas9 for the combined
gene therapy of breast cancer [55]. Repeated DNAzyme sequences, sgRNA recognition
sequences, and the cleavage sites for Hhal enzyme that could cleave miRNA inside cancer
cells were obtained via specifically designing the template sequence of RCA. Mn2+ was
added as the cofactor of DNAzyme to compress the long DNA chain into nanoparticles,
and DNA nanogel was then formed by mixing nanoparticles with Hhal enzyme coated
acid-responsive polymer (Figure 7A). After being taken up by cancer cells, the acidic
environment within lysosomes would trigger the degradation of the polymer coating,
subsequently exposing the Hhal enzyme, which would recognize and cleave the specific
sites, thereby releasing the Cas9/sgRNA and DNAzyme for combined gene therapy. Based
on RCA and rolling circle transcription (RCT) technologies, Lee et al. prepared a DNA-RNA
hybrid hydrogel through stepwise double enzymatic polymerization [77]. The DNA-RNA
hybrid hydrogel exhibited ultra-soft mechanical properties with an elastic modulus of
approximately 100 Pa, indicating that the hydrogel was easy to inject. In physiological
condition, the hydrogel network could be cleaved by restriction enzymes to release the
siRNA-AS1411 aptamer complex polymer, enabling gene therapy. Immune checkpoint
inhibitors such as anti-programmed cell death protein 1 (PD-1)/PDL-1, and CPG oligonu-
cleotides are commonly used in immunotherapy. The critical aspect of immunotherapy
is the efficient capture and isolation of immune cells with minimal damage and high pu-
rity [78]. Gu group developed a DNA nano-cocoon hydrogel based on RCA strategy for the
combination delivery of PD-1 antibody and CPG oligonucleotides. The DNA nano-cocoon
achieved controlled release of PD-1 antibody and CPG oligonucleotides, which appeared
considerable immune response and therapy efficiency [79]. RCA technology-based DNA
hydrogel provided a physiological environment and could be designed to generate repeated
PD-1 aptamer and CPG oligonucleotides, which was a more cost-effective alternative to
antibodies. In 2021, Yang group developed a DNA hydrogel network for the specific cell
isolation and in situ cell culture of T lymphocytes (T cells) on the basis of RCA principle
(Figure 7B) [56]. DNA hydrogel network was formed by two cross-linked ultralong DNA
strands with complementary sequences (Strand 1 and Strand 2). Strand 1 was designed to
contain the sequence of PD-1 aptamer, and strand 2 contained the CPG oligonucleotides
sequences. The cross-linked DNA hydrogel network could specifically recognize the recep-
tor on the surface of T cells and encapsulate them, while also providing cleavage sites for
restriction enzyme to facilitate the responsive release of T cells in cancer immunotherapy.
The purity of T cells isolated by this strategy was up to 98% and the viability of released T
cells maintained above 90%, which was expected to be used in clinical study and treatment.
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strategy-based DNA nanogel for the co-delivery of DNAzyme and CRISPR/Cas 9 for gene therapy.
Reproduced with permission. Copyright 2022 [55], Wiley-VCH Verlag GmbH. (B) Double RCA assem-
bly strategy formed DNA hydrogel for the isolation and release of T cells for cancer immunotherapy.
Copyright 2021 [56], the American Chemical Society.

The advancement of DNA nanotechnology has propelled the progress of photody-
namic therapy (PDT) and PTT. Conventional PDT techniques require external light irra-
diation, however, the low tissue penetration ability of light has limited its use in cancer
treatment [80]. Yang and coworkers recently developed an exogenous laser excitation inde-
pendent DNA hybrid nanogel for the PDT of breast cancer [57]. Based on RCA technology,
AS1411 aptamers targeting the receptors on cancer cell surface were amplified and loaded
with the photosensitizer SiPcCl2. To achieve PDT without the need for an external light
source, persistent-luminescence nanoparticles (PLNPs) coated with MnO2 were designed
as self-illuminants, capable of storing energy upon energy supplementation. When the
GSH overexpressed in cancer cells respond to the MnO2 coating on PLNPs surface, MnO2
would be restored to O2, allowing PLNPs to activate SiPcCl2 and convert O2 to cytotoxic
1O2, thus achieving effective PDT therapy (Figure 8A). Results showed that the tumor
suppression rate of the SiPcCl2-loaded DNA nanohydrogel was more than 80%. Apart
from PDT, they also developed DNA-polydopamine-MnO2 hybrid nanogel for the cancer
gene therapy and PTT [81]. DNA hybrid nanogels were composed of DNA nanoflower
containing DNAzyme sequences that obtained from RCA and polydopamine-MnO2 (PM)
complex. PM would induce an increase in temperature in tumor site through photothermal
conversion under near-infrared-light radiation and achieve PCT. Simultaneously, GSH in
tumor cells would reduce MnO2 into Mn2+, thus activating the DNAzyme and enhancing
the cleavage activity of DNAzyme on Egr-1 mRNA, which would down-regulate Egr-
1 protein in tumor cells and achieve gene therapy. The gene-photothermal synergistic
therapy strategy facilitated the development of DNAzyme-based gene therapy. Yao et al.
recently developed a DNA hybrid nanogel (DMON/DOX-DNA/ASO-HhaI@GDA) for
the chemo and gene cooperative therapy [58]. The DOX/gene delivery system consisted
of an acid-responsive Hhal degradable hydrogel layer (Hhal@GDA) and a GSH-sensitive
dendritic mesoporous organosilica nanoparticle (DMON). Hhal@GDA contained repeated
ASO sequences formed via RCA, while DMON was used for DOX loading (Figure 8B).
Upon endocytosis of the DOX-loaded hybrid nanogel into tumor cells, the Hhal@GDA
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layer would degrade in the acidic lysosomal environment, which would active Hhal to
cleave the ultralong DNA chain and release the gene drugs ASOs, thus down-regulating
the P glycoprotein expression. Simultaneously, S-S bonds contained in DMONs would
respond to the intracellular GSH to trigger the release of chemotherapy drugs DOX, thus
enabling a synergistic drug delivery approach and facilitating cooperative cancer therapy.
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Figure 8. RCA technology-based hybrid DNA hydrogel for cancer therapy. (A) DNA hybrid nanogel
for the PDT of breast cancer. Reproduced with permission. Copyright 2022, Wiley-VCH Verlag
GmbH [57]. (B) The schematic of DNA hybrid nanogel (DMON/DOX-DNA/ASO-HhaI@GDA) for
the chemo and gene cooperative therapy. Reproduced with permission. Copyright 2022 [58], the
American Chemical Society.

3. Conclusions and Perspectives

In this review, we summarized the construction strategies of DNA hydrogels on the
basis of branched DNA modules, HCR-synthesized DNA networks and RCA-produced
DNA chains, respectively. Benefiting from the programmability of DNA sequence, the
synthesized DNA hydrogels not only exhibit well mechanical property and adjustable size
tunability, but could achieve specific recognition capacity and good biocompatibility as
well. These properties endow DNA hydrogels with drug loading capability and controlled
release ability, which make DNA hydrogels as superior candidate of drug delivery carriers
for cancer therapy. With rational design, DNA hydrogels can be easily functionalized and
endowed with fascinating multiple responsiveness, which contribute to the selective release
of drugs in specific environments. Apart from traditional chemotherapeutics, small nucleic
acid molecules with cancer therapy effects could also be designed and encapsulated in DNA
hydrogels; upon specific trigger, the loaded drugs could be released and specific cancer
therapy such as chemotherapy, gene therapy, immune therapy, photo dynamic/thermal
therapy, and cooperative cancer therapy could be achieved.

Despite the notable progress of DNA hydrogels in cancer therapy, there are still several
limitations that hinder their clinical transformation. Firstly, in order to realize the clinical
applications of DNA hydrogels in drug delivery, the cost of producing DNA should be
considered. Currently, it is challenging to synthesize DNA hydrogels in large quantities at
a low cost. Thus, more systematic and efficient synthetic strategies should be developed to
build high-quality, high-throughput, and low-cost DNA production platforms. Secondly,
it is crucial to conduct comprehensive research on the biological stability, pharmacology,
toxicity, and animal pharmacokinetics of DNA hydrogels to assess their clinical application.
Nevertheless, the pharmacokinetic studies of DNA hydrogels was insufficient. The distribu-
tion, metabolism, and degradation of DNA hydrogels in vivo require further investigation,
furthermore, the efficacy and safety of DNA hydrogels in the clinical applications need to
be thoroughly evaluated. Finally, the release kinetics of drugs from DNA hydrogels, which
can guide the controlled delivery of drugs, has rarely been reported, and precise kinetic
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research is needed to provide theoretical support for the development of responsive hydro-
gels with controlled release properties. In summary, as a biomacromolecule originating
from organisms, DNA can serve as an adjustable bridge between macro and micro scale
structures through specific and rational molecule design. DNA hydrogels obtained from
DNA or DNA-involved hybrid structures have shown broad prospects in targeted drug
delivery for cancer therapy. We anticipate that DNA hydrogels will continue to drive the
development of intelligent therapeutic systems due to their unique advantages.
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