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Abstract: This study employed a coarse-grained Monte Carlo (MC) simulation to investigate the
radiation-induced polymerisation of methacrylic acid (MAA) in an aqueous solution. This method
provides an alternative to traditional kinetic models, enabling a detailed examination of the micro-
structure and growth patterns of MAA polymers, which are often not captured in other approaches.
In this work, we generated multiple clones of a simulation box, each containing a specific chemical
composition. In these simulations, every coarse-grained (CG) bead represents an entire monomer.
The growth function, defined by the chemical behaviour of interacting substances, was determined
through repeated random sampling. This approach allowed us to simulate the complex process of
radiation-induced polymerisation, enhancing our understanding of the formation of poly(methacrylic
acid) hydrogels at a microscopic level; while Monte Carlo simulations have been applied in various
contexts of polymerisation, this study’s specific approach to modelling the radiation-induced poly-
merisation of MAA in an aqueous environment, utilising the data obtained by quantum chemistry
modelling, with an emphasis on micro-structural growth, has not been extensively explored in
existing studies. This understanding is important for advancing the synthesis of these hydrogels,
which have potential applications in diverse fields such as materials science and medicine.

Keywords: Monte Carlo; radiation-induced polymerisation; methacrylic acid; hydrogels; polymer
chemistry; micro-structure simulation; growth pattern

1. Introduction

Radiation-induced polymerisation is a process in which ionising radiation is used
to initiate chemical reactions in monomers, leading to the growth and formation of the
new polymers. There are three main steps of polymerisation reactions: (a) initiation,
where radicals are formed due to the breakage of chemical bonds in monomer molecules;
(b) propagation, where the polymer chain grows and forms a cross-linked network; and
(c) termination, which encompasses several reactions, where radicals are consumed or
combined with other radicals [1,2]. The understanding of radiation-induced polymer
growth mechanics is primarily utilised in the context of 3D dosimeters, which involve
the use of monomers dissolved in water or integrated into hydrogel compositions. When
radiation-induced polymerisation proceeds, more dense polymerised areas in the gels are
created, which accurately record the 3D distribution of the radiation dose with high spatial
resolution and precision [3,4]. Radiation-sensitive gels can be explored in medical and
pharmaceutical applications. For example, these gels can be used as drug-delivery systems,
where the release of a drug can be triggered by ionising radiation [5]. They have also been
used in tissue engineering, promoting the growth of cells or tissues as a response to the
applied ionising radiation [6–8]. The use of ionising radiation is also important in the
synthesis of polymer-based nanomaterials, such as nanoparticles or nanocomposites, as
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it enables the production of materials with specific structures and specific properties for
different applications [9,10].

Modelling plays a crucial role in polymer reaction engineering, as it allows for better
process control, the prediction of the molecular structure, and the tuning of the proper-
ties. There are two main groups of polymerisation modelling methods: statistical and
deterministic [11]. Deterministic methods are based on mass balance or rate equations
and describe the concentration variations of different species over the time [12,13]. These
methods can be used to predict the evolution of a polymerisation reaction by solving the
equations numerically. The other type of deterministic method is the molecular dynamics
(MD) method [14]. This involves the integration of Newton’s equations of motion for each
atom in the system and allows for the prediction of the positions and velocities of the atoms
at any given time.

The Monte Carlo (MC) method is a type of statistical modelling technique that relies
on the generation of a random number of events, which are used for the simulation of a
system’s behaviour over time. These methods are widely used in polymer engineering
for the simulation of a wide range of characteristics of polymers, such as the chain length,
branching, monomer sequence, functionality, and cross-linking density [15–19]. One of
the key advantages of the Monte Carlo method is its ability to provide information about
the polymer micro-structure, which is impossible using other modelling techniques. It can
be applied to polymerisation reactions, in which monomer propagation or chain transfer
events can be simulated, primarily through the use of coarse-grained model assumptions,
which eliminate the microscopic degrees of freedom and represent a polymer through
a simplified structure [20,21]. However, the stochastic nature of MC simulations means
that they can be computationally intensive and time-consuming, especially for large-scale
or highly detailed simulations. This can limit their practical applicability in cases where
quick and efficient modelling is required. In addition, they may struggle with accurately
capturing long-range interactions and the subtle nuances of polymer dynamics, potentially
leading to less-precise predictions of the properties and behaviours of polymers. Finally,
the assumptions of coarse-grained models, which simplify the polymer structures by
eliminating the microscopic degrees of freedom, can lead to a loss of detailed information
about the polymer’s physical and chemical properties. This simplification may result in
inaccuracies when predicting the behaviour of more-complex polymer systems.

MC simulations are particularly well suited to the simulation of radical polymerisation,
in which the polymerisation occurs due to the free radicals introduced in the system [22,23].
In this approach, the radical-based polymerisation process is divided into three stages: the
nucleation of radicals, the growth of chains within a solvent of monomers, and termination.
However, in order to simulate radiation-induced polymerisation, a multi-scale modelling
approach is required: first, the simulation of radiation transport to the media should be
performed, and then, in the next stage, the MC simulation of radical-like polymerisation
can proceed.

In this paper, we present the coarse-grained MC approach of radiation-induced poly-
merisation of MAA in an aqueous solution, where the CG bead is equal to a whole monomer,
and the external radiation is introduced to form the random radicals. The focus of this
research was to analyse the micro-structure and growth pattern of the of the radiation-
induced polymerisation of MAA in the aqueous solution, which would allow optimising
the the synthesis of poly(methacrylic acid) hydrogels with unique properties [1,24,25].

2. Results and Discussion
2.1. Results

The radiation-induced growth of MAA polymers is a complex chemical process in-
volving multiple competing chemical reactions and typically leads to the creation of simple
and branched MAA polymers. The outcome of this process is stochastic in nature and,
on the individual MAA polymer level, is driven to a large extent by unique chemical
events happening during the growth of specific MAA polymers. This chemical process
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could not be easily simulated by chemical kinetics methods, as these methods have limited
capabilities to describe the growth of MAA polymers beyond the statistically averaged
picture. To overcome these limitations of chemical kinetics methods, we employed the
stochastic Monte Carlo method, which allowed us to describe the growth of MAA polymers
on individual and collective levels. In this work, to study the radiation-induced growth of
MAA polymers, we carried out Monte Carlo simulations using the setup described in the
computational details section and repeated these simulations on 70 randomly generated
initial simulation boxes.

In each Monte Carlo simulation, 60 million random walk steps in the chemical events
space had been executed to emulate the growth of MAA oligomers, referred to as polymers
for simplification, under a dose rate of 20 cGy/min of γ-radiation. In all 70 cases, we
observed the formation of complex branched MAA polymers with a distinct grouping
of smaller branched polymers into an agglomeration of MAA polymers. A typical MAA
polymer growth pattern in our Monte Carlo simulations is displayed in Figure 1, where
the initial formation of MAA polymer agglomeration centres was already observed after
10 million Monte Carlo steps, and consolidation of initial branched polymers continued up
to 50 million Monte Carlo steps, where a relatively stable agglomeration of MAA polymers
was reached. Across all the simulations, we observed the formation of intricate branched
MAA polymers, with smaller branched polymers aggregating to form larger clusters of
MAA polymers. The average length of the polymer backbone reached approximately
35 monomers, exhibiting fluctuations between 25 and 50. Similarly, the average polymer
length reached around 50, with fluctuations ranging from 38 to 72 monomers.

In Figure 2, we present the statistical analysis of MAA polymer growth from our
Monte Carlo simulations. These plots show that the growth of MAA polymers continued
up to 50 million Monte Carlo steps. At this point, a state of equilibrium was reached
between the growth of MAA polymers and the degradation of branched MAA polymers.
This equilibrium resulted in a stable structure of MAA polymers within the simulation
box. However, the structure of MAA polymers was not static; it continued to evolve
rapidly, influenced by the ongoing balance between the formation and breakdown of MAA
polymers. This dynamic process was clearly demonstrated in plot Figure 2e, where the
continuous changes in the polymer structure could be observed.

The outlined trends in the growth of MAA polymers were statistically convergent, as
extending the simulation sample of simulation boxes from 70 to 420 did not change the
results presented in Figure 2.

Our Monte Carlo simulations effectively generated distinct MAA polymer growth pat-
terns in each simulation box, enabling the investigation of the variability of MAA polymer
growth, including rare growth events. Analysing MAA polymer growth patterns across
various simulation boxes aided in understanding the primary trends of MAA polymer
growth and identifying the key chemical processes that facilitated MAA polymer formation
under γ-irradiation. In Monte Carlo simulations, evaluating statistical randomness is an
essential aspect to ensure the accuracy and reliability of the results. We employed the
Jaccard similarity index to assess the resemblance of growth patterns among different
simulation boxes (Figure 3). The Jaccard index is a similarity statistic that compares the
size of the intersection of two sets to the size of their union in order to determine their
similarity. It can be used to quantify uncertainty in Monte Carlo simulations by comparing
the sets of outputs obtained from different simulation runs. Additionally, it quantifies the
level of unpredictability in the simulation results by providing a measure of consistency
or resemblance between the sets. The Jaccard index values and simulation outcome maps
demonstrated consistent results, capturing the anticipated variability in polymer growth
due to the inherent randomness of the MC method. After 20 million iterations, a high
degree of similarity between boxes was observed in Figure 3a, suggesting that the simula-
tion parameters and conditions ensured consistent outcomes across multiple runs, despite
the random sampling inherent in the Monte Carlo approach. However, as the simulation
progressed, the similarity diminished as expected (Figure 3c), due to the formation of more
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complex structures from increasingly intricate combination events with lower probabilities,
resulting in greater variability in the final state of the box. Extending the Jaccard similarity
analysis from 70 to 420 simulation boxes did not significantly alter the similarity index
values among the boxes. Consequently, these findings affirmed that our MC simulations
were statistically convergent and accurately represented the dominant pattern of MAA
polymer growth in our model.

(a) Initial status of simulation box. (b) Status of simulation box after 10 mil-
lion iterations.

(c) Status of simulation box after 30 mil-
lion iterations.

(d) Status of simulation box after 60 mil-
lion iterations.

(e) Dynamics of the average backbone
length within a box.

(f) Dynamics of the average polymer
length within a box.

Figure 1. The growth of MAA polymers during Monte Carlo simulation: (a–d) subplots represent
evolution of 50 × 50 × 50 nm simulation box with 5875 MAA molecules at different stages of
simulation; (e) subplot depicts evolution of averaged MAA polymer backbone length (in MAA
monomers) during simulation; (f) subplot depicts evolution of averaged MAA polymer length (in
MAA monomers) during simulation.
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(a) Evolution of the average backbone length. (b) Distribution of backbone length.

(c) Evolution of the average polymer length. (d) Distribution of polymer length.

(e) Evolution of number of non-branched
monomers.

Figure 2. The combined results of the 70 box simulation statistics: (a,b) subplots shows the evolution
and distribution of the average backbone length; (c,d) subplot shows the evolution and distribution
of the average polymer length; (e) subplot shows the number of non branched monomers during the
simulation
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(a) Jaccard index at 20 mln. iterations. (b) Jaccard map at 20 mln. iterations.

(c) Jaccard index at 40 mln. iterations. (d) Jaccard map at 40 mln. iterations.

Figure 3. Jaccard similarity index distributions and maps at various simulation phases. Each of the
70 boxes had been compared against each other and the Jaccard index had been calculated, thus
resulting in 4900 comparisons that had been set on the x-axis. (a,b) at 20 million iterations showing
the very high similarity between the polymers formed in the boxes; (c,d) at 40 million iterations
showing decreasing similarity between the polymers formed in the boxes.

2.2. Discussion

A review of Monte Carlo simulations of polymers showed a diverse range of coarse-
grained models, each uniquely tailored to specific research objectives [26–29]. However,
due to the inherent differences in their setups and purposes, a direct comparison with our
study’s methodology and goals was not feasible. Our study’s MC simulations, instrumental
in exploring the polymerisation of MAA in an aqueous solution, were grounded in a so-
phisticated approach combining detailed micro-structural insights with advanced quantum
mechanical methods. Each simulation step initiated with the generation of a radical, with
its interaction with monomers determining the ensuing growth or decomposition reaction.
This process, governed by calculated probabilities and augmented by random rotations and
translations of monomers and oligomers, was meticulously checked for physical feasibility.
Any detected collision led to the reversal of the simulation step, maintaining the system’s
integrity. In this initial version of our novel approach, the model was specifically designed
for simulations with a standard gamma irradiation dose rate of 20 cGy/min, using only
water as the solvent and methacrylic acid as the molecule. Due to the complexity of the
involved mechanisms, such limitations were necessary for feasibility. Future versions aim
to broaden these parameters, enhancing the model’s scope and applicability.

A cornerstone of our approach was the quantum mechanical accuracy in calculating
bond dissociation and radical formation rates. Employing sophisticated quantum chemical
models, specifically the hybrid B3LYP/def2-SVPD approach, we optimised the geometry of
each MAA molecular system. This process of geometry optimisation aimed to find the most
stable configuration of the molecule by minimising total energy. The def2-SVPD basis set,
part of the Karlsruhe series, balanced computational efficiency with the accuracy needed
for complex calculations.
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Our MC-part methodology was based on a simplified model that emphasised combi-
nation and breakdown reactions (see Supplementary Materials for the main pseudocode).
This strategic choice addressed the need for computational efficiency and provided clarity
in theoretical understanding, essential in the complex realm of polymerisation; while this
simplification allowed for the extraction of fundamental insights into polymer growth, it
also necessitated several assumptions and boundary conditions. The simulation began in
a controlled environment containing only monomers, without pre-existing polymers or
radicals, and operated within a fixed geometric boundary. The methacrylic acid molecule
was geometrically simplified for computational manageability. These assumptions, while
facilitating the observation of polymer growth, also limited the representation of real-world
conditions. Despite the rigorous quantum mechanical methods and the careful consider-
ations in model construction, our simulation simplified several aspects of physical and
chemical interactions. It did not fully account for complex secondary reactions, solvent and
oxygen effects, diffusion limitations, and spatial effects in real polymerisation. Moreover,
the model implicitly accounted for termination reactions in free radical polymerisation but
overlooked disproportionation termination events, among other secondary reactions.

Direct experimental verification in our study encountered several challenges, includ-
ing issues related to solvent compatibility, relaxation effects, accurate molecular weight
determination, signal overlap, sensitivity, and stringent sample requirements. Tackling
these challenges would necessitate thorough sample preparation, fine-tuning of experi-
mental parameters, and possibly the integration of Nuclear Magnetic Resonance (NMR)
with other analytical techniques. Given these experiments’ inherent complexity and high
uncertainty, computational models are valuable in polymer science, helping to circumvent
some of the experimental methods’ limitations. While our study did not include direct
experimental validation, it found a nuanced parallel with certain specific conditions in
Pulsed-Laser Polymerisation (PLP) studies related to MAA polymerisation [30,31]. It is
important to note that these parallels should not be interpreted as direct evidence but rather
as an indicative correlation under particular circumstances. This comparison, while not
exact, suggested that the oligomer sizes observed in our model were within a plausible
range, reinforcing the potential validity of our theoretical approach.

Acknowledging these simplifications and assumptions is crucial in interpreting the re-
sults of our MC simulations; while the model offered a robust framework for understanding
fundamental polymerisation processes and had undergone rigorous mathematical valida-
tion on a solid modelling base, including passing uncertainty checks, it did not capture
the complete complexity of real-world polymerisation dynamics. Nevertheless, the under-
standing derived from this model could be beneficial for studying the free radical-induced
polymerisation process.

3. Conclusions

This study utilised MC simulations, augmented by quantum mechanical modelling,
to investigate the polymerisation of MAA in aqueous solutions under radiation-induced
conditions. The use of quantum chemistry data from a B3LYP/def2-SVPD model enabled
a detailed analysis of polymer growth. The structural output concerning polymer length
and counts, as derived from our simulations, facilitated the quantification of the degree of
polymerisation, polymer molecular mass, and polydispersity.

The findings contributed to a more comprehensive understanding of the structural
dynamics of MAA polymers. However, it was acknowledged that the simulation model,
while providing valuable insights, might not fully encapsulate all aspects of polymer
behaviour under varying real-world conditions. Further research is warranted to expand
upon these findings, potentially incorporating broader data sets and exploring alternative
simulation methodologies. The model’s adaptability and capacity to be adjusted makes
it a great resource for the study of polymer growth and the formation of polymers. With
further development, it could facilitate the design and synthesis of polymers with tailored
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properties, as well as enable the exploration of various scenarios and optimisation of
conditions for polymer growth.

4. Materials and Methods
4.1. Chemical Event Monte Carlo Model: Implementation Details

The model was based on the MC method, which relies on repeated random sampling
to obtain numerical results, as polymer growth upon irradiation can be described by a
probabilistic interpretation. The simulation box of the desired size was initiated and filled
with the type of material of interest and its concentration, i.e., the number of molecules of the
material per the volume of the box, as well as their initial configuration, and the MC cycle
was started (Figure 4). The iteration step started with the selection of a random location
within the box’s geometrical boundaries, which simulated the possibility of the random
appearance of radicals. A check of the energy within that box location was performed
to ensure that the absorbed energy value was sufficient to create a radical. The next step
checked if there was a molecule of interest within a certain distance that would be affected
by the creation of the radical. If this were the case, the energy calculation for radiation
damage and material capture was performed in order to set the possible combination
or break-down event sequence depending on those energy calculations. At this stage,
there were three potential scenarios: a changed molecular structure following a successful
combination event, a changed molecular structure resulting from a successful break-down
event, or an unchanged structure if neither of these events occurred successfully. In all
cases, the next step was the calculation of rotation and translation, followed by a final
feasibility check that verified that the changes were physically possible, i.e., that there was
no unacceptable intersection of the simulated bodies. The result of the check determined,
accordingly, whether the changes made were retained and the simulation box was updated
or whether they were reversed.

Figure 4. Code flowchart of MC cycle. In the simulation, a box of material and its concentration were
initiated. A random location within the box was selected, and energy was checked to ascertain if it
could generate a radical. If a molecule lay within range, energy calculations were made for radiation
damage and material capture. Three outcomes were possible: a changed molecular structure, an
unchanged structure, or no event. In the first two scenarios, the new coordinates were calculated, and
a feasibility check was performed. If the changes were deemed physically possible, the simulation
box was updated.
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The initial simulation box geometrically bounded the simulation volume and gen-
erated mononomers, dimers, and trimers in roughly the same amounts at the default
concentration. The bond angle was equal to 109.5°, corresponding to the bond angles of
carbon atoms. The structure could be subjected to Break-down and Rotation–Translation,
Combination and Rotation–Translation, or solely to Rotation–Translation, based solely on
the computations. The Rotation–Translation event calculated the moment of inertia of the
specified structure and created random rotations and translations based on this value. The
object was then rotated and translated along the X, Y, and Z axes by a random amount. The
maximum distance allowed was no greater than six times the length of the longest edge of
the molecule.

The breakdown event forced the structure of interest to segment off into new distinct
objects at the event point. The combination event implemented the possible scenarios of
connection of the structures when the activated molecule was within a certain distance from
the other surrounding bodies. The selection of the exact Combination scenario depended
on the configurations, locations, and lengths of the structures of interest. The objects might
merge by interconnecting within the new entity, hence expanding its size. When both
or one of the objects were small in size, or when the activation point was close to the
end, the shorter object joined the longer object, and the chain grew. In the case of larger,
complicated, branched structures, the combination via the activation point could produce
the new interconnected structure. In other scenarios, an object could become a branch
of another object and create a branched structure. Depending on its size and activation
point, the object might either produce a single branch or split into two branches at the
activation point. Other combination scenarios included complicated swaps where the
activated structures might break down at specific spots and join the split portion of another
structure, thus creating new structures with new connections and relationships.

The feasibility check consisted of the identification of collisions and was required for
the control and rejection of physically implausible outputs generated by a random engine.
In contrast to the detection of sphere collisions, the detection of cuboids necessitated a
more complex method, which had to be as efficient as feasible owing to the high number
of cuboids and the required number of iterations. The Gilbert–Johnson–Keerthi (GJK)
distance method is a technique for calculating the shortest distance between two convex
sets [32]. The class itself had been adapted from the OpenGJK library [33], which includes
the fastest and most accurate version of the GJK algorithm available to date. The project also
employed the vector type Mersenne Twister pseudorandom number generator (MT19937)
from Intel’s Math Kernel Library [34] to produce a uniform discrete sample distribution
with the generator’s period of 219,937−1

.

4.2. Chemical events Monte Carlo Model: Parameterisation

The initial parameters for the study were established using simulations based on Den-
sity Functional Theory (DFT). In these simulations, the hybrid B3LYP/def2-SVPD approach
was employed for the geometry optimisation of each molecular system, specifically those
of MAA polymers with varying chain lengths (n = 1 to 30). The B3LYP component of this
hybrid functional merged Hartree–Fock exchange with DFT principles to enhance calcula-
tion precision. The def2-SVPD term referred to a chosen basis set in quantum chemistry
calculations, integral for constructing molecular orbitals. The def2 designation indicated
the Karlsruhe series basis sets, and SVPD represented Split Valence with Polarisation and
Diffuse functions. This basis set was selected for its effective balance between computa-
tional efficiency and the accuracy required for complex quantum chemical calculations [35].
Geometry optimisation involved iteratively adjusting atomic positions to ascertain the most
energetically favourable molecular configuration. This process sought the lowest possible
energy state for the molecule, ensuring that the optimised geometry formed the cornerstone
for subsequent analyses. The accurate determination of this optimised structure was crucial,
as it underpinned further evaluations of the molecular system’s stability and potential
chemical reactivity.
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Upon the completion of geometry optimisation, the study proceeded to calculate
the bond dissociation and radical formation energies in the MAA molecules. This task
was carried out using the quantum mechanical method B3LYP/def2-TZVPP [36]. The
method included triple-zeta valence polarisation functions, crucial for addressing electron
correlation effects, and diffuse functions, which were essential for capturing the electron
density in peripheral regions of the molecule. For the series of molecules denoted as
(MAA)n, with n ranging from 1 to 30, the study contemplated 1826 potential reactions
encompassing bond dissociation and radical formation. In each of these reactions, the
change in energy was determined by comparing the total energy of the reactants (the initial
MAA molecules) against that of the products (resultant molecules post bond dissociation
or radical formation).

The estimation of activation energy was conducted using transition state theory. This
theory examines the behaviour of molecules during a chemical reaction, focusing on the
highest potential energy point along the reaction pathway, known as the transition state.
This state represents a critical energy barrier that the reactants have to surpass to transform
into products. Characteristically, the transition state is a fleeting, high-energy arrangement
of atoms, representing a peak on the reaction coordinate. To ascertain the transition state
geometry, the study employed the functional thrust radius Newton–Raphson algorithm,
tracing the collective chemical reaction coordinate. The accuracy of these obtained transition
state geometries was then validated through the computation of their geometrical Hessian.
This step involved confirming the appropriate curvature of the Potential Energy Surface
(PES) at the transition state, ensuring it represented a saddle point on the PES—a maximum
along the reaction coordinate and a minimum in all other dimensions.

The obtained data from quantum chemistry simulations were used to determine the
fitting parameters X, F, and G (Table 1). The fitting procedure assumed samples were
under irradiation of γ-rays (dose rate 20 cGy/min), and Pact(U) and Pbrk(U) functions
were selected according to kinetic MAA polymers growth models. The developed Monte
Carlo model then used the effective events technique for MAA polymer growth, in which
all polymer growth chemical reactions were subsumed into two main probabilistic events:
activation of MAA polymer and breakdown of MAA polymer (Figure 4). The first step
contained MAA monomer activation and radical propagation in MAA polymer, and, in
our model, was described via the activation function Pact(U):

Pact(U) = X(1 − F) + XFer f (GU), (1)

where the activation function parameters X, F, and G were explicitly dependent on the
length of the MAA polymer. The second step contained the MAA polymer break-down
and deactivation steps in the growth of the MAA polymer or MAA polymer branching.
This step was also described by the breakdown function Pbrk(U):

Pbrk(U) = X(1 − F) + XFer f (GU2). (2)

4.3. Chemical Events Monte Carlo Model: Simulation Parameters

The iteration speed varied with the complexity of the structures being formed, com-
mencing at 1.3 h per million iterations and increasing to 1.9 h per million iterations for a 50
nm × 50 nm × 50 nm box containing a default concentration of 5875 molecules (Figure 5a).
Although box sizes up to 70 nm × 70 nm × 70 nm were simulated, the observed statistics
remained largely unchanged for sizes exceeding 40 nm × 40 nm × 40 nm. Boxes measuring
30 nm × 30 nm × 30 nm yielded chemically infeasible results, indicating that the influence
of box size on the properties at this scale became negligible beyond the minimum viable
size of 40 nm × 40 nm × 40 nm. To evaluate the randomness of the structures created, the
default size of the simulation box was divided into 125 smaller cubes measuring 10 nm x
10 nm x 10 nm, and the quantity of monomers in each cube was determined. The number
of monomers determined for each cube was then compared to the number of monomers
calculated for the equivalent cube in the other boxes. In total, 10 default-sized boxes were
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examined for structural similarities in this manner. The determined average deviation
of 51.9 indicates that the produced structures in the various boxes had no correlation
(Figure 5b).

(a) Dynamics of simulation speed (b) Randomness evaluation
Figure 5. (a) Speed of the simulation for 50 nm × 50 nm × 50 nm box of default concentration
(5875 molecules) varied from 1.3 h per million iteration in the beginning of the simulation and ended
up to 1.9 h per million iteration. (b) An evaluation of the randomness of box structures based on the
number of monomers in smaller box areas.

The probability of chemical activation (connection) for methacrylic acid monomer
was calculated in Equation (1). The probability of chemical break-down (division) for
methacrylic acid monomer was calculated in Equation (2). The data for calculations of
probabilities of chemical activation and break-down were taken from the quantum chemical
computational model, which predicted the electronic structure of molecules using the
hybrid B3LYP exchange-correlation functional and the def2-SVPD basis set (Table 1).

Table 1. Data for calculations obtained from B3LYP/def2-SVPD model *. The X, F, and G parameters
in the B3LYP/def2-SVPD model were the dimensionless coefficients calculated from the fitting
procedure and used to define the likelihood of MAA monomer combination and growth or division
and break down under γ-irradiation of 20 cGy/min dose rate.

Size of Polymer in Monomers X F G

1 1.00 0.0 0.0
2 0.83 0.8 1.0
3 0.72 0.8 5.2
4 0.59 0.4 3.71
5 0.51 0.6 1.28

6–10 0.23 0.75 0.42
11–15 0.2 0.67 0.36
≥ 16 0.18 0.6 0.33

∗ The parameters were calibrated using a probabilistic events model designed for MAA
polymers, specifically for lengths comprising 1, 3, 5, 9, 13, and 18 monomer units (385 chem-
ical reactions calculations at B3LYP/def2-SVPD level of theory).

Supplementary Materials: The following supporting information can be downloaded at: https://
zenodo.org/records/10115953, accessed on 26 November 2023. Figure S1: Pseudo-code implemented
for MC cycle. Figure S2: Pseudo-code for event handling. Figure S3: Simulation variables.
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